
I l
Information
^r;3ncas
Archivai Copy

Commercial microcomputer database management system softw"are
Évaluation guide unes

by

Nicholas Kassem

Information Sciences Division
International Development Research Centre

Ottawa, Canada

Prepared for the

meeting on

Microcomputers and Bibliographic Information Systems in

Latin America: Problems, Experiences and Projections

U.N. Economic Commission for Latin America
Santiago, Chile

April 1984

DRGdcc
,so

Commercial microcomputer database management system software
evaluation guide fines

These guidelines were written by Nicholas Kassem and were
discussed by a technical working group which met in Ottawa
during the period 28 November to 2 December 1983. The group
was composed of analysts from IDRC, IICA, CEPIS, and BIREME,

as well as a independent consultant. The current version of
this report incorporates their recommendations and

suggestions.

ABSTRACT

A series of guidelines to be used in the evaluation of commercial
microcomputer database management system software for bibliographie
applications is proposed. A high-level functional specification
for a "typical" bibliographie application is given as a focus for

the evaluation. The features of software to be considered in the

evaluation process are defined in both general and specific terms.
They include: the user interface, database definition, database
population, data modification, data retrieval, arithmetic
computation, output generation, data integrity, utilities and

special features, the software and hardware environment, and data
transfer. Particular characteristics of these functions which are

useful for evaluation purposes are identified. The emphasis
throughout is on the discussion of possible discriminating factors,
rather than on mechanistic procedures to be followed in c arr ying
out an actual evaluation. However, two sets of forms for "paper"

evaluations are presented. One of these contains the results of
an evaluation of a well-known database management package as it

could be applied to a "DEVSIS-like" system.

CONTENTS

1. Introduction

1.1 Terminology

1.2 Methodology
1.3 Database types

2. User interface

2.1 Menu driven
2.2 Program driven
2.3 Command driven
2.4 Help subsystem
2.5 User friendliness

3. Database definition

3.1 Database structure definition
3.2 File definition/creation
3.3 Record level definition

3.4 Field level definition
3.5 Database modification
3.6 Data dictionary

4. Database population

4.1 Online data entry
4.2 Offline data creation

5. Data modification

5.1 On-line data modification
5.2 Global data modification
5.3 Data deletion

6. Data retrieval

6.1 Online searching
6.2 Batch extraction
6.3 Fast access files

6.4 Multiple user views

7. Arithmetic computation

8. Output generation

8.1 Output creation
8.2 Print format definition
8.3 Output redirection

8.4 Sort/merge

9. Data integrity

9.1 Database security
9.2 User passwords
9.3 File locking
9.4 Transaction logginq/recovery

9.5 System backup

10. Utilities and special features

10.1 Software configurability
10.2 Disk file chaining
10.3 Programming lanquage interface
10.4 User-defined commands/macro generation
10.5 High level procedural language subsystem
10.6 Multi-user capability and local area networking
10.7 File compatibility

11. Software and hardware environment

11.1 Software specifications
11.2 Hardware specifications
11.3 Software portabi l ity
11.4 Software support and documentation

12. Data transfer

12.1 Device handling capability
12.2 Asynchronous data communication
12.3 Download/upload capability

Appendices

A. High-level functional specifications
B. Database types and characteristics
C. Fast access file types

0. Sample "paper" evaluation
E. Software evaluation forms

-1-

1. INTRODUCTION

There are, as yet, very few commercially available
microcomputer software packages dedicated to managing primarily
bibliographic information. In addition, the commercial
microcomputer software producers are unlikely to address, in the

short term, the specific requirements and needs of bibliographic
systems. This is primarily due to the relatively small potential
user base and, therefore, market for such products. The needs of

these users are more likely to be satisfied through general purpose

software packages which can be specially tailored to their specific
requirements. Although this approach undoubtedly represents a

compromise, it is nevertheless a realistic and cost effective way

of balancing needs against solutions.

Bibliographic data belong to the general class of

non-numeric or textual data and, therefore, for the, purposes of
this study the term "bibliographic data" is used in the broad

sense. The software products presently available to manage such
data emphasize, for obvious reasons, their capabilities rather than

their limitations. In many cases, however, it is these very
limitations that are of paramount importance in the selection of

software for bibliographic applications. Appendix A contains the

high-level functional specifications of a typical bibliographic
application.

The evaluation of available software or a comparative
study of selected software is beyond the scope of this document.
The intention is, therefore, to present guidelines on how to

evaluate microcomputer software and what specifically tlook for.

1.1 Terminology

In the field of microcomputer software there is a great
deal of confusion over the terms database, DBMS, FMS, NDBMS, HDBMS,
etc. Some of this confusion is strictly the result of misusing
terminology, which has resulted in vendors claiming features and

characteristics, which is misleading to say the least.

The approach adopted has been firstly, to define the
terminology and secondly, to use the terminology consistently.
When evaluating any given software, the preliminary step must
always involve identifying the terminology and understanding how it

is being used. The following definitions and descriptions wTTT be
of assistance.

-2-

(i) Database

A database is essentially a collection of interrelated
data with differing record types, stored to control redundancy and

designed to serve one or more applications.

(ii) Database Management System (DBMS)

A DBMS can be thought of as a collection of software for

managing one or more databases, and should provide the necessary
tools to build and support mutually independent applications.

(iii) File

A file is composed of a sequence of records of

predefined format. A file is uniquely identified by a name which

is an entry in the system directory, and it is this name that is

used to locate data on disk. A file can contain various types of
data, i.e. pointers, indexes, bibliographic data and so on. It

is, therefore, apparent that a database represents a logical view

of specific types of data whilst a file represents a physical means

of referring to (and hence accessing) a variety of data types.

(iv) Record

A record represents a collection of logically related

fields grouped together into a unit. A record is, therefore, the

smallest retrievable unit within a file. (In the relational

model, the term tuple is used instead of record.)

(v) Field

A field represents a location within a record which has
associated with it a set of attributes, e.g. length, data type,

descripton, and so on. The terms domain, data element, and field

are at times used interchangeably, and though each has a specific
meaning and usage, I do not wish to confuse the issue by

introducing such subtleties.

1.2 Methodology

In order to be able to evaluate database software
packages for the purposes of managing bibliographic data, one must
look at the software from various perspectives. The usefulness
and, therefore, suitability of any given software product in

addressing the needs of bibliographic applications is directly
related to the way in which the product performs a set of
previously identified functions.

-3-

The proposed methodology for evaluatinq micro DBMS
software is made up of the following steps:-

1. Identification of the set of functions associated with a
specific application;

2. Ranking of the identified functions based on whether the
functions are required, desirable or optional;

3. Identification of the software features that are likely
to perform the selected functions either directly or

indirectly;

4. Identification of the functions that cannot be performed
by the software;

5. Determination of the way in which the software features

either directly or in irectly perform the selected
functions;

6. Identification of the trade-offs and compromises needed
to perform the set of functions using the software
features provided;

7. Determination of the suitability of the product based on
the results of 3), 4), 5) and 6).

Steps 1) and 2) are relatively easy to perform and the

system functional specifications should be used as the starting
point. In order tai perform steps 3) and 4), software features and

their characteristics need to be considered in detail, and to this

end sections 2 - 12 of this report can be used as a guideline.

The features have been divided into the following broad
c ategories: -

- User interface
- Database definition
- Database population
- Data modification
- Data retrieval
- Arithmetic computation
- Output generation
- Data integrity
- Utilities and special features
- Software and hardware environment
- Data transfer.

-4-

These categories are discussed in the following sections
and the amount of detail has been maintained at a level to ensure
usefulness without being specific to the point of detracting from
the overall objectives of this document. In addition, the

features serve as a checklist against the set of requirements that
need to be satisfied.

Note: It should be emphasized that, although many DBMS software
provide a fixed number of features, in addition they
generally provide facilities, e.g. ultra languages and/or
programming language interfaces, that enable a great many
functions to be performed indirectly.

1.3 Database types

Detailed descriptions of various database types and
internai structures are well documented and widely available.
However, in order to assess various database software packages,
with any degree of confidence in the validity of the exercise, it
is essential to appreciate the fundamental differences between
types of databases. These differences have a major bearing on the
capabilities and features offered by database software packages.

The databases that are now available on microcomputers
are often subsets of databases that are well established on
mainframe and minicomputers. There are three broad categories:
File Management Systems (FMS), Hierarchical/Network Database
Management Systems (H/NDBMS) and Relational Database Management

Systems (RDBMS). Refer to Appendix B for a description of the
main types of commercial DBMS software.

-5-

2. USER INTERFACE

The features of a DBMS that are collectively known as the

"user interface" are of an ever-increasing importance. The reason
is partly due to the continuous rise in user expectations, but more
importantly it is the user interface that ultimately determines the
usefulness of the product and its acceptability by the user
community. It is, therefore, not surprising that a great deal of

effort is being put into this aspect of the total software package,
the DBMS software being only a part of the whole system.

Voice recognition/synthesis, touch-sensitive screens, and
optical pens are likely to be common features integrated into DBMS

software in the not-too-distant future. The desirability of a

natural language interface, with a limited but expandable
vocabulary, is an obvious attraction. I will, however, only
address the more conventional features that are currently
available.

2.1 Menu driven

The ability to select functions by choosing options from

a menu has become an increasingly popular method of performing
various DBMS tasks. The displaying of an entire menu each time a

functional decision has to be made can be cumbersome in an

environment where the computer dialogue is via a hardcopy device

rather than a display terminal. In the case of microcomputers
with high-speed screen refresh cycles, the ability to define and

use menus is an attractive option. Menu-driven systems tend to
build up a hierarchy, with each level representing a degree of
detail. It is, therefore, often desirable to be able to select
low level menus directly, without having to first select a number

of higher level options.

2.2 Program driven

This feature is only applicable where there is a high

level of user expertise and a requirement for performing certain or

all DBMS functions programmatically by calling specific
sub-routines. A DBMS that i s composed of a set of such
sub-routines is not strictly a DBMS though there are products that

make such claims. A program driven DBMS is a viable option where

specific and unorthodox processing is required and where
conventional software is unlikely to satisfy the application
requirements.

-6-

2.3 Command driven

The most common way of driving DBMS software and

selecting various options is by inputting a command (or an

abbreviation) followed by one or more parameters that may be
optional. This method of driving the software is very flexible
and easily expandable, though it can be quite unfriendly without a

help subsystem and meaningful messages. The command formats
should be user accessible and held externally in a file rather than

hard-coded into the software. This will enable users to translate
commands or to modify the format of the dialogue to suit their

needs.

2.4 Help subsystem

The help subsystem is a common feature on most DBMS

software and is particularly useful in the case of command driven
software. A help subsystem presents the options open to the user

and indicates the precise syntax of the commands. The subsystem
may go further and display an example of a given command in use.

The help responses should ideally be stored in a file and

be independent of the software itself and may be incorporated into

the command file mentioned previously. A help subsystem, however
sophisticated, should not be seen as a substitute for good

documentation.

2.5 User friendliness

This particular feature of a DBMS is one of the most
often talked about software characteristic, and yet, it is the

hardest feature to quantify. The user friendliness of a software
package is quite obviously a function of the users of the package.
Their expectations, background and expertise, all contribute to
colour their view as to what they perceive to be a user friendly
system. It is, nevertheless, possible to add to these purely
objective opinions a set of features that facilitate using the DBMS
software. A few of these features, e.g. the help subsystem and
menu facilities, have already been touched on, and the following
represent additional desirable features:-

Meaningful error and warning messages with references to
a detailed description of the error/warning messages,
with an indication of how to proceed following an error
condition.

-7-

Controlled recovery from unanticipated errors.

Consistency in the use of the command syntax.

Meaningful command narres with suitable abbreviations.

Free format input of commands and associated parameters,
with little or no positional constraints.

Ability to modify/amend previously entered commands
without having to re-input the command.

Comprehensive, system-provided default values for
parameters that are not frequently used.

Masking of unwanted detail from users, unless and until

specifically requested.

Minimizing the probability of accidentally selecting
sensitive functions, by re-prompting and/or warning of
the implications of selecting such functions. The

building of tolerance to user mistakes can be taken a
step further by anticipating common mistakes and thereby
warning/correcting their mistakes and possibly making
assumptions about what they actually intended to do.

Ability to interrupt the execution of commands either to

continue or to discontinue processing. In the event of

choosing the latter, it should be possible to backtrack
and rectify the results of tasks already performed so as
to leave the system in a state as found prior to the

execution of the selected command.

