
Machani Prasanna Kumar* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.4, June – July 2016, 3367 – 3372.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 3367

Detection of Duplication in Cloud
MACHANI PRASANNA KUMAR

PG Student (Software Engineering)

St. Johns College of Engineering and Technology
Kurnool, Andhra Pradesh, India

G K VENKATA NARASIMHA REDDY

Associate professor, Department of CSE

St. Johns College of Engineering and Technology
Kurnool, Andhra Pradesh, India

Abstract—As the cloud computing technology develops during the last decade, outsourcing data to cloud

service for storage becomes an attractive trend, which benefits in sparing efforts on heavy data

maintenance and management. Nevertheless, since the outsourced cloud storage is not fully trustworthy,

it raises security concerns on how to realize data deduplication in cloud while achieving integrity

auditing.

In this work, we study the problem of integrity auditing and secure deduplication on cloud data.

Specifically, aiming at achieving both data integrity and deduplication in cloud, we propose two secure

systems, namely SecCloud and SecCloud+. SecCloud introduces an auditing entity with a maintenance of

a MapReduce cloud, which helps clients generate data tags before uploading as well as audit the integrity

of data having been stored in cloud. Compared with previous work, the computation by user in SecCloud

is greatly reduced during the file uploading and auditing phases. SecCloud+ is designed motivated by the

fact that customers always want to encrypt their data before uploading, and enables integrity auditing

and secure deduplication on encrypted data.

I. INTRODUCTION

Cloud storage is a model of networked enterprise

storage where data is stored in virtualized pools of

storage which are generally hosted by third parties.

Cloud storage provides customers with benefits,

ranging from cost saving and simplified

convenience, to mobility opportunities and scalable

service. These great features attract more and more

customers to utilize and storage their personal data

to the cloud storage: according to the analysis

report, the volume of data in cloud is expected to

achieve 40 trillion gigabytes in 2020.

Even though cloud storage system has been widely

adopted, it fails to accommodate some important

emerging needs such as the abilities of auditing

integrity of cloud files by cloud clients and

detecting duplicated files by cloud servers. We

illustrate both problems below.

The first problem is integrity auditing. The cloud

server is able to relieve clients from the heavy

burden of storage management and maintenance.

The most difference of cloud storage from

traditional in-house storage is that the data is

transferred via Internet and stored in an uncertain

domain, not under control of the clients at all,

which inevitably raises clients great concerns on

the integrity of their data. These concerns originate

from the fact that the cloud storage is susceptible to

security threats from both outside and inside of the

cloud [1], and the uncontrolled cloud servers may

passively hide some data loss incidents from the

clients to maintain their reputation. What is more

serious is that for saving money and space, the

cloud servers might even actively and deliberately

discard rarely accessed data files belonging to an

ordinary client. Considering the large size of the

outsourced data files and the clients’ constrained

resource capabilities, the first problem is

generalized as how can the client efficiently

perform periodical integrity verifications even

without the local copy of data files. The second

problem is secure deduplication. The rapid

adoption of cloud services is accompanied by

increasing volumes of data stored at remote cloud

servers. Among these remote stored files, most of

them are duplicated: according to a recent survey

by EMC [2], 75% of recent digital data is

duplicated copies. This fact raises a technology

namely deduplication, in which the cloud servers

would like to deduplicate by keeping only a single

copy for each file (or block) and make a link to the

file (or block) for every client who owns or asks to

store the same file (or block). Unfortunately, this

action of deduplication would lead to a number of

threats potentially affecting the storage system

[3][2], for example, a server telling a client that it

(i.e., the client) does not need to send the file

reveals that some other client has the exact same

file, which could be sensitive sometimes. These

attacks originate from the reason that the proof that

the client owns a given file (or block of data) is

solely based on a static, short value (in most cases

the hash of the file) [3]. Thus, the second problem

is generalized as how can the cloud servers

efficiently confirm that the client (with a certain

degree assurance) owns the uploaded file (or

block) before creating a link to this file (or block)

for him/her.