-8-

3. DATABASE DEFINITION

The software features provided by various "DBMS" products

for Database definition vary quite considerably and depend
primarily on the database structure supported. In the case of FMS

software, file creation/modification is handled either directly or
indirectly by operating system utilities and commands. In the

case of hierarchical/network DBMS software the database definition
process is handled via a database definition language. The

database definition is, therefore, a distinct and separate activity
from the creation of the physical files. In the case of RDBMS the
database definition process is generally dialogue and command
driven, resulting in the creation of a database definition file.
The physical files are, in some cases, created and initialized at

the came time.

In order to be able to evaluate various database
definition procedures, a common ground must be established. To

this end, the following features should serve as a guideline,

though ultimately the precise method of achieving the objectives
is less important than whether the objectives are achievable using
a given DBMS software product. The objectives are:-

(i) The definition of a logical database structure.

(ii) The creation and initialization of the underlying
physical structure.

(iii) The modification and maintenance of the physical and
logical structure.

(iv) The reporting of the physical and logical structure in a

coherent and comprehensive manner.

Sections 3.2, 3.3 and 3.4 deal with objectives (i) and (ii), whilst

the features in sections 3.5 and 3.6 deal with objectives (iii) and

(iv) respectively.

3.1 Database structure definition

The ability to define a database structure independently
of the data itself is the cornerstone of database technology. As

mentioned previously, the variety of database structures has
resulted in the proliferation of differing structural definition
procedures.

-9-

The least error-prone and most user-friendly means of

capturing database structural information is through the use of

system-generated dialogue and predefined commands. Regardless of

the precise sequence and mechanism, the objective is to compile

information on the database as a whole rather than detailed

components, for example:-

(i) logical database names;

(ii) physical database names (usually system defined);

(iii) physical database characteristics, e.g. number of records

and maximum/average record size;

(iv) database log file name (if logging is provided), see

section 9.4

(v) audit trail file nage (if auditing facilities are
provided and required);

(vi) logical links between various databases, e.g. join rules
in the case of RDBMS software.

The above information is generally stored in a database
definition file in an internai format. This file acts as an
interface to the physical files and can be used for reporting the
database structure.

It should be apparent that, in addition to the above
information, the details of the database records and fields are
also required and should be captured at the same time (sections 3.3

and 3.4 deal with the record and field level details).

More sophisticated DBMS software, particularly H/NDBMS,
provide a database definition language (DDL) that is used to define
a database schema. The schema defined in a standard text file

serves as input to a database creation utility, which essentially
translates al] DDL statements into a database definition file.
The complexity of the database creation utility is likely to vary
quite considerably, though the following features are desirable:-

(i) Meaningful error messages during the schema translation
process.

(ii) Physical file creation facility.

(iii) Database modification and maintenance facilities (see
section 3.5).

-10-

3.2 File definition/creation

The DBMS software should ideally create and initialize
the physical files using the information stored in the database
definition file. Most DBMS software estimate the required file

sizes using the following information:-

(i) average/maximum record sizes;

(ii) number of specified/estimated records;

(iii) hardware characteristics, e.g. disk density, number of

tracks per disk, sector size.

Where possible, hardware features and characteristics
should be kept independent of software features. This will ensure
flexibility in the selection of storage media, e.g. hard disks,

floppy disks, removable hard disks, soft sectored floppy disks,
etc. It is the operating system's responsibility to present a

consistent and yet flexible view of the storage media to the user.

If the operating system f ails to do so, the DBMS software must

perform this tank.

The space allocation procedure adopted by a given DBMS
product is of great importance. If a given DBMS software reserves
all the space that has been requested at the data definition stage
irrespective of short-term and long-term storage requirements, the

overall usable disk space will be effectively reduced. The

alternative approach is for the software to maintain a free disk

space map (or refer to an operating system maintained space
allocation table) and thereby allocate disk space as and when
required.

3.3 Record level definition

The database definition at this level should address the
specific details that apply to database records rather than the
various components of these records.

- Sort specification

Hierarchical and network DBMS software often provide
facilities to define sort sequences at the record level.

Imbedding record sorting specifications into the database structure
enables the rapid retrieval of database records in a sorted order

-11-

without having to resort to stand-alone sort utilities. Although
this feature is attractive in that it dispenses with the need for

sort work files and the extra processing associated with sorting,
the following points should, nevertheless, be considered:-

(i) the overheads related to maintaining sorted chains may be
quite significant in the case of a larger database,
particularly during data entry/modifications;

(ii) the sorted chains that are essentially pointers require
additional storage space, over and above the data itself;

(iii) specifying sort sequences at this level lock the sort
requirements into the database structrure thereby
reducing the flexibility that is generally required
during data retrieval.

- Record number/identifier specification

The ability to tag records with a unique record number/ID
which can subsequently be used to retrieve the records is obviously
desirable. In addition, the record numbers can facilitate the
cross-referencing of records in a large report. In the case where

record numbering is required only for output reports, the number
assignment should be performed by the report generator.

- Default print format specification

It should be possible to associate a standard print
format file with a given database. This will ensure that, unless
a particular print format is specified, on retrieving data from the
database it will be formatted using the default print format file.

- Variable length record specification

Most non-numeric data is variable in length and,

therefore, the ability to store such data using variable length
records can result in significant savings in online storage
requirements. The need for this feature is proportional to the
overall size of the database, i.e. if the overall size of a datbase
is small relative to the available online storage space, the space
wasted in each fixed-length record is less significant. In

addition, it is often possible to identify fields within a record
that are, on the whole, fixed in length. One can, therefore,
divide a variable-length record into a fixed-length component and a

-12-

variable-length component. The two components can be stored in

separate files, and depending on the database structure the two
files can be joined or linked through printers. The variable
component can be stored internally as a set of fixed-length records
"chained" to one another. It is clear that this approach requires
the retrieval of multiple fixed-length database records in order to
retrieve a single logical record. In general, therefore, the need

for facilities to handle variable-length data is apparent.

3.4 Field level definition

The detailed database definition is performed by defining
the structure of the database records. Since records are made up

of a collection of fields, the field level definitions represent

the lowest level of detail for a qiven database. The field level

micro DBMS software features that are relevant to bibliographic
systems are as follows:-

Field identifier specification

This feature enables each field, within a given database,
to be uniquely referenced. In addition to specifying
field narres, field mnemonics and alphanumeric field tags
are also desirable, though not strictly necessary.

- Field data type specification

The usual data types supported are: alphabetic, numeric,
packed, logical, decimal and alphanumeric (alphabetic is

the most commonly used data type). The mere

specification of a field data type will not in itself
guarantee data integrity. Type checking must be

performed during data entry or modification. In

addition, correct type specification, in the case of
numeric data, can result in significant data compression
and therefore reduce overall disk space requirements.

Field length specification

This feature determines the maximum length of a database
field. In the case of DBMS software that support
variable length records, the field length represents the
maximum allowable field length and not the space actually
used.

-13-

Repeatable field specification

This feature enables a group of fields to be clustered in

such a way Chat they can share identical and common field

characteristics. In the case of DBMS software that

support oniy fixed length records, the maximum number of

occurrences must also be specified. In this situation
the space required by ail the occurrences of a given

field are reserved, irrespective of whether the

occurrences are ever used. It is therefore apparent
that repeatable fields are desirable when variable length
fields are also supported. However, the use of this
feature is inconsistent with the common database design
practice of normalizing databases.

Subfield specification

This feature facilitates the clustering of fields, of

various data types and characteristics, in such a way
that the group of fields can be treated, when desired, as

a single field.

Field editing specification

This feature, where provided, enables the automatic and

transparent modification of data during data input and

subsequent modification/retrieval, e.g. the character
may be stripped out of a data field (YY/MM/DD) on input

and subsequently inserted on retrieval. This results in

the saving of two bytes per date field, which can result
in significant savings in storage requirements when an

entire database is considered. This feature may be
incorporated as part of the key extraction procedure,
e.g. non-alphanumeric characters can be stripped out of
key fields.

In addition to the above field-level features, there are
additional features that enhance the data entry/modification and

retrieval process. As might be expected, various commercial DBMS

software implement one or more of these features in different
ways. Some incorporate them as part of their data
entry/modification or query facilities and others imbed the
features into the database structure. The features listed below,

therefore, are not necessarily part of the database definition
process.

-14-

Fast access file specification.

This may include the specification of one or more of the
following:-

(i) online/offline key extraction;

(ii) key length specification;

(iii) key splitting criteria, e.g. number of keys extracted
from a field containing compound data (one or more
words/terms);

(iv) noise word elimination specification (e.g. stopword list

specification).

Look-up file(s).

Duplicate checking.

Authority file validation.

Vocabulary control, e.g. thesaurus file specification.

Data entry prompting control, e.g. mandatory/optional field

specification.

3.5 Database modification

The ease of database modification is an obvious and
desirable feature of any DBMS software. There is, as has already
been mentioned, a direct link between the type of database and the

ease of modification. Database modification can occur at the

logicai and/or physical level. In the case of RDBMS software,
that are defined using a combination of dialogue and commands, the

software should either provide database modification commands or a

database modification mode (with associated dialogue). This
should be relatively simple as the software wili be essentially
modifying the contents of the database defintion file. On exiting
the database modification mode or commands, the software must
ensure that the definition file is consistent with the physical
structure previously created. Any inconsistency must either be

rectified or clearly identified.

-15-

In the case of DBMS software adopting the schema
definition approach, the database modification procedure is more

complicated. The steps that are generally required are as

follows:-

(i) Modify the schema definition by editing the DDL
statements.

(ii) Unload the contents of the database.

(iii) Purge the old data definition and create new definition
by recompiling the DDL statements.

(iv) Load the previously unloaded data into the new database
structure.

3.6 Data dictionary

The concept of data dictionaries has been a logical

extension of the entire DBMS approach, i.e. since a database
structure is made up of a great deal of detailed and fragmented
data, it should be possible to establish a database containing
information on the database structure itself. The attraction of

this feature is clear in the case of large databases on mini and

mainframe machines, where there are likely to be a great many
datasets, records, fields, etc. The need for data dictionaires is

much less pressing in a microcomputer environment.

Commercial microcomputer DBMS software vendors tend to
use the term data dictionary in the narrow sense and refer to the

data definition file as the data dictionary. A true data
dictionary should include, at least, the following features:-

(i) File, record and field level definition procedures.

(ii) Facility to define print format files.

(iii) Data entry screen definition utilities.

(iv) Ability to report all the above information and also
information on the physical file structure.

(v) Ability to perform consistency checks between the various
components of the database, in order to maintain
standardization.

-16-

It should be clear that a data dictionary must be capable
of integrating all the components of a DBMS to minimize data
redundancy and facilitate the retrieval of information about the
DBMS.

-17-

4. DATABASE POPULATION

This section deals with the DBMS software features that

are associated with capturing and storing data onto a

previously defined database. The term database population has
been chosen so as to incorporate both online data entry and also

offline data creation.

4.1 Online data entry

The process of online data entry involves inputting data

either directly into the database (updating a single record at a

time) or indirectly into a transaction file. The online
construction of a transaction file, and subsequent batch updating
of the database, is functionally no different to the direct mode of

data entry. The difference being the time at which the database
is updated. As a result, this section will focus on direct online

data entry.

Prompted entry

In the case of prompted entry, the system should retrieve
the necessary prompting information from either the data definition
file or data dictionary. The system should prompt the user with
field names in a pre-defined sequence. The following represents a

set of desirable features:-

(i) User definable prompting sequence (defined during data
definition).

(ii) Multiple prompting of repeating fields, including a

capability to interrupt prompting and to proceed with

subsequent fields.

(iii) The capability to discontinue prompting entirely.

(iv) Listing of fields, on the screen and on hard-copy device,
prior to updating the database.

(v) Editing of fields prior to updating the database.

(vi) Online validation of input data against a

previously-defined validation file or validation by
specific user-defined routine.

(vii) Availability of commands to update the database, exit
enter, clear and re-input data.

-18-

(viii) Cross-checking of fields in the same record based on data
previously input.

(ix) User definable default values, that can be either
over-ridden or accepted.

(x) Ability to input record number/ID with in-built checking
of uniqueness.

(xi) Ability to use data from previously input record, thus

facilitating data entry.

(xii) Duplicate checking of data on entry.

Prompted entry is generally more suitable for
variable-length record entry. Since fields are input one at a

time, data entry can continue on as many subsequent lines as are
necessary. On the other hand, the ability to modify data in

previously-input fields tends to be more cumbersome when fields are

prompted individually.