II. RELATED WORK

Since our work is related to both integrity auditing

and secure deduplication, we review the works in

both areas in the following subsections,

respectively.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Innovative Technology and Research (IJITR)

https://core.ac.uk/display/228548191?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Machani Prasanna Kumar* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.4, June – July 2016, 3367 – 3372.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 3368

A. Integrity Auditing

The definition of provable data possession (PDP)

was introduced by Ateniese et al. [5][6] for

assuring that the cloud servers possess the target

files without retrieving or downloading the whole

data. Essentially, PDP is a probabilistic proof

protocol by sampling a random set of blocks and

asking the servers to prove that they exactly

possess these blocks, and the verifier only

maintaining a small amount of metadata is able to

perform the integrity checking. After Ateniese et

al.’s proposal [5], several works concerned on how

to realize PDP on dynamic scenario: Ateniese et al.

[7] proposed a dynamic PDP schema but without

insertion operation; Erway et al. [8] improved

Ateniese et al.’s work [7] and supported insertion

by introducing authenticated flip table; A similar

work has also been contributed in [9].

Nevertheless, these proposals [5][7][8][9] suffer

from the computational overhead for tag generation

at the client. To fix this issue, Wang et al. [10]

proposed proxy PDP in public clouds. Zhu et al.

[11] proposed the cooperative PDP in multi-cloud

storage.

B. Secure Deduplication

Deduplication is a technique where the server

stores only a single copy of each file, regardless of

how many clients asked to store that file, such that

the disk space of cloud servers as well as network

bandwidth are saved. However, trivial client side

deduplication leads to the leakage of side channel

information. For example, a server telling a client

that it need not send the file reveals that some other

client has the exact same file, which could be

sensitive information in some case.

In order to restrict the leakage of side channel

information, Halevi et al. [3] introduced the proof

of ownership protocol which lets a client efficiently

prove to a server that that the client exactly holds

this file. Several proof of ownership protocols

based on the Merkle hash tree are proposed [3] to

enable secure client-side deduplication. Pietro and

Sorniotti [19] proposed an efficient proof of

ownership scheme by choosing the projection of a

file onto some randomly selected bit-positions as

the file proof.

III. PRELIMINARY

We now discuss some preliminary notions that will

form the foundations of our approach.

A. Bilinear Map and Computational Assumption

B. Convergent Encryption

IV. SECCLOUD

In this section, we describe our proposed SecCloud

system. Specifically, we begin with giving the

system model of Sec- Cloud as well as introducing

the design goals for SecCloud.

In what follows, we illustrate the proposed

SecCloud in detail.

A. System Model

Aiming at allowing for auditable and deduplicated

storage, we propose the SecCloud system. In the

SecCloud system, we have three entities:

• Cloud Clients have large data files to be stored

and rely on the cloud for data maintenance and

computation. They can be either individual

consumers or commercial organizations;

• Cloud Servers virtualize the resources according

to the requirements of clients and expose them as

storage pools. Typically, the cloud clients may buy

or lease storage capacity from cloud servers, and

store their individual data in these bought or rented

spaces for future utilization;

• Auditor which helps clients upload and audit their

outsourced data maintains a MapReduce cloud and

acts like a certificate authority. This assumption

presumes that the auditor is associated with a pair

of public and private keys. Its public key is made

available to the other entities in the system.

The SecCloud system supporting file-level

deduplication includes the following three

protocols respectively highlighted by red, blue and

green in Fig. 1.

1) File Uploading Protocol: This protocol aims at

allowing clients to upload files via the auditor.

Specifically, the file uploading protocol includes

three phases:

• Phase 1 (cloud client → cloud server): client

performs the duplicate check with the cloud server

to confirm if such a file is stored in cloud storage or

not before uploading a file. If there is a duplicate,

another protocol called Proof of Ownership will be

run between the client and the cloud storage server.

Otherwise, the following protocols (including

phase 2 and phase 3) are run between these two

entities.

• Phase 2 (cloud client → auditor): client uploads

files to the auditor, and receives a receipt from

auditor.

Machani Prasanna Kumar* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.4, June – July 2016, 3367 – 3372.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 3369

• Phase 3 (auditor → cloud server): auditor helps

generate a set of tags for the uploading file, and

send them along with this file to cloud server.

2) Integrity Auditing Protocol: It is an interactive

protocol for integrity verification and allowed to be

initialized by any entity except the cloud server. In

this protocol, the cloud server plays the role of

prover, while the auditor or client works as the

verifier. This protocol includes two phases:

• Phase 1 (cloud client/auditor → cloud server):

verifier (i.e., client or auditor) generates a set of

challenges and sends them to the prover (i.e., cloud

server).

• Phase 2 (cloud server → cloud client/auditor):

based on the stored files and file tags, prover (i.e.,

cloud server) tries to prove that it exactly owns the

target file by sending the proof back to verifier

(i.e., cloud client or auditor). At the end of this

protocol, verifier outputs true if the integrity

verification is passed.

3) Proof of Ownership Protocol: It is an

interactive protocol initialized at the cloud server

for verifying that the client exactly owns a claimed

file. This protocol is typically triggered along with

file uploading protocol to prevent the leakage of

side channel information. On the contrast to

integrity auditing protocol, in PoW the cloud server

works as verifier, while the client plays the role of

prover. This protocol also includes two phases

• Phase 1 (cloud server → client): cloud server

generates a set of challenges and sends them to the

client.

• Phase 2 (client → cloud server): the client

responds with the proof for file ownership, and

cloud server finally verifies the validity of proof.

Our main objectives are outlined as follows.

• Integrity Auditing. The first design goal of this

work is to provide the capability of verifying

correctness of the remotely stored data. The

integrity verification further requires two features:

1) public verification, which allows anyone, not

just the clients originally stored the file, to perform

verification; 2) stateless verification, which is able

to eliminate the need for state information

maintenance at the verifier side between the actions

of auditing and data storage.

• Secure Deduplication. The second design goal of

this work is secure deduplication. In other words, it

requires that the cloud server is able to reduce the

storage space by keeping only one copy of the

same file. Notice that, regarding to secure

deduplication, our objective is distinguished from

previous work [3] in that we propose a method for

allowing both deduplication over files and tags.

• Cost-Effective. The computational overhead for

providing ntegrity auditing and secure

deduplication should not represent a major

additional cost to traditional cloud storage, nor

should they alter the way either uploading or

downloading operation.

B. SecCloud Details

In this subsection, we respectively describe the

three protocols including file uploading protocol,

integrity auditing protocol and proof of ownership

protocol in SecCloud. Before our detailed

elaboration, we firstly introduce the system setup

phase of SecCloud, which initializes the public and

private parameters of the system. As declared in

Section IV-A, the file uploading protocol involves

three phases. In the first phase shown in Fig. 2, the

client runs the deduplication test by sending hash

value of the file Hash(F) to the cloud server. If

there is a duplicate, the cloud client performs Proof

of Ownership protocol with the cloud server which

will be described later. If it is passed, the user is

authorized to access this stored file without

uploading the file.

2) Integrity Auditing Protocol: In the integrity

auditing protocol, either the MapReduce auditing

cloud or the client works as the verifier. Thus,

without loss of generality, in the rest of the

description of this protocol, we use verifier to

identify the client or MapReduce auditing cloud.

The auditing protocol is designed in a challenge-

response model. Specifically, the verifier randomly

picks a set of block identifiers (say IF) of F and

asks the cloud server (working as prover) to

response the blocks corresponding to the identifiers

in IF. In order to keep randomness in each time of

challenge, even for the same IF, we introduce a

random coefficient for each block in challenge.

Upon receiving the challenge C, as shown in Fig. 3,

Machani Prasanna Kumar* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.4, June – July 2016, 3367 – 3372.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 3370

suppose the Merkle hash tree has been constructed

as in Fig. 4, and the challenge blocks IF = {2; 5}

(i.e., challenge B2;B5). The hashes of B2 and B5

(highlighted by black in Fig. 4), Ω2 (highlighted by

blue in Fig. 4) and Ω5 (highlighted by orange in

Fig. 4) are as the proof for retrievability on block-

level. It is worth noting that, although the node

labeled by x in Fig. 4 is a sibling of node in

Path(B2), it should not be included in Ω2. This is

because the node x also belongs to Path(B5) and

can be re-constructed using Hash(B5) and Ω5. The

benefit of excluding the nodes in other challenge

blocks paths is that, it allows us to reconstruct only

a single version of root node of the Merkle hash

tree for auditing all the challenge blocks.