Formatted entry

The ability to define a screen format that can be used
both for inputting new data and retrieving previously input data
has become increasingly popular. This is particularly true in the

case of databases where only fixed-length records are supported and

where, therefore, the total maximum number of characaters (per
record) that can be input is fixed and pre-defined. Screen
formatting should offer the following features:-

(i) Screen editing of previously-input data by providing full

cursor control.

(ii) Mode switching commands, to facilitate the switching
between data entry, data modification and data retrieval.

(iii) Ability to define protected areas within a given screen,
to distinguish between data that is displayed purely for
information purposes and data that can be modified.

(iv) Capability of chaining screens together in order to

capture variable-length data.

(v) Availability of commands to update the database with the
current record and also the ability to clear and re-input
data.

The essential component of screen formatting is the

ability to define, in detail, the layout of the screen and to

associate the relevant database fields with the input screen.

-19-

Screen definition is generally performed by using a high-level
screen definition laquage or, alternatively, by responding to a

system generated dialogue. In any event, the screen definition
procedure should provide facilities for the definition of the
following:-

(i) The database fields.

(ii) Labels associated with fields.

(iii) Location of fields on the screen, i.e. row and column
details.

(iv) Screen title or heading.

(v) Field editing details, e.g. character stripping on entry.

(vi) Look-up file details (if not already specified at the
database level).

Once a screen has been defined it should be possible to
cave the format in an "object" form for subsequent use. It should
be clear that one of the major attractions of formatted entry is
its user-friendliness and the ability to integrate data entry,
modification and retrieval.

4.2 Offline data creation

There are a few occasions when alternative means of
"loading" a database (other than online data-entry) are called
for. The f ollowing occasions are examples:-

(i) When a structural change is made to an already
established database.

(ii) When data is provided by an external and unrelated
database (see section 12.3).

(iii) When data is captured on files outside the DBMS

environment by non-conventional input devices, e.g.

optical character readers and bar code readers.

(iv) When data is created by stand-alone programs.

The precise mechanism of loading a database, e.g. through
stand-alone utilities or user-written programs, is less significant
than the desirability of having features enabling the offline
creation of data.

-20-

5. DATA MODIFICATION

This feature should be considered as an extension of the
data entry process rince the input and editing of a new record is

functionally similar to the retrieval and editing of an old

database record.

5.1 Online data modification

The features that are identified and expanded in section
4.1 apply equally well to online data modification. In addition,

an interface to the data retrieval sub-system must exist so as to
facilitate the retrieval of previously input data. In general,

users do not make a clear distinction between the data entry,

modification and retrieval activities. Instead, they view them as

different aspects of the same activity. It is, therefore,

desirable to integrate, as much as possible, these discrete

activities into a single and coherent process. The integration of
all the desirable features associated with data entry, modification
an'd' retrieval is unrealistic in a microcomputer environment,
primarily due to the run time overheads. It is, nevertheless,
desirable to, at least, combine a subset of the desirable features

from each of the three activities.

5.2 Global data modification

The ability to globally modify the contents of one or

more records requires the following:-

(i) The specification of the data selection criteria.

(ii) The specification of the data modification criteria.

The attraction of applying the same data modification
criteria to a group of records without having to modify each
individual record separately should be apparent. The overheads
associated with this feature can be quite considerable and
particularly so in a multi-user/multi-tasking environment.

5.3 Data deletion

In addition to modifying the contents of records alread y

present in a database, it should also be possible to "flag" records
as being logically deleted. This feature will effectively prevent
the deleted records from being accessed by users.

-21-

An extension of this feature is the ability to phyiscally
delete records from the database, thereby recovering valuable disk

space. This feature may be incorporated into a database
maintenance utility or sub-system, enabling perennial structural

reorganization and optimization.

-22-

6. DATA RETRIEVAL

The data retrieval features of DBMS software are the most

significant features as far as bibliographic applications are
concerned. The Base of data retrieval in conjunction with output
generation is usually the primary reason given for selectiog a DBMS

to solve the problems associated with information management. As

mentioned earlier, the DBMS software architecture has a major
bearing on the flexibility of data retrieval. There are, however,

other specific features that greatly enhance and, therefore,
facilitate the selection and manipulation of data for subsequent
output.

6.1 Online searching

The structure of bibliographic data, and non-numeric data
"in general, is such that a variety of specific tools are needed in
order to select the required data for subsequent processing. The

database size is a prime factor in the number and nature of the
required tools, i.e. the larger the database, the greater the need

for search features. The problem stems from the need to extract as

much desirable data as possible from the database without, in the
process, picking up "noise" data. Such unwanted data tends to
cloak the desirable information with a great deal of peripheral and
unwanted data, thereby complicating the search strategy. This
section lists a set of features that are desirable and which
facilitate the process of online searchina.

- Free text searching

This is the least efficient method of locating data and

consists of scanning fields character by character, attempting to
locate a match against the required character string. The
suitability of this option depends on the size of the database to
be scanned. In the case of small databases or subsets of large
databases this feature may be quite adequate for searching.

- Searching using a range of record IDs

The abi l ity to select a range of records based on a
numeric sequencing number is highly desirable. The availability
of this feature enables the selection of subsets of the database
irrespective of the data within the desired record range.

Although most DBMS software assign numeric sequencing numbers to
records at data entry time, these numbers are not always user
accessible. In cases where the numbers can be accessed, they

-23-

should be used with care. This is due to the fact that the

numerical order of the internai sequence number may not necessarily

correspond to the chronological order of the records.

Furthermore, the sequence numbers may be modified regularly by
utilities, thereby reducing their usefulness as a means of

identifying records. In situations where the sequencing number is

user definable, adequate duplicate checking is required.

Word and terni processing/key generation

As mentioned earlier, there are many applications in
which free-text searching is inadequate due to the volume of data.

In such situations, there is often a requirement for searching at

the level of words or combination of words, i.e. terms. The

ability to perform word and terni processing efficiently requires

s'pecial data structures and the capability to split a series of

words or specially delimited ternis into separate keys. The

required data structures and the way in which data redundancy is
handled is dealt with later.

- Boolean and nested search logic

The ability to translate a search strategy into an

effective search request requires Boolean logic. The use of
Boolean logic, e.g. AND, OR and NOT is generally available on most
DBMS software, and when used in conjunction with brackets to

establish a hierarchy of operation, the data selection process is

made considerably easier.

- Back referencing

The effective searching of a bibliographic database using
a defined search strategy entails expanding and contracting the
size of the data selected. Most search strategies are made up of
multiple steps, each step selecting and operating on a subset of

the database. The ability to reference previous search results
(hits) and to add data to or exclude data from previous hits, is a

highly desirable feature. This feature obviously requires the
ability to create and save hit lists.

Storage and retrieval of search strategy

Search strategies are often multi-stepped and can be
long-winded. The ability to save a search strategy in a standard
external text file for future use is a convenient feature. In

addition, the availability of this feature enables the building up

of search profiles outside of the DBMS environment.

-24-

Special features

In addition to the above features, there are further
special features that are uncommon in microcomputer DBMS software.
These features can enhance the user friendliness of the product,

and are generally available as extensions to the word processing
features mentioned earlier. They include adjacency searching,
left/right/embedded truncation, and proximity searching. There

are, no doubt, additional features not mentioned or variations on
themes already touched on.

6.2 Batch extraction

The ability to search a database in batch mode using a
previously created search profile is a desirable feature. Most

-microcomputer DBMS functions tend to be I/O bound and therefore any
feature that reduces human intervention is likely to improve the
overail throughput of the system. The need to perform
multistepped database searches on an entire database, followed by

sorting and searching, can require a significant amount of machine
resources and, therefore, time.

The need for substantial operator intervention at various
stages of performing multi-stepped tanks results in periods of
intense activity punctuated with periods of little or no activity.
The ability to consolidate many discrete activities into command or

job files minimizes human intervention and is a common feature in

larger machines, and is becoming increasingly popular in
microcomputers.

6.3 Fast access files

The ability to retrieve data by specifying key values is
highly desirable in bibliographie applications where there is a

large emphasis on online data retrieval. The level of

sophistication of the retrieval facilities depends on the types of
fast access files supported by the DBMS software. As might be
expected, each software producer has adopted one or more
conventional file access method and has in some way modified it to
serve their own needs. This has resulted in the availability of a

variety of access methods, some conventional and others hybrid.
The various types of fast access files and the features offered by
them are dealt with in Appendix C.

-25-

7. ARITHMETIC COMPUTATION

Traditionally, the demand for micro DBMS software has

been from the financial community and, therefore, the commercial
software products that are currently widely available tend to

support a variety of features geared to arithmetic computation.
Many such features have little practical use in bibliographic
applications, though the following list of features can be of value
on certain occasions:-

(i) Support of basic arithmetic functions, e.g. addition,
multiplication, subtraction and division.

(ii) Horizontal computation, i.e. calcuation of values based
on the contents of fields within the saure record.

(iii) Vertical computation, i.e. calculation of values across
multiple records.

(iv) Use of temporary variables, symbolically identified, for
generation of intermediate values and used in subsequent
calculations.

(v) Total and subtotal generation.

(vi) Saving the results of computations back into the

database.

-26-

8. OUTPUT GENERATION

The term output generation encompasses a variety of
features. These features are all associated with formatting data
that will have already been retrieved and possibly sorted. The

desirable or required features for output generation vary depending

on whether data is to be displayed on the screen, formatted for a

report, or merely transferred to a new disk file in a new format.

The process of output generation can be divided into three broad

categories: Print format definition, Output creation, and Output

redirection. Each category wili be dealt with in turn.

8.1 Output creation

The abi l ity to define the format of a report based on
detailed specifications, without resorting to programming is an

obvious attraction. However, all report generators attempt to

strike a balance between flexibility, esse of use, and level of

complexity. The report generation capability of a given DBMS

software package, and therefore its ultimate usefulness, depends on

one or more of the following factors:-

(i) Sophistication of the report generation utility.

(ii) Programming language interface (see section 10.3).

(iii) Macro generation capability (see section 10.4).

(iv) High level procedural language subsystem.

The availability of a programming language interface

enables the production of the most specific and complicated
reports, though this approach should be considered as a last

resort, the main drawbacks being:-

- The need for programming expertise.

- The relatively long development time.

- The need for software modifications as and when database
changes are made.

Most commercial report generation software construct
print format files using responses to system generated prompts and

predefined user-input commands. The Print file, held in an

-27-

internai format, is interpreted at run-time produing the specified

output. The ability to save a print format file for future use is

an obvious attraction since the print format file can be used in

the routine production of the same report, without having to define
the pr intformat each time. In addition, the print format file

can be used as a template for producing new though similar
reports. The foilowing represents a list of additional features

that are desirable for output creation:-

(i) Capability of modifying previously-defined print format

fi les.

(ii) Ability to "compile" print format files into stand-alone
print programs that can be executed under the control of

the operating system and without the DBMS run time
overheads.

(iii) Facility to generate default print format files using
information already captured in the data definition file
or data dictionary.

(iv) Ability to spool the output in order to increase the
overall system productivity (this feature depends on the

support of multi-tasking/concurrency by the operating
system and/or the availability of stand-alone printer
spooling hardware).

8.2 Print format definition

The previous section referred to the ways in which print

format files should be constructed and used. This section

addresses the specific features that contribute to the definition

of print formats used in the reporting of bibliographic data. The

number and precise nature of the available features will determine
the complexity of the reports ultimately produced. The definition
of a print format should be handled at three levels: page, record
and field; each will be discussed in turn.

Page level formatting

The following features establish the general layout and

appearance of a report irrespective of the data held within the
database:

(i) Printing of page headings or report titles.

-28-

(ii) Printing of a report date.

(iii) Ability to define the number of lines per page.

(iv) Printing of page numbers and specification of the
starting page numbers.

(v) Printing of page footings.

(vi) Columnar formatting specification to force printing of

the data within specific column ranges.

(vii) Performing left and right margin justification.

Record level formatting

The following features apply to individual records within

a report page:-

(i) Vertical spacing between records.

(ii) Spacing between records printed on the saure line.

(iii) Record numbering.

In the case of DBMS software that support variable length
records, wrap-around capability is essential since the truncation
of records following a specific and fixed number of characters
could result in the loss of meaningful data.

Field level formatting

The following features determine the position and form of
individual fields within a record:-

(i) Optional printing of literais based on the contents of
fields.

(ii) Clustering of repeatable fields within a report page.

(iii) Printing of fields in a given location by specifying an

absolute print location.

(iv) Editing of specified characters prior to printing.

(v) Associating control characters with selected fields for

special printing (e.g. bold character printing, shadow
printing, proportional spacing, etc.).

-29-

8.3 Output redirection

The term "printing" a report is often used loosely and

does not necessarily imply the production of a hard-copy report.
The ability to redirect a report to different devices greatly
extends the usefulness of the report generation faciltiies of DBMS

software.

The ability to display reports on the screen has the

following advantages:-

Allows online browsing of reports for rapid
proof-reading.

Enables quick checking and correction of report format

specifications.

Complements the on-line Query facility.

Although the ability to display reports is an obvious
attraction, the capability of directing reports to offline storage

media enables the following functions to be performed:-

(i) Transferring reports to disk/tape for archive purposes.

(ii) Creation of reports at a faster rate and printing of
reports during off-peak hours (if spooling is not

available).

(iii) Additional processing on reports, e.g. photocomposition
or editing of reports prior to creating hard-copy output.

(iv) Using output of one system as input to another system
(see section 12.3).

(v) Transferring report files to remote users, using data
communication hardware and software (see section 12.3).

8.4 Sort/merge

Most DBMS software provide sort capabilities with a wide

range of sophistication. It goes without saying that sorting is an

essential requirement for bibliographic systems and the ability to
sort on a primary key and at least one other alternate key is a

minimum requirement. Sort features are generally implemented as
stand-alone utilities that are called prior to either screen or

-30-

print formatting. Sort utilities tend to make substantial demands

on computer memory, and the precise mechanism by which a DBMS

performs sorting relates to the available main memory and the

nature of the files to be sorted. The detail of various sort
algorithme and strategies is well documented but it is,

nevertheless, worth considering the practical implications of nome

common implementations. On the whole, sort utilities require work
files that are at least as large as the file to be sorted. This
requirement is generally impractical, and particularly so when the
source file is large and spans more than one mounted disk. In

these situations the sort utility must fragment the source file
into manageable subfiles and perform the sort on these subfiles.
Ultimately the subfiles have to be merged and, if necessary,
logically spanned across multiple disks and/or devices. It should
be apparent that, in a micro DBMS environment, the availability of
temporary offline storage space is of great importance for
performing functions such as sort/merge. In order to reduce the
size of the required work space, DBMS software producers have
adopted various approaches. The most common is to maintain the
data (or rather pointers to the data) in a sorted order. This is

achieved using sorted index files and/or sorted chains, which are

dynamic in nature and are up-dated at data entry time or whenever
data is modified. This approach imposes overheads both in terms
of space (for pointers) and response time (for data entry and
modification). The major drawback, with freezing the sorting
requirements of a given application into the DBMS structure, is

that responding to changes in sort requirements in the future
becomes non-trivial. In practice, the need for flexible
stand-alone sort/merge utilities is an indispensible feature for
micro DBMS software used in bibliographic applications.

-31-

9. DATA INTEGRITY

The primary objective of any DBMS software, whether in a

microcomputer or in a much larger mini/mainframe environment,
should be the maintenance of data integrity. The integrity of a
database can be compromised in many ways. The features provided
by a given DBMS software package should address the following

potential problem areas:-

(i) Unauthorized access of a database by malicious users.

(ii) Accidentai corruption of data through user mistakes.

(iii) Contention between multiple users of the came database.

(iv) Hardware failure and software bugs.

The features documented in the following sections should
attempt to minimize the impact of data corruption from one or more

of the above sources.

9.1 Database security

The issue of database security is much more pressing in a

large multi-user environnent with remote access capabilities. In

the case of single user micro DBMS applications, the issue of

database security is, nevertheless, relevant though much less

pronounced. The availability of the following features is

desirable:-

(i) Password protection of the physical database files.

(ii) Password protection of the database definition
sub-system.

(iii) Definition of a user hierarchy to distinguish between
types of users.

(iv) Definition of a set of capabilities and associating them
with users or user groups.

The ability to prevent users or groups of users from
accessing certain fields within a database by using "project lists"
or special screen formats is an obvious attraction. Similarly,
the ability to define record exclusion criteria can be used to

exclude large portions of a database from users.

-32-

9.2 User passwords

The ability to define user passwords is the most common

security feature currently available. This is due to the relative

ease of providing this feature. However, the effectiveness of

user passwords is questionable rince the degree of security
provided is directly related to the ability users have in

protecting the secrecy of their selected passwords.

9.3 File locking

An effective file locking strategy is essential in the

case of DBMS software that are capable of executing in a concurrent
or multi-tasking operating system environment. In the case of a

mul,ti-user environment, a DBMS will not be able to perform
adequately without file and record locking features that resolve

contention between users during data entry/modification.

9.4 Transaction logging/recovery

This feature is widely available in large DBMS

applications where database up-dates are grouped into discrete
transactions. The transactions are first copied to disk or tape
prior to being applied against the database. The file containing
the copies of transactions serves as a transaction log which can be

used to recover data that may be lost in the event of hardware or
software failure. The overheads associated with transaction
logging balanced against the potential impact of any loss of data
should be considered when determining the need for such features.

9.5 System backup

In order to minimize the impact of data corruption or
loss, there is really no substitute for regular system backups of
the physical database files and database structure. The precise
details of system backup are not really significant though any DBMS
software feature that facilitates this routine activity is highly
desirable.

-33-

10. UTILITIES AND SPECIAL FEATURES

The features listed in this section can be thought of as

being optional. The availability of some of these features,
however, can enhance a given commercial DBMS package to the point

of reducing the significance of other more obvious shortcomings.

10.1 Software configurability

The diversity and variety of microcomputer hardware and

operating system software has presented commercial DBMS software
producers with the problem of selecting the most promising hardware
and operating system combination for their particular DBMS

product. In order to reduce the impact of an incorrect choice
and, at the same time expand their their potential market, they
have ,resorted to prodividng configuration utilities to dealers and

users. These utilities ensure that, as the run-time environment
of a DBMS product changes, the software package can be adapted
accordingly. The need and, therefore, desirability of this
feature is likely to decrease once the microcomputer market
stabilizes and the inevitable domination of the market by a few
vendors has been completed.

10.2 Disk file chaining

The storage capacity of microcomputer flexible disks
varies quite considerably depending on, for example, the physical

characteristics of the disks and the disk formatting strategy
adopted by the operating system. Bibliographic applications tend
to make major demands on storage space, not merely because of the

total number of database records required, but because of the size

of individual database records. The ability of databases to
overflow one physical disk is, therefore, highly desirable. In

the absence of such a feature, the limiting factor on the size of a

database will not be the maximum number of DBMS records allowed,
but, rather, the availability of sufficient storage space.

The overheads associated with establishing and

maintaining a master disk directory to keep track of the
constituents of physical files (fragmented across multiple disks)
is, on the whole, justifiable.

-34-

10.3 Programning language interface

The fiexibility offered by programming languages has

resulted in interfaces being built into DBMS software so as to

enable specialized and user-specific functions to be performed.
Although this feature is generally desirable, its practicality is

limited by the availability of experienced programming personnel,

In addition to the required level of programming expertise, once a

user-specific module has been developed, it will remain static

unless it is kept continuously up-to-date with the DBMS

application. It is for this reason, as has already been
mentioned, that screen and report formatting should be performed
using features provided by the DBMS software rather than by

stand-alone programs.

10.4 High-level procedural language subsystem

Command driven commercial DBMS software provide a variety
of features that encourage the use of commands in combination with

one another. The ability to define a set of high-level commands
in such a way that they work in conjunction with one another to

perform specific tanks is a highly desirable feature. This
provides a high-level programming capability without many of the

disadvantages of programming using a high-level language. The

advantages offered by this feature are:-

(i) Relatively insignificant development time.

(ii) Flexibility of performing user-specific functions.

(iii) Maintainability of the routine.

(iv) Low level of expertise needed to perform reasonable
complicated tasks.

In some DBMS software, commands are provided specifically to
satisfy user-specific needs and are incorporated into a high-level
language subsystem.

10.5 User-defined commands/macro generation

In addition to the features already mentioned, the
ability to define new commands is quite desirable. This featurt
can take many forms, but essentially involves passing parameters to

-35-

system-defined commands using symbiotic substitution. The

attraction of this feature is that commands can be combined in new
ways and parameters can be passed dynamically to the commands at

execution time.

Using this feature in conjunction with features already
mentioned can present users of a DBMS package with options that may
not have been apparent at first glance.

10.6 Multi-user capability and local area networking (LAN)

The advantages offered by DBMS software running in a
multi-user environment have been deait with at length. However, a

variation on this theme is the concept of local area networking.
The ability to cluster a group of stand-alone microcomputers around
a hard disk device, each communicating with the storage device
through a communication network (e.g. token passing ring network,

bus or star network) can offer the f ol lowi ng adv antages : -

(i) Standardization of data through a centralized database.

(ii) Sharing of files by multiple users via single-user
microcomputers.

(iii) Avai l abi l ity of l arger amounts of storage than would
normally be available in a single-user configuration.

As might be expected, the technical means of providing
the above facilities are numerous, though the need for a network
traffic manager and comprehensive file locking and security is a

prerequisite.

10.7 File compatibility

The physical file structure of a DBMS is generally of
l ittle interest to users of the software and yet the detai l s of the
physical structure have a major bearing on the following:-

(i) Off-line data creation (see section 4.2).

(ii) Database loading and unloading (see section 10.8).

(iii) Downloading data from external databases (see section
12.3).

-36-

In general, the simpler the physical file structure the

easier it is to perform the above tasks. If the volume of data
transfer to and from a given DBMS application is likely to be high,
the need for simple data structures becomes even more desirable.
This is due to the overheads associated with having to reformat
files prior to performing the data transfer. The issue of
standardized data exchange formats will be deait with, briefly, in

section 12.3.

10.8 Database loading and unloading

A distinction must be made between this feature and the

download/upload capability of a given database, which is dealt with

in section 12.3. In order to be able to reorganize the physical

and logical structure of an established database, the DBMS software
must-provide features that enable the data already input to be

unloaded, and subsequently loaded back, onto the new database
structure. These features, therefore, provide the capability of
reorganizing data already present in the database rather than
exchanging data between databases. Having said this, it is

desirable to combine the load/unload and download/upload features
into a single utility. Unfortunately, this is less practical than

it might seem, since the format of a file containing unloaded data
is rarely suitable for exchange purposes. This is particularly
true in the case of N/HDBMS software where information on chain
headers, internai pointers, etc., is imbedded into the unloaded
data.

-37-

11. SOFTWARE AND HARDWARE ENVIRONMENT

This section refers to additional factors that need t--e

taken into consideration when evaluating a given commercial DB!,.

package. It goes without saying that "paper" evaluations are.

least, only as good as the information provided by the software
producers and vendors. Aside from the inherent bias built int

such information, DBMS software never function in a vacuum isol_d
from other system components, e.g. hardware/firmware and operataa

system. It is, therefore, necessary to consider, as best one

the environment in which a DBMS software is to function, in

addition to the features offered by the DBMS itself.

11.1 Software specifications

The following list represents a set of software

specifications that are relevant either directly or indirectly
the overall performance and capabilities of a microcomputer
system. The terni "system" has been used to incorporate hardwa

and operating system software constraints, in addition to limite
factors introduced by the DBMS software.

Maximum number of database records allowed.

Maximum number of files allowed per database (where
applicable).

Maximum number of fields allowed per record.

Maximum number of characters allowed per database rec--
(if not variable).

Maximum number of characters allowed per database fie
(if not variable).

Maximum number of files that can be open/accessed
simultaneously.

Maximum number of fields that can be up-dated
simultaneously.

Maximum number of user-definable variables (where
applicable), and maximum memory available to temporar
variables.

Maximum number of predefined screen and print formats

-38-

Maximum size of sort files.

Maximum number of keys that can be extracted.

Maximum size of each individual key.

11.2 Hardware specifications

It is becoming increasingly difficuit to ignore hardware

specifications when evaluating DBMS software. This is

particularly true when the issue of performance is raised. The

following items have an impact on system performance to varying

degrees:-

Minimum memory requirements versus maximum size of memory

available.

Memory expansion capability.

Size of CPU data bus.

Size of smallest directly addressable memory location.

Size of I/O buffers.

Disk I/O speed.

Disk types and media characteristics, e.g. hard disk,
flexible disks.

CPU clock frequency.

Serial versus parallel I/O ports.

Maximum number of disks supported.

Disk rot at i on al speed.

Disk latency.