 3) Proof of Ownership Protocol: The PoW

protocol aims at allowing secure deduplication at

cloud server. Specifically, in deduplication, a client

claims that he/she has a file F and wants to store it

at the cloud server, where F is an existing file

having been stored on the server. The cloud server

asks for the proof of the ownership of F to prevent

client unauthorized or malicious access to an

unowned file through making cheating claim. In

SecCloud, the PoW protocol is similar to [3] and

the details are described as follows.

V. SECCLOUD+

We specify that our proposed SecCloud system has

achieved both integrity auditing and file

deduplication. However, it cannot prevent the

cloud servers from knowing the content of files

having been stored. In other words, the

functionalities of integrity auditing and secure

deduplication are only imposed on plain files. In

this section, we propose SecCloud+, which allows

for integrity auditing and deduplication on

encrypted files.

A. System Model

Compared with SecCloud, our proposed

SecCloud+ involves an additional trusted entity,

namely key server, which is responsible for

assigning clients with secret key (according to the

file content) for encrypting files. This architecture

is in line with the recent work [4]. But our work is

distinguished with the previous work [4] by

allowing for integrity auditing on encrypted data.

SecCloud+ follows the same three protocols (i.e.,

the file uploading protocol, the integrity auditing

protocol and the proof of ownership protocol) as

with SecCloud. The only difference is the file

uploading protocol in SecCloud+ involves an

additional phase for communication between cloud

client and key server. That is, the client needs to

communicate with the key server to get the

convergent key for encrypting the uploading file

before the phase 2 in SecCloud. Unlike SecCloud,

another design goals of file confidentiality is

desired in SecCloud+ as follows.

• File Confidentiality. The design goal of file

confidentiality requires to prevent the cloud servers

from accessing the content of files. Specially, we

require that the goal of file confidentiality needs to

be resistant to “dictionary attack”. That is, even the

adversaries have pre-knowledge of the “dictionary”

which includes all the possible files, they still

cannot recover the target file [4].

VI. SECURITY ANALYSIS

In this section, we attempt to analyze the security

of our proposed both schemes. Before this, we

firstly formalize the security definitions our

schemes aim at capturing.

A. Security Definitions

Based on the paradigm of SecCloud and

SecCloud+, we define the security definitions,

adapting to the integrity auditing and secure

deduplication goals. Our both definitions capture

the philosophy of game-based definition.

Specifically, we define two games respectively for

integrity auditing and secure deduplication, and

both of the games are played by two players,

namely adversary and challenger. The adversary

(the role of which is worked by semi-honest cloud

server and cloud client respectively in integrity

auditing and secure deduplication definition) is

trying to achieve the goal condition explicitly

specified in the game. Having this intuition, we

give our security definitions as follows.

1) Integrity Auditing: An integrity auditing

protocol is sound if any cheating cloud server that

convinces the verifier that it is storing a file F is

actually storing this file. To capture this spirit, we

define its game based on Proof of Retrievability

(PoR).

2) Secure Deduplication: Similarly, we can also

define a game between challenger and adversary

for secure deduplication below. Notice that the

game for secure deduplication captures the

intuition of allowing the malicious client to claim it

has a challenge file F through colluding with all the

other clients not owning this file.

The security in terms of secure deduplication is

achieved, if for all probabilistic polynomial-time

adversaries A, the probability that A succeeds in the

above experiment is negligible.

Machani Prasanna Kumar* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.4, June – July 2016, 3367 – 3372.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 3371

B. Security Proof

Theorem 1: Assume that the CDH problem is a

hard problem. Then, the proposed public-verifiable

PoR scheme satisfies the soundness. That is, no

adversary could generate an integrity proof for any

file such that the verifier accepts it with

nonnegligible probability.