11.3 Software portability

The issue of software portability has always been of
concern to producers, vendors and users alike. Rarely has this

concern been translated into action that would produce realistic
and tangible results. With the dramatic fall in the cost of micro

-39-

systems, the issue of portability has been tackled with greater
urgency. This has been the direct result of lower profit niargins
associated with new software products (at least initially) and
their relatively short life expectancy. Portability can be
achieved at the following levels:-

Application level, e.g. through the use of portable
physical database file structures.

Operating system level, e.g. through the use of portable
software development languages sûch as UCSD-Pascal and
"C" etc.

CPU level, e.g. through the use of operating systems such
as UNIX that are portable across multiple CPU types.

The issue of portability is, however, complicated by the
degree and extent of dependency between each of the above-mentioned

1 ayers.

11.4 Software support and documentation

The need for comprehensive, accurate and easy-to-follow
documentation cannot be stressed enough. It is, therefore,
unfortunate to find that the most useful and technically sound DBMS
software often have the worst documentation. In addition to

documentation, both technical and user-oriented, the following

points should be considered:-

Availability of software support.

Availability of software maintenance contracts.

Accessibility to new releases of the software.

Availability of computer-based learning tools including
sample databases and examples.

-40-

12. DATA TRANSFER

With the dramatic increase in microcomputer hardware and
software capabilities, the concept of distributed processing has
been taken a considerable step further. The dramatic developments
in data communication technology and terminal emulation software
have reduced, significantly, the traditional impression of micro
DBMS applications as being "isolated islands of information". The
features that have contributed to the viability of transferring
data to and from a microcomputer are, primarily, hardware,
operating system and data communication software features.

12.1 Device handling capability

This feature has little to do with the DBMS software
itself but, rather, relates to the ability of an operating system
to handle a variety of storage devices, e.g. flexible disks, hard

disks and tape drives. However, the issue of device handling goes

beyond the capability of handling a variety of storage devices and
can be extended to cover a range of input devices, e.g. bar code
readers, optical character readers. It is, nevertheless, the

function of the operating system to define and maintain a standard
and uniform interface between devices and application software, in

such a way that the idiosyncracies of each individual device become
transparent to the system user. The details of the various types
of device handlers are, however, irrelevant in this context.

A DBMS software package Chat has been designed to
function only with a specific type of flexible disk and running in

an operating system/hardware environment with little or no device
handling capability may, nevertheless, satisfy short-term needs.

However, with little prospect for future expansion, the system as a

whole will undoubtedly be handicapped and offer little fiexibility
in transferring data to and from other systems.

12.2 Asynchronous data communication

The substantial growth in the data communication industry
is a reflection of the ever-increasing need to transfer data
between computers. The three essential components needed for data
communication are:-

(i) Data communication software (required for terminal
emulation and protocol handling).

-41-

(ii) Signal modulator-demodulators or modems (perform
digital-to-analog and analog-to-digital conversion for
transmission over public telephone lines).

(iii) Asynchronous data communication ports (necessary in order
to establish the physical connection between the computer
and modem).

Data transfer is generally performed outside of the micro
DBMS environment and under the control of the data communication
software. The full integration of DBMS and data communication
software is, however, merely a question of time.

12.3 Download/upload capability

The ability to download data from a host (mini/mainframe)
computer onto a micro DBMS and vice versa (uploading data) has
created the following opportunities:-

- Microcomputers serving as front-end data entry systems
for large datahases residc-nt on host computers.

Microcomputers functioninc as intelligent data retrieval
nodes, enabiing direct anc rapid transfer of large
volumes of data for subseccent browsing. This would be

a cost-effective method o; searching remote databases
(the copyright issues and implications are, as yet,

unclear).

- Using micros as back-end trocessors to larger machines
enabling, for example, thE editing/summarization and
local printing of reports generated on the host computer.

In addition to the above, a potential exists for
exchanging information using a of storage media, e.g.
flexible disks, cartridge/reel-to-rtel tapes and removable hard
disks. In order to realize this ptential and develop a practical
and realistic data exchange procedu-e, standards must be
estabiished in the area of the storage media and data exchange
formats.

APPENDIX A

High-Level Functional Specifications

A.1. INTRODUCTION

With the dramatic increase in the processing capabilities
of microcomputers and a corresponding reduction in their cost,
fairly sophisticated applications which were once restricted to

mini and mainframe computers can now be implemented on micros.
This trend has opened the door to many applications and will
continue to do so for the foreseeable future. There are, however,

some major considerations which have to be taken into account when

considering using microcomputers for primarily bibliographic
applications.

This section will define the functional specifications of

a "typical" microcomputer-based information storage and retrieval
system. It is not intended to be used in the design of
microcomputer-based bibliographic systems but rather to establish b

reference point and a basic for further study in the identificatiori

of suitable, commercially available software. It is appreciated
that in identifying such software there are unlikely to be perfect
solutions. The identification process will involve a series of
trade-offs and compromises. The detailed parameters used during

this process will be governed by the actual requirements of a giver,

documentation centre.

Appendix A - 2

A.2 SCOPE AND OBJECTIVES

It is no doubt apparent that before attempting to
establish generalized guidelines on how to select commercial
software, we need to be clear about what is meant by a "typical"

small documentation centre. To this end, data flow diagrams (DFJ)

and function charts have been used to identify what functions art

actually performed in a small documentation centre and how
information flows between these functions. In order to make this

document a practical one, certain assumptions were made about tht

nature of the data and the types of storage areas used. The data
flow diagrams, therefore, represent physical data flows and not

logical* ones.

In order to emphasize the practicality of this exercist,

it was decided to select an IDRC in-house project for detailed
study. The DEVSIS project was finally selected as it represents a
medium/small decentralized information centre. The DEVSIS
project, at the moment, manages information on approximately 7 001

titles, making 600 additions per year.

The objective, however, is not to document the DEVSIS

system from a functional perspective but rather to identify general
functions which are applicable to many such systems. Not all

functions are likely to be performed by any given small information
centre, though various permutations of these functions are no doubt

performed either manually or automatically.

* Logical data flow diagrams do not make a distinction between a

filing cabinet and a computer disk.

Appendix A - 3

A.3 FUNCTION STRUCTURE CHARTS

This section presents the various functions performed in

a small information/documentation centre in a hierarchical fashion
from the highest level to the required level of detail for this

study.

The function charts serve the purpose of identifying the
various processes and their hierarchical dependencies, and in

addition represent a graphical table of contents for the data flow

diagrams in the next section.

The highest level function i.e. "PRODUCE BIBLIOGRAPHY"
represents a broad set of functions which for any given application
may include the production/maintenance of one or more of the

following:

Bibliographies
Indexes
Authority files

Each function can in turn be divided into sub-functions as

shown in figures 3.1 thru 3.4.

J

1

P
R

oZ
vc

E

S
r

6L
IU

G
Q

A
P

M
 oc

19
A

N

6r

,
b
A
r
A

1.
0

Fi
(.

3.

1

G
iN

C
 R

A
T

E

D
v
r
p
v
r

n m

f o
L

L
E

r-
r

1.
1

A
ro

q

pR
oc

 E
ss

L'
c,

 K

S

(f
E

E
 T

 ltG
.3

.z

P'
fe

vr
i

IS
T

(
L

3

p,
P

eo
fs

s

p,
P

oo
F

C
 z

 s
T

oo
M

pf
e-

ss
 fz

u

H
A

N
A

/ 6

L

M
e>

 i
FY

M
 rA

M
o'

F

y

S
T

,r
vr

 7
-,

ç
.
f
i

I

N
A

1f
v A

r(
fs

r
r ,1

5r

[z
 S

J

rD

n
.

X

l'1
 G

.
3.

 -a

-
rU

N
cT

io
N

C

H
 j

e-
j

L
]

t1
A

nv
A

G
 E

%

A
-r

/

w

G
E

N
te

A
re

O
u
-
r
p
v
T

P
R

oc
c

s
s

eE
,

Q
V

E
 S

f

f9
oh

vc
6

a.
 z

fu
N

cT
to

nt

r/
/4

p
:

G
E

N
E

R
f7

76

O
vr

fV
T

Appendix A - 4

A.4 DATA FLOW DIAGRAMS

The diagrams in this section show the flow of data among
the various processes, the related data-stores, and the entities
which are logically external to the function being described.
Each diagram corresponds to a function identified in Section 3.

The following symbols are used in the data flow diagrams:

External Entity:

This symbol represents any logical

class of things or people which can
be considered a source or
destination of data, which is

External to the function.

Process:

This symbol represents a function or

activity carried out on data as it

moves through the system. The
function reference number is
inserted at the top of the symbol.
This is the same number used for the

functions in the function structure
charts of Section A.3

Data store:

D
This symbol is used to show
non-automated data at rest between
processes. These data stores may
be in the form of files, forms,

catalogues. Data stores are viewed
as conceptual warehouses of data.

Computerized Data Store:

This symbol represents a data store
which is automated.

Appern_ix A - 5

i

Data Flow:

An arrow, which can be si-gle or
double ended, is used to show data
in motion between externe' entities,
processes and data store,,- The
arrowhead shows the direction of the
flow.

Data Flow (variation):

A broken arrow is used tc, represent
data flows to and from pr=cesses/
entities/data stores whic* are not
strictly part of the systam under
study. These data flow;, are
included for clarity and
completeness.

1.1 FREPRkf */F,eSttEz' T

t 1.

1

,(f c- 7c ,F'S

Li K < 5 1E

cc

£ TS

1.?.3

ANAc sc

1.1 -4

wezc SNEETS

a ocurCn r/C'ory

C.tipt ETED

kotKSHCC7:

5cofi o iCCE DCCVM c`n/T/ccP(

CFF

t
1.i

CHEC e
Fo

avFZiçÂ7 Ç

1

1.3 pkoDuc C PROOrL i sT

13116L1oGRfjf \1c Msb

(f

1.3.2

Sck 1

PRiNT

pk cc F, z sT

PRooFL15T5

1

j

3.0 GENEPA%E- ou -rFu i

1 3LIo6 'i9 /?LC jt i f,9SE

k'E//by cofl

SCA.irH .FEQoc

5 s
Ce a) UÉ 5 -r-

PuCX5HEk

3 . 1 P REOVE$7

A
£(F(.'Er+ c(

Pi k5cwn16_

eIQLIoGkflftZC r'-,I_r1S

1

3.1.5 Cey

DATA

SL 0.0

1.0

1

I

1

GE,,eeiA-r

% 2C

nf)Nf3 G£

0u-puj

1 ! FJ31I

'oc: ,C i0 N.. -

1.0 Coi- i. C-C-F

LIgRgK//%JOCcIr+ENj CEnlrFÈ

Sov,ftE io«i'lov (cf
Y

Wcr -5Fi CE-r

r
I PRFF c

13

Cor/

r' Z l.-io'-r, If , 3E 'Z A-r

`lcF L*sT

J

APPENDIX B

Database Types and Characteristics

(i) File Management Systems (FMS)

This category of software is strictly speaking outside
the scope of this study, but certain software producers have
marketed their FMS products under the broad category of database
management systems. The development of FMS software has been an

evolutionary process originating in the need for productivity tools
during commercial software development. Early versions of FMS

software were merely a set of independent software routines
designed to interface with user programs. More recently however,

user interfaces that access these stand-alone software routines
have been developed, thus making them accessible to

non-programmers. File management systems are adequate for

applications where a single file (e.g. mailing list) is required.
Th'is type of software tends to be relatively inflexible and limited

in its application, primarily due to its evolutionary path. In

addition, FMS software tends to focus on the physical way in which
data is stored and retrieved rather than presenting a logical view
to the users. Without a clear distinction between the physical
and logical view of the data, once the "database" has been created
using the FMS functions the structure of the database is frozen,
and to change the way in which the data is stored and retrieved,
requires a re-creation of the physical structure. In many cases
this is a major undertaking as the data already stored on the
database will need to be reformatted to correspond to the new

structure. In applications where the logical data structures are

reasonably static and multiple file accessing is not a

prerequisite, an FMS may be quite adequate.

(ii) Hierarchical/Network Database Management Systems

The hierarchical and network database management systems
are functionally quite similar and have, therefore, been grouped
together. The H/NDBMS represents a substantial departure from the
FMS approach, in that the way in which data is physically stored
and manipulated is quite distinct from the logical view of the data
as seen by the user of the database. The reason for making this
distinction is that, more often than not, the users of a database
are not interested in the way in which the data is handled
internally. The purists go further in suggesting that the
internai structure and data-handling mechanisms must be transparent

to the user of the database, so as to mai nt ai n the focus of
attention on the data and not on the way in which it is

manipulated. This concept is an extension of the database concept
of maintaining the independence of data from programs manipulating
the data.

Appendix B - 2

The origins of H/NDBMS are firmly rooted in set theory,
and without wishing to digress, the basic concepts can best be

explained using an example. The author of a book on "Water
Contamination in Upper Volta" is a member of the set of authors who
write on water contamination. The author is also a member of the

set of authors who write on topics relevant to Upper Volta. We

can go a step further by including Upper Volta in the set of

regions that suffer from water contamination. It should be
apparent that a data hierarchy is emerging, and an H/NDBMS enables
a user to define the relationships and hierarchy between the
various datasets so as to facilitate data retrieval.

The definition of the data sets and their
interrelationships is achieved using a data definition laquage
(DDL). The DDL also performs the translation of the logical

structure into the physical structure. The physical structure of

a H/NDBMS is maintained using a complex set of files, chains,
pointers and linked lists, and it is these structures that are
responsible for the major overheads associated with this type of

database software.

Hierarchical and Network database management systems, as
mentioned earlier, are similar in that a HDBMS supports one to many
relations whilst a NDBMS supports many to many relations, and

therefore a HDBMS can be thought of as being a special case of a
NDBMS. They represent the most comrnon type of database structure

implemented on mini and mainframe computers. They have tended,
however, to be much less popul ar on microcomputers. The primary
reason for this trend has been the overheads associated with
establishing and maintaining the complex internai pointers and data
chains that are necessary for the physical implementation of a
H/NDBMS. In addition, H/NDBMS software suffer from the saure

structural rigidity that is associated with FMS software.
Although in the case of H/NDBMS software the level of

sophistication is considerably more, the way in which the database
is to be ultimately used has to be carefully planned prior to
defining the database structure. The pre-planning is essential,
since the structure of the database determines the way in which
data can be retrieved. It is, therefore, apparent that although
the physical way in which data is stored and manipulated in an
H/NDBMS is quite distinct from the logical view, it is not,
however, independent. This lack of independence dictates that
changing the logical view of the data is in general achievable only
by changing the physical structure. This apparent drawback is, on
the whole, not as significant as it may first appear, particularly
in the case of applications where the logical data structure and

Appendix B - 3

retrieval criteria are well defined. In addition, as the

capabilities of microcomputers increase, there is likely to be a

corresponding increase in the sophistication of H/NDBMS
modification utilities.

(iii) Relational Database Management Systems (RDBMS)

This type of software has become increasingly popular on
microcomputers, and its popularity stems from the simplicity of its

physical structure. An entire database is viewed as one or more

two-dimensional tables that are implemented as a set of mutually
independent "flat" files. The logical view of the data is

controlled using "joins" and "projections". The database join

enables one or more files to be logically linked together, thus
presenting a new view of the data. Similarly, the view of the

data can be further modified using projections, which essentially
mask unwanted data whilst leaving the desired data intact. The

physical database structure can be modified, by simply adding or

subtracting files without affecting the entire structure. The

changes to the logical view leave the underlying physical structure
unchanged, and therefore RDBMS software are particularly attractive
in applications where the final database structure is likely to be
very different to the structure at the outset, e.g. in modelling
and prototyping.

The price for simplicity in the physical structure is

paid for in the sophisticated software required to manipulate the
data. The run-time overheads associated with RDBMS software is,

on the whole, less significant in a single user microcomputer
environment than in a multi-user multi-tasking environment where
there is a heavy and often conflicting demand on a variety of
machine resources. Whether H/NDBMS software gain in popularity,
as the capabilities of microcomputers increase, is yet to be seen.

In addition, as microcomputer hardware advances, the demand made on
the hardware by both system and application software is likely to
increase. Whether this increased load will outstrip the hardware
capabilities and, therefore, make RDBMS software less attractive,
is an open question. In order to fully exploit the potential of
relational database technology, the trend of implementing software
features in hardware has been gaining momentum. Such firmware
developments and database machines, in the mini and mainframe
environment, are likely to have a profound influence on
microcomputer DBMS software development.

APPENDIX C

Fast Access File Types

(i) Direct access files

Almost all DBMS software either use or provide facilities

for directiy accessing records. The retrieval of records is based

on a relative record number or "slot" number. The relative record

number can be either user definable or system definable. In any

event, the ability to select a record or a range of records based

on their relative position in the data file should be reported as a

minimum requirement for the retrieval of bibliographic data. This

type of access method tends to be fast since the operating system

can easily translate the record numbers into disk addresses. The

usefulness of this method is limited, however, since record numbers

bear no relationship to the contents of records.

(ii) Pointer files

The accessing of data indirectly using pointer files is a
logical extension of the direct access method. Pointer files

contain no data as such but the record numbers of the data. With
this feature it is possible to reference data in a different order
by merely scanning a variety of pointer files, each maintained in a

different sort sequence. The attraction of this access method is

that the same data can be viewed and retrieved in different ways
without physically modifying either the order or the contents of

the data itself. The primary drawback of this method is the way

in which the pointer files are maintained.

Most micro DBMS software create and maintain pointer
files in Batch mode. The non-dynamic nature of pointer file

maintenance makes this access method unsuitable for volatile data.

In the case of bibliographic systems, pointer files are

of use only for sequential browsing of reasonably static data.

(iii) Index files

Index files are commonly used where searches are

performed based on the contents of "key" data items (e.g. authority
files). Index files are composed of key values and pointers to
the data containing the keys. The retrieval process, therefore,
requires scanning an index file and locating the required key and
thus using the record number associated with the key as a pointer

Appendix C - 2

to the data itself. It is clear that this method of indirect data
retrieval has both storage and processing overheads associated with

it. In addition, the following points should be considered:-

- Micro DBMS software generally provide fixed-length key

indexing, however, only unique keys are supported. This

limitation is relevant to bibliographic applications,
since data retrieval in such applications is rarely via a
unique key.

The support of at least one alternate key and multiple
index files should be mandatory.

Index files are generally created in batch. The ability
to maintain index files online whilst records are added

or modified is desirable.

The primary objective of supporting index files is to be

able to retrieve specific records by key value, but in

addition it should be possible to browse records in the

vicinity of a selected record. This type of retrieval
falls under the general topic of Indexed/keyed sequential
access method which is desirable only if duplicate keys
are also supported.

Commercial micro DBMS software packages tend to define a

key field as a fixed number of alphanumeric characters.
The maximum allowable length of key fields varies between
DBMS software products, but virtually none provide a

direct capability to fragment one database field into

multiple and potentially duplicate keys. This latter
requirement is common in bibliographic applications where
word processing is required.

(iv) Binary tree access methods

The Binary tree represents a data structure that provides
fast access to data whilst minimizing data redundancy. Tree

structures are well documented and are popular in applications
where fast access is of paramount importance.

The building blocks of B-tree structures are referred to
as leaves. Each leaf or node is made up of a data portion
(containing keys, record numbers, etc.) and links to subsequent
leaves in the tree. The complexity and precise structure of each

Appendix C - 3

leaf tends to vary from one product to the next. However, a

common feature is that each leaf has a forward link (pointing to a
lower level leaf with key values greater Chan its own key), and

also a backward link (pointing to a ower level leaf with key

values less than its own key). It should be apparent that in

order to retrieve a record by specifying a key value the key has to

be compared with the key contained in each leaf. Depending on

whether the key value is greater or less than the required value,

either the forward or backward link is used to locate the next

leaf. This process continues until either the leaf containing the
key is found or until the tree has been completely traversed,
indicating that the key is either invalid or non-existent. In the

event of locating the required leaf, the record numbers associated
with the leaf are used to directly retrieve the actual data. One

of the main factors governinq the speed of data retrieval is the

number of leaves that have to be located for key comparisons.

Software producers have adopted a variety of strategies, many of
which tend to be proprietary information. The two most popular

strategies are as follows:-

- More than one key (and corresponding record numbers) may
be associated with a given leaf, and therefore more than

one key comparison can be performed on the same leaf.

When new keys are added to or old keys deleted from the
tree, the software rearranges the structure (as and when
necessary) to ensure that the tree is "balanced". A
balanced tree minimizes the number of leaves that have to

be located and tested. Some DBMS software perform
structural balancing and the physical deletion of records
only in batch mode. Such offline maintenance functions
on B-tree files must be taken into account when

evaluating the performance of this type of data
retrieval.

Sequential retrieval of data (either in ascending or
descending order) is relatively simple, and achievable merely by
traversing the tree structure using either forward or backward
links, and starting at either the top or bottom of the tree. The

desirability of both direct and sequential access to data (without
the use of stand-alone sort utilities) is an obvious attraction
with regard to bibliographic applications.

F
e
a
t
u
r
e
s

f
o
r

"
D
E
V
S
I
S
-
l
i
k
e
"

a
p
p
l
i
c
a
t
i
o
n
s

F
e
a
t
u
r
e

o
r

c
h
a
r
a
c
t
e
r
i
s
t
i
c

p
r
o
v
i
d
e
d

b
y

d
B
a
s
e

I
I

C
o
m
m
e
n
t
s
/

R
e
f
e
r
e
n
r
 e
s

R
e
q
u
i
r
e
d

D
e
s
i
r
a
b
l
e

O
p
t
i
o
n
a
l

_

M
e
n
u

d
r
i
v
e
n

A
v
a
i
l
a
b
l
e

u
s
i
n
g

c
o
m
m
a
n
d

l
a
n
q
u
a
g
e

s
t
a
t
e
m
e
n
t
s
,

e
.
q
.

D
O
,

S
A
Y
,

C
A
S
E
,

e
t
c
.

P
r
o
g
r
a
m

d
r
i
v
e
n

N
/
A

C
o
m
m
a
n
d
s

n
o
t

u
s
a
h
l
e

h
y

e
x
t
e
r
n
a
l

p
r
o
g
r
a
m
s

C
o
m
m
a
n
d

W
i
d
e

r
a
n
g
e

o
f

c
o
m
m
a
n
d
s

a
v
a
i
l
a
b
l
e
.

d
r
i
v
e
n

H
e
l
p

s
u
b
s
y
s
t
e
m

N
o
t

a
v
a
i
l
a
h
l
e
.

U
s
e
r

M
e
a
n
i
n
q
f
u
l

c
o
m
m
a
n
d

n
a
i
n
e
s

a
n
d

e
r
r
o
r

m
e
s
s
a
g
e
s
.

S
e
e

s
e
c
t
i
o
n

2
.
5

f
r
i
e
n
d
l
i
n
e
s
s

D
a
t
a
b
a
s
e

L
i
m
i
t
e
d

d
a
t
a
b
a
s
e

d
e
f
i
n
i
t
i
o
n

a
v
a
i
l
a
b
l
e

t
h
r
o
u
q
h

t
h
e

u
s
e

S
e
e

s
e
c
t
i
o
n

3
.
1

s
t
r
u
c
t
u
r
e

o
f

"
C
R
E
A
T
E
"

c
o
m
m
a
n
d
.

O
p
t
i
o
n
s

o
f

"
D
I
S
P
L
A
Y
"

c
o
m
m
a
n
d

d
e
f
i
n
i
t
i
o
n

(
e
.
g
.

"
S
T
R
U
C
T
U
R
E
"
)

p
r
o
v
i
d
e

i
n
f
o
r
m
a
t
i
o
n

o
n

d
a
t
a
b
a
s
e
.

F
i
l
e

P
h
y
s
i
c
a
l

f
i
l
e
s

g
e
n
e
r
a
t
e
d

h
y

"
C
R
E
A
T
E
"

c
o
m
m
a
n
d
.

d
e
f
i
n
i
t
i
o
n
/

c
r
e
a
t
i
o
n

R
e
c
o
r
d

l
e
v
e
l

R
e
c
o
r
d
s

a
r
e

n
u
m
b
e
r
e
d

a
u
t
o
m
a
t
i
c
e
l
l
y
.

O
n
l
y

f
i
x
e
d
-

S
e
e

s
e
c
t
i
o
n

3
.
3

d
e
f
i
n
i
t
i
o
n

l
e
n
g
t
h

r
e
c
o
r
d
s

a
r
e

s
u
p
p
o
r
t
e
d
.

F
i
e
l
d

l
e
v
e
l

F
i
e
l
d

n
a
i
n
e
,

t
y
p
e

a
n
d

l
e
n
g
t
h

s
p
e
c
i
f
i
e
d

i
n

"
C
R
E
A
T
E
"
.

S
e
e

s
e
c
t
i
o
n

3
.
4

d
e
f
i
n
i
t
i
o
n

R
e
p
e
a
t
a
b
l
e

a
n
d

s
u
b
f
i
e
l
d
e
d

f
i
e
l
d
s

n
o
t

s
u
p
p
o
r
t
e
d
.