Proof: We prove the soundness of the construction

by reduction. Firstly, assume there is an adversary

who can break the soundness with non-negligible

probability. We show that how to construct a

simulator to break the computational Diffie-

Hellman problem through interacting with the

adversary. During this phase, the simulator is

required to answer all the queries as the real

application. In more details, the simulator has to

answer the tag generation and integrity proof

queries from the adversary. After the simulation, if

the adversary outputs a valid tag that is not from

client, the simulator can use this algorithm to solve

the CDH problem. Notice that the simulation for

the n slave nodes can be reduced to just one node

because of the assumption that all the slave nodes

are honest-but-curious and they will not collude.

More clearly, the master key can be split to n

subkeys by choosing n − 1 random values and

assigned to slave nodes as the corresponding

private keys, while the n-th node is assigned the

key of minus the sum of these random values.

Furthermore, all the data has been encrypted before

they are outsourced. The data is encrypted with the

traditional symmetric encryption scheme and the

key is generated by the key server. The convergent

key is encrypted by another master key and stored

in the cloud server. The convergent key has been

computed from both the file and private key of the

key server, which means that the convergent key is

not deterministic only in terms of the file. Even if

the file is predictable, the adversary cannot guess

the file with brute-force attack if the adversary is

not allowed to collude with the key server.

Because we used the PoW technique, based on the

assumption of secure PoW scheme, any adversary

without the file cannot convince the cloud storage

server to get the corresponding access privilege.

Thus, our deduplication system is secure in terms

of the security model.

VII. PERFORMANCE ANALYSIS

In this section, we will provide a thorough

experimentale valuation of our proposed schemes.

We build our testbed by using 64-bit t2.Micro

Linux servers in Amazon EC2 platform as the

auditing server and storage server. In order to

achieve _ = 80 bit security, the prime order p of the

bilinear group G and GT are respectively chosen as

160 and 512 bits in length. We also set the block

size as 4 KB and each block includes 25 sectors.

Fig. 5 shows the time cost of slave node in

MapReduce for generating file tags. It is clear the

time cost of slave node is growing with the size of

file. This is because the more blocks in file, the

more homomorphic signatures are needed to be

computed by slave node for file uploading. We also

need to notice that there does not exist much

computational load difference between common

slave nodes and the reducer. Compared with the

common slave nodes, reducer only additionally

involves in a number of multiplications, which is

lightweight operation. It is worthwhile noting that,

the procedure of tag generation (the phase 2 and 3

in file uploading protocol) could be handled in

preprocessing, and it is not necessary for client to

wait until uploading file.

To capture the spirit of probabilistic auditing, we

set the probability confidence _ = 70%; 85% and

99%, and draw the relationships between _ and m

in Fig. 6. It demonstrates that if we want to achieve

low (i.e., 70%), medium (i.e., 85%) and high (i.e.,

99%) confidence of detecting any small fraction of

corruption, we have to respectively ask for 130;

190 and 460 blocks for challenge.

Now, we come back to evaluate the time cost of

file auditing in Fig. 7, which shows the time cost of

auditing for detecting the misbehavior of cloud

storage respectively with 70%; 85% and 99%

confidence. Obviously, as the growth of the

number of blocks for challenge (to guarantee

higher confidence), the time cost for response from

cloud storage server is increasing. This is because it

needs to compute all the exponentiations for each

challenge block as well as the coefficient for each

column of S. Correspondingly, the time cost at

auditor grows with the number of challenge blocks

as well. But compared with cloud storage, the rate

is slightly lower, because auditor only needs to

Machani Prasanna Kumar* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

 Volume No.4, Issue No.4, June – July 2016, 3367 – 3372.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 3372

aggregate the homomorphic signature of the

challenged blocks.

VIII. CONCLUSION

Aiming at achieving both data integrity and

deduplication in cloud, we propose SecCloud and

SecCloud+. SecCloud introduces an auditing entity

with maintenance of a MapReduce cloud, which

helps clients generate data tags before uploading as

well as audit the integrity of data having been

stored in cloud. In addition, SecCoud enables

secure deduplication through introducing a Proof of

Ownership protocol and preventing the leakage of

side channel information in data deduplication.