F
i
e
l
d

l
e
v
e
l

s
e
c
u
r
i
t
y

a
n
d

e
d
i
t
i
n
g

n
e
t

s
u
p
p
o
r
t
e
d
.

F
a
s
t

a
c
c
e
s
s

f
i
l
e

s
p
e
c
i
f
i
c
a
t
i
o
n

v
i
a

"
I
N
D
E
X
"

c
o
m
m
a
n
d
.

D
a
t
a
b
a
s
e

D
a
t
a
b
a
s
e

r
e
s
t
r
u
c
t
u
r
i
n
q

s
u
p
p
o
r
t
e
d

b
y

"
C
O
P
Y
"

a
n
d

"
M
O
D
I
F
Y

m
o
d
i
f
i
c
a
t
i
o
n

S
T
R
U
C
T
U
R
E
"

c
o
m
m
a
n
d
s
.

D
a
t
a

d
i
c
t
i
o
n
a
r
y

S
u
p
p
o
r
t
e
d

o
n
l
y

i
n

n
a
i
n
e

S
e
e

s
e
c
t
i
o
n

3
.
6

F
e
a
t
u
r
e
s

f
o
r

"
D
E
V
S
I
S
-
l
i
k
e
"

a
p
p
l
i
c
a
t
i
o
n
s

F
e
a
t
u
r
e

o
r

c
h
a
r
a
c
t
e
r
i
s
t
i
c

C
o
m
m
e
n
t
e
/

p
r
o
v
i
d
e
d

b
y

d
B
a
s
e

I
l

R
e
f
e
r
e
n
c
e
s

R
e
q
u
i
r
e
d

D
e
s
i
r
a
b
l
e

O
p
t
i
o
n
a
l

O
n
l
i
n
e

d
a
t
a

A
v
a
i
l
a
b
l
e

t
h
r
o
u
g
h

"
A
P
P
E
N
D
"
,

"
C
R
E
A
T
E
"

a
n
d

"
I
N
S
E
R
T
"

U
s
e
r

d
e
f
i
n
a
b
l
e

i
n
p
u
t

e
n
t
r
y

c
o
m
m
a
n
d
s
.

U
p
d
a
t
e
s

p
e
r
f
o
r
m
e
d

i
n

r
e
a
l

L
i
m
e
.

s
c
r
e
e
n
s

a
l
s
o

s
u
p
p
o
r
t
e
d

0
f
f
l
i
n
e

d
a
t
a

A
i
l

d
a
t
e

f
i
l
e
s

c
a
n

b
e

c
r
e
a
t
e
d

b
y

e
x
t
e
r
n
a
l

p
r
o
g
r
a
m
s
.

S
e
e

s
e
c
t
i
o
n

4
.
2

c
r
e
a
t
i
o
n

D
a
t
a
b
a
s
e

"
l
o
a
d
i
n
g
"

s
u
p
p
o
r
t
e
d

u
s
i
n
q

"
C
O
P
Y
"

c
o
m
m
a
n
d
.

O
n
l
i
n
e

d
a
t
a

A
v
a
i
l
a
b
l
e

t
h
r
o
u
q
h

t
h
e

u
s
e

o
f

"
E
D
I
T
"
,

"
R
E
P
L
A
C
E
"
,

m
o
d
i
f
i
c
a
t
i
o
n

"
C
H
A
N
G
E
"

a
n
d

"
B
R
O
W
S
E
"
.

G
l
o
b
a
l

d
a
t
e

A
v
a
i
l
a
b
l
e

o
n
l
y

i
n
d
i
r
e
c
t
l
y
,

u
s
i
n
g

c
o
m
m
a
n
d

l
a
n
g
u
a
g
e

m
o
d
i
f
i
c
a
t
i
o
n

(
e
.
g
.

D
O

W
H
I
L
E
)
.

D
a
t
a

d
e
l
e
t
i
o
n

S
u
p
p
o
r
t
e
d

u
s
i
n
g

"
D
E
L
E
T
E
"
,

"
R
E
C
A
L
L
"
,

"
P
A
C
K
"
.

O
n
l
i
n
e

S
u
p
p
o
r
t
e
d

u
s
i
n
g

"
F
I
N
D
"
,

"
L
O
C
A
T
F
"
,

"
D
I
S
P
L
A
Y
"
,

"
L
I
S
T
"

S
e
e

s
e
c
t
i
o
n

6
.
1

s
e
a
r
c
h
i
n
g

a
n
d

"
R
E
P
O
R
T
"
.

F
r
e
e

t
e
x
t

s
e
a
r
c
h
i
n
g

a
l
s
o

s
u
p
p
o
r
t
e
d
.

B
oo

le
an

se

ar
ch

in
q

su
pp

or
te

d.

W
or

d
an

d
te

rm
 p

ro
-

c
e
s
s
i
n
g

n
o
t

a
v
a
i
l
a
b
l
e

d
i
r
e
c
t
l
y
.

B
a
t
c
h

A
v
a
i
l
a
b
l
e

u
s
i
n
g

a

c
o
m
m
a
n
d

f
i
l
e
.

e
x
t
r
a
c
t
i
o
n

F
a
s
t

a
c
c
e
s
s

"
I
N
D
E
X
"

c
o
m
m
a
n
d

c
r
e
a
t
e
s

B
-
t
r
e
e

f
a
s
t

a
c
c
e
s
s

f
i
l
e
.

S
e
e

s
e
c
t
i
o
n

6
.
3

f
i
l
e
s

M
u
l
t
i
p
l
e

u
s
e
r

L
i
m
i
t
e
d

s
u
p
p
o
r
t

t
h
r
o
u
g
h

"
J
O
I
N
"

c
o
m
m
a
n
d
.

P
r
o
j
e
c
t
i
o
n

v
i
e
w
e

n
o
t

s
u
p
p
o
r
t
e
d
,

t
h
o
u
g
h

"
C
O
P
Y
"

p
r
o
v
i
d
e
s

s
e
l
e
c
t
i
v
e
 d
a
t
a

e
x
t
r
a
c
t
i
o
n
.

A
r
i
t
h
m
e
t
i
c

A
r
i
t
h
m
e
t
i
c

a
n
d

B
o
o
l
e
a
n

o
p
e
r
a
t
i
o
n
s

p
r
o
v
i
d
e
d
.

P
a
r
e
n
-

c
o
m
p
u
t
a
t
i
o
n

t
h
e
s
i
s

a
r
e

s
u
p
p
o
r
t
e
d
.

T
e
m
p
o
r
a
r
y

m
e
m
o
r
y

v
a
r
i
a
b
l
e
s

a
r
e

a
v
a
i
l
a
b
l
e

f
o
r

c
o
m
p
u
t
a
t
i
o
n
.

N

F
e
s
t
u
r
e
s

f
o
r

"
D
E
V
S
I
S
-
l
i
k
e
"

a
p
p
l
i
c
a
t
i
o
n
s

F
e
n
t
u
r
e

o
r

c
h
a
r
a
c
t
e
r
i
s
t
i
c

p
r
o
v
i
d
e
d

b
y

d
R
a
s
e

I
I

C
o
m
m
e
n
t
s
/

R
e
f
e
r
e
n
c
e
s

R
e
q
u
i
r
e
d

D
e
s
i
r
a
b
l
e

O
p
t
i
o
n
a
l

O
u
t
p
u
t

S
u
p
p
o
r
t
e
d

u
s
i
n
g

"
D
I
S
P
L
A
Y
"
,

"
L
I
S
T
"

a
n
d

"
R
E
P
O
R
T
"
.

c
r
e
a
t
i
o
n

P
r
i
n
t

f
o
r
m
a
t

S
u
p
p
o
r
t
e
d

u
s
i
n
g

t
h
e

c
o
m
m
a
n
d

l
a
n
q
u
a
g
e
.

d
e
f
i
n
i
t
i
o
n

O
u
t
p
u
t

r
e
-

"
S
E
T
"

a
n
d

"
C
O
P
Y
"

c
o
m
m
a
n
d
s

p
r
o
v
i
d
e
d
.

d
i
r
e
c
t
i
o
n

S
o
r
t
/
m
e
r
g
e

S
u
p
p
o
r
t
e
d

u
s
i
n
q

"
S
O
R
T
"

a
n
d

"
I
N
D
E
X
"

c
o
m
m
a
n
d
s
.

D
a
t
a
b
a
s
e

L
i
m
i
t
e
d

s
e
c
u
r
i
t
y

p
r
o
v
i
d
e
d

b
y

d
i
s
a
b
l
i
n
q

t
h
e

"
E
S
C
A
P
E
"

s
e
c
u
r
i
t
y

c
o
m
m
a
n
d
.

U
s
e
r

p
a
s
s
w
o
r
d
s

M
o
t

s
u
p
p
n
r
t
e
d
.

F
i
l
e

l
o
c
k
i
n
g

M
o
t

s
u
p
p
o
r
t
e
d
.

C
o
p
y
i
n
g

a
n
d

s
o
r
t
i
n
g

t
o

a

f
i
l
e

i
n

"
U
S
E
"

c
a
n

c
o
r
r
u
p
t

d
a
t
a
.

T
r
a
n
s
a
c
t
i
o
n

M
o
t

s
u
p
p
o
r
t
e
d
.

l
o
g
g
i
n
g
/

r
e
c
o
v
e
r
y

S
y
s
t
e
m

M
o
t

s
u
p
p
o
r
t
e
d
.

P
e
r
f
o
r
m
e
d

u
s
i
n
q

o
p
e
r
a
t
i
n
q

ba
ck

up

sy
st

em
 u

til
iti

es
.

F
e
a
t
u
r
e
s

f
o
r

"
D
E
V
S
I
S
-
l
i
k
e
"

a
p
p
l
i
c
a
t
i
o
n
s

R
e
q
u
i
r
e
d

D
e
s
i
r
a
b
l
e

S
o
f
t
w
a
r
e

c
o
n
-

f
i
g
u
r
a
b
i
l
i
t
y

D
i
s
k

f
i
l
e

c
h
a
i
n
i
n
g

U
s
e
r

d
e
f
i
n
e
d

c
o
m
m
a
n
d
s
/

m
a
c
r
o

g
e
n
e
r
a
-

t
 i
o
n

H
i
g
h

l
e
v
e
l

p
r
o
c
e
d
u
r
a
l

l
a
n
g
u
a
g
e

s
u
b
-

s
y
s
t
e
m

F
i
l
e

c
o
m
-

p
a
t
i
b
i
l
i
t
y

O
pt

 io
na

l

P
r
o
g
r
a
m
m
i
n
g

1
a
n
g
u
a
g
e

i
n
t
e
r
f
a
c
e

M
u
f
t
i
-
u
s
e
r

c
a
p
a
b
i
l
i
t
y

e
n
d

l
o
c
a
l

a
r
e
s

n
e
t
w
o
r
k
i
n
q

F
e
a
t
u
r
e

o
r

c
h
a
r
a
c
t
e
r
i
s
t
i
c

p
r
o
v
i
d
e
d

b
y

d
B
a
s
e

I
I

L
i
m
i
t
e
d

c
o
n
f
i
g
u
r
a
t
i
o
n

s
u
p
p
o
r
t
e
d
 c

a
s
i
n
g

t
h
e

"
I
N
S
T
A
L
L
"

p
r
o
g
r
a
m
.

M
o
t

s
u
p
p
o
r
t
e
d
.

M
o
t

s
u
p
p
o
r
t
e
d
.

M
a
c
r
o

s
u
b
s
t
i
t
u
t
i
o
n

s
u
p
p
o
r
t
e
d
.

C
o
m
p
r
e
h
e
n
s
i
v
e

c
o
m
m
a
n
d

l
a
n
q
u
a
g
e

p
r
o
v
i
d
e
d
.

M
o
t

s
u
p
p
o
r
t
e
d
.

A
l
l

d
a
t
a
b
a
s
e

f
i
l
e
s

a
r
e

i
n

A
S
C
I
I

t
e
x
t

f
i
l
e

f
o
r
m
a
t
s
.

C
o
m
m
e
n
t
a
/

R
e
f
e
r
e
n
c
e
s

H
a
r
d

d
i
s
k
s

a
r
e

s
u
p
p
o
r
t
e
d
.

S
op

hi
st

ic
at

ed
 c

om
m

an
d

la
nq

ua
ge

 p
ro

vi
de

d.

-
A

d
B
a
s
e

I
l

S
p
e
c
i
f
i
c
a
t
i
o
n
s

N
u
m
b
e
r

o
f

d
a
t
a
b
a
s
e

r
e
c
o
r
d
s

6
5

5
3
5

M
ax

.
C
h
a
r
a
c
t
e
r
s

p
e
r

d
a
t
a
b
a
s
e

r
e
c
o
r
d

(
f
i
x
e
d
-
l
e
n
g
t
h

r
e
c
o
r
d
s
)

1
00

0
M

ax
.

F
i
e
l
d
s

p
e
r

d
a
t
a
b
a
s
e

r
e
c
o
r
d

3
2

M
a
x
.

C
h
a
r
a
c
t
e
r
s

p
e
r

d
a
t
a
b
a
s
e

f
i
e
l
d

(
f
i
x
e
d
-
l
e
n
g
t
h

f
i
e
l
d
s
)

2
5
4

M
ax

.
F
i
l
e
s

t
h
a
t

c
o
n

b
e

o
p
e
n

s
i
m
u
l
t
a
n
e
o
u
s
l
y

1
6

M
ax

.
U
s
e
r
-
d
e
f
i
n
a
b
l
e

v
a
r
i
a
b
l
e
s

6
5

M
ax

.

K
e
y
/
I
n
d
e
x

f
i
l
e
(
s
)

a
c
c
e
s
s
i
b
l
e

s
i
m
u
l
t
e
n
e
o
u
s
l
y

7

m
 a

x
.

C
h
a
r
a
c
t
e
r
s

p
e
r

i
n
d
i
v
i
d
u
e
l

k
e
y

10
0

M
ax

.

N
u
m
b
e
r

o
f

d
a
t
a
b
a
s
e
s

a
c
c
e
s
s
i
b
l
e

s
i
m
u
l
t
a
n
e
o
u
s
l
y

2

m
 a

x
.

H
a
r
d
w
a
r
e

R
e
q
u
i
r
e
m
e
n
t
s

C
PU

M
i
n
i
m
u
m

s
p
a
c
e

r
e
q
u
i
r
e
m
e
n
t
s

S
t
o
r
a
g
e

r
e
q
u
i
r
e
m
e
n
t
s

V
i
d
e
o

d
i
s
p
l
a
y

t
e
r
m
i
n
a
l

H
a
r
d

d
i
s
k

P
r
i
n
t
e
r

Z
8
0
,

8
0
8
0
,

8
0
8
5
/
6
/
8

4
8

K

O
n
e

o
r

m
o
r
e

d
i
s
k

d
r
i
v
e
s

2
4

x

8
0

c
u
r
s
o
r
-
a
d
d
r
e
s
s
e
d

O
pt

 T
on

al

O
pt

 io
na

l

S
y
s
t
e
m

S
o
f
t
w
a
r
e

C
P
/
M
,

M
S
D
O
S

(
i
l

APPENDIX E

Software Evaluation Forms

The following forms are intended to assist a potential
software evaluator in assessing the desirability of a given
software product.

The section references have been included as an index to

the main body of text.

D
B
M
S

F
e
a
t
u
r
e
s

0

D

M

S
e
c
t
i
o
n

R
e
f
e
r
e
n
c
e

*
G
e
n
e
r
a
l

C
o
m
m
e
n
t
e

(
F
e
a
t
u
r
e
s

p
r
o
v
i
d
e
d

d
i
r
e
c
t
 t
y
/
i
n
d
i
r
e
c
t
l
y
)

D
a
t
a
b
a
s
e

d
e
f
i
n
i
t
i
o
n

D
a
t
a
b
a
s
e

s
t
r
u
c
t
u
r
e

d
e
f
i
n
i
t
i
o
n

x

3
.
1

F
i
l
e

d
e
f
i
n
i
t
i
o
n
/
c
r
e
a
t
i
o
n

x

3
.
2

R
e
c
o
r
d

l
e
v
e
l

d
e
f
i
n
i
t
i
o
n

3
.
3

S
o
r
t

s
p
e
c
i
f
i
c
a
t
i
o
n

x

R
e
c
o
r
d

n
u
n
b
e
r
/
i
d
e
n
t
i
f
i
e
r

s
p
e
c
i
f
i
c
a
t
i
o
n

x

D
e
f
a
u
l
t

p
r
i
n
t

f
o
r
m
a
t

s
p
e
c
i
f
i
c
a
t
i
o
n

x

V
a
r
i
a
b
l
e

l
e
n
g
t
h

r
e
c
o
r
d

s
p
e
c
i
f
i
c
a
t
i
o
n

x

F
i
e
l
d

l
e
v
e
l

d
e
f
i
n
i
t
i
o
n

3
.
4

F
i
e
l
d

i
d
e
n
t
i
f
i
e
r

s
p
e
c
i
f
i
c
a
t
i
o
n

x

F
i
e
l
d

d
a
t
a

t
y
p
e

s
p
e
c
i
f
i
c
a
t
i
o
n

x

F
i
e
l
d

l
e
n
g
t
h

s
p
e
c
i
f
i
c
a
t
i
o
n

x

R
e
p
e
a
t
a
b
l
e

f
i
e
l
d

s
p
e
c
i
f
i
c
a
t
i
o
n

x

S
u
b
f
i
e
l
d

s
p
e
c
i
f
i
c
a
t
i
o
n

x

F
i
e
l
d

e
d
i
t
i
n
g

s
p
e
c
i
f
i
c
a
t
i
o
n

x

D
a
t
a
b
a
s
e

m
o
d
i
f
i
c
a
t
i
o
n

x

3
.
5

D
a
t
a

d
i
c
t
i
o
n
a
r
y

x

3
.
6

D
a
t
a
b
a
e
e
 p
o
p
u
l
a
t
i
o
n

O
n
l
i
n
e

d
a
t
a

e
n
t
r
y

4
.
1

P
r
o
m
p
t
e
d

e
n
t
r
y

(i)

x

(
i
i
)

X

(
i
i
i
)

X

(
i
v
)

x

(
V
)

x

(
v
i
)

x

(
v
i
i
)

x

(
v
i
i
i
)

X

(
i
x
)

X

(
x
)

X

(
x
i
)

x

(
x
i
i
)

X

F
o
r
m
a
t
t
e
d

e
n
t
r
y

x

0
f
f
l
i
n
e

d
a
t
a

c
r
e
a
t
i
o
n

x

4
.
2

*

-

T
h
i
s

c
o
l
u
n
n

i
s

t
o

b
e

f
i
l
l
e
d

i
n

b
y

t
h
e

s
o
f
t
w
a
r
e

e
v
a
l
u
a
t
o
r
.

0

-

O
p
t
i
o
n
a
l

f
e
a
t
u
r
e
.

D

-

D
e
s
i
r
a
b
l
e

f
e
a
t
u
r
e
.

M

-

M
a
n
d
a
t
o
r
y

f
e
a
t
u
r
e
.

D
B
M
S

F
e
a
t
u
r
e
s

(
c
o
n
t
i
n
u
e
d
)

0

D

S
e
c
t
i
o
n

R
e
f
e
r
e
n
c
e

*
G
e
n
e
r
a
l

C
o
m
m
e
n
t
s

(
F
e
a
t
u
r
e
s

p
r
o
v
i
d
e
d

d
i
r
e
c
t
l
y
/
i
n
d
i
r
e
c
t
l
y
)

D
a
t
a
 m
o
d
i
f
i
c
a
t
i
o
n

O
n
l
i
n
e

d
a
t
a

m
o
d
i
f
i
c
a
t
i
o
n

X

5
.
1

G
l
o
b
a
l

d
a
t
a

m
o
d
i
f
i
c
a
t
i
o
n

X

5
.
2

D
a
t
a

d
e
l
e
t
i
o
n

X

5
.
3

D
a
t
a

r
e
t
r
i
e
v
a
l

O
n
l
i
n
e

s
e
a
r
c
h
i
n
g

6
.
1

F
r
e
e

t
e
x
t

s
e
a
r
c
h
i
n
g

X

S
e
a
r
c
h
i
n
g

u
s
i
n
g

a

r
a
n
g
e

o
f

r
e
c
o
r
d

I
D
s

X

M
o
r
d

a
n
d

t
e
r
m

p
r
o
c
e
s
s
i
n
g
/
k
e
y

g
e
n
e
r
a
t
i
o
n

X

B
o
o
l
e
a
n

a
n
d

n
e
s
t
e
d

s
e
a
r
c
h

l
o
g
i
c

X

B
o
c
k

r
e
f
e
r
e
n
c
i
n
g

X

S
t
o
r
a
g
e

a
n
d

r
e
t
r
i
e
v
a
l

o
f

s
e
a
r
c
h

s
t
r
a
t
e
g
y

X

S
p
e
c
i
a
l

f
e
a
t
u
r
e
s

X

B
a
t
c
h

e
x
t
r
a
c
t
i
o
n

X

6
.
2

F
a
s
t

a
c
c
e
s
s

f
i
l
e
s

X

6
.
3

c
o
m
p
u
t
a
t
i
o
n

X

7
.
0

O
u
t
p
u
t

g
e
n
e
r
a
t
i
o
n

O
ut

pu
t

cr
ea

tio
n

X

8.
1

P
r
i
n
t

f
o
r
m
a
t

d
e
f
i
n
i
t
i
o
n

8
.
2

P
a
g
e

l
e
v
e
l

f
o
r
m
e
t
t
i
n
g

(
i
)

X

(
i
i
)

X

(
i
i
i
)

X

(
i
v
)

X

(
v
)

X

(
v
i
)

X

(
v
i
i
)

R
e
c
o
r
d

l
e
v
e
l

f
o
r
m
e
t
t
i
n
g

(
i
)

X

(
i
i
)

X

(
i
i
i
)

X

F
i
e
l
d

l
e
v
e
l

f
o
r
m
a
t
t
i
n
g

(
i
)

X

(i
i)

X

(
i
i
i
)

X

(
i
v
)

X

(
v
)

X

O
u
t
p
u
t

r
e
d
i
r
e
c
t
i
o
n

X

8
.
3

S
o
r
t
/
m
e
r
g
e

X

8
.
4

D
B
M
S

F
e
a
t
u
r
e
s

(
c
o
n
t
i
n
u
e
d
)

0

D

M

S
e
c
t
i
o
n

R
e
f
e
r
e
n
c
e

*
G
e
n
e
r
a
l

C
o
m
m
e
n
t
a

(
F
e
a
t
u
r
e
s

p
r
o
v
i
d
e
d

d
i
r
e
c
t
l
y
/
i
n
d
i
r
e
c
t
l
y
)

D
a
t
a
 i
n
t
e
g
r
i
t
y

D
a
t
a
b
a
s
e

s
e
c
u
r
i
t
y

x

9
.
1

U
s
e
r

p
a
s
s
w
o
r
d
s

x

9
.
2

Fi
le

 l
oc

ki
nq

x

9.
3

T
r
a
n
s
a
c
t
i
o
n

l
o
g
g
i
n
q
/
r
e
c
o
v
e
r
y

x

9
.
4

S
y
s
t
e
m

b
a
c
k
u
p

x

9
.
5

U
t
i
l
i
t
i
e
n
 a
n
d

a
p
e
c
i
e
l

r
e
a
t
u
r
e
a

S
o
f
t
w
a
r
e

c
o
n
f
i
g
u
r
e
b
i
l
i
t
y

x

1
0
.
1

D
i
s
k

f
i
l
e

c
h
a
i
n
i
n
g

x

1
0
.
2

P
r
o
g
r
a
m
m
i
n
g

l
a
n
g
u
a
g
e

i
n
t
e
r
f
a
c
e

x

1
0
.
3

H
i
g
h
-
l
e
v
e
l

p
r
o
c
e
d
u
r
a
l

l
a
n
g
u
a
g
e

s
u
b
s
y
s
t
e
m

x

1
0
.
4

U
s
e
r
-
d
e
f
i
n
e
d

c
o
m
m
a
n
d
/
m
a
c
r
o

g
e
n
e
r
a
t
i
o
n

x

1
0
.
5

M
u
l
t
i
-
u
s
e
r

c
a
p
a
b
i
l
i
t
y

a
n
d

l
o
c
a
l

a
r
e
s

n
e
t
w
o
r
k
i
n
g

x

1
0
.
6

F
i
l
e

c
o
m
p
a
t
i
b
i
l
i
t
y

x

1
0
.
7

D
a
t
a
b
a
s
e

l
o
a
d
i
n
g

a
n
d

u
n
l
o
a
d
i
n
q

x

1
0
.
8