Compared with previous work, the computation by

user in SecCloud is greatly reduced during the file

uploading and auditing phases. SecCloud+ is an

advanced construction motivated by the fact that

customers always want to encrypt their data before

uploading, and allows for integrity auditing and

secure deduplication directly on encrypted data.

IX. REFERENCES

[1] M. Armbrust, A. Fox, R. Griffith, A. D.

Joseph, R. Katz, A. Konwinski, G. Lee, D.

Patterson, A. Rabkin, I. Stoica, and M.

Zaharia, “A view of cloud computing,”

Communication of the ACM, vol. 53, no. 4,

pp. 50–58, 2010.

[2] J. Yuan and S. Yu, “Secure and constant

cost public cloud storage auditing with

deduplication,” in IEEE Conference on

Communications and Network Security

(CNS), 2013, pp. 145–153.

[3] S. Halevi, D. Harnik, B. Pinkas, and A.

Shulman-Peleg, “Proofs of ownership in

remote storage systems,” in Proceedings of

the 18th ACM Conference on Computer and

Communications Security. ACM, 2011, pp.

491–500.

[4] S. Keelveedhi, M. Bellare, and T.

Ristenpart, “Dupless: Serveraided

encryption for deduplicated storage,” in

Proceedings of the 22Nd USENIX

Conference on Security, ser. SEC’13.

Washington, D.C.: USENIX Association,

2013, pp. 179–194. [Online]. Available:

https://www.usenix.org/conference/usenixse

curity13/technicalsessions/presentation/bella

re

[5] G. Ateniese, R. Burns, R. Curtmola, J.

Herring, L. Kissner, Z. Peterson, and D.

Song, “Provable data possession at

untrusted stores,” in Proceedings of the 14th

ACM Conference on Computer and

Communications Security, ser. CCS ’07.

New York, NY, USA: ACM, 2007, pp.

598– 609.

[6] G. Ateniese, R. Burns, R. Curtmola, J.

Herring, O. Khan, L. Kissner, Z. Peterson,

and D. Song, “Remote data checking using

provable data possession,” ACM Trans. Inf.

Syst. Secur., vol. 14, no. 1, pp. 12:1–12:34,

2011.

[7] G. Ateniese, R. Di Pietro, L. V. Mancini,

and G. Tsudik, “Scalable and efficient

provable data possession,” in Proceedings

of the 4
th

 International Conference on

Security and Privacy in Communication

Netowrks, ser. SecureComm ’08. New York,

NY, USA: ACM, 2008, pp. 9:1–9:10.

[8] C. Erway, A. K¨upc¸ ¨u, C. Papamanthou,

and R. Tamassia, “Dynamic provable data

possession,” in Proceedings of the 16th

ACM Conference on Computer and

Communications Security, ser. CCS ’09.

New York, NY, USA: ACM, 2009, pp.

213–222.

[9] F. Seb´e, J. Domingo-Ferrer, A. Martinez-

Balleste, Y. Deswarte, and J.-J. Quisquater,

“Efficient remote data possession checking

in critical information infrastructures,” IEEE

Trans. on Knowl. and Data Eng., vol. 20,

no. 8, pp. 1034–1038, 2008.

[10] H. Wang, “Proxy provable data possession

in public clouds,” IEEE Transactions on

Services Computing, vol. 6, no. 4, pp. 551–

559, 2013.

AUTHOR’s PROFILE

Machani Prasanna kumar received B.Tech

Degree from Sri Sai Jyothi

Engineering College in Hyderabad.

He is currently pursuing M.tech

Degree in Software Engineering

specialization in Yerrakota, kurnool,

India.

Mr.GKV Narasimha Reddy received Ph.D from

Annamalai University and received

M.tech degree from Sathyabama

University. He is currently working

as Associate professor, Department

of CSE, in St.Johns College of

engineering and technology,

Kurnool, Andhra Pradesh, India. His interests

include Computer Networks, Operating system,

Data Base Management Systems.

http://www.sathyabamauniversity.ac.in/
http://www.sathyabamauniversity.ac.in/

