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Abstract—Finite Element simulation to characterize the LCF behavior of Sa 333 C-Mn Steel is studied in 

this paper. Experiment and Finite Element simulation are done together. LCF parameters of the material 

are calibrated and tuned from the experimental results. Non linear version of Ziegler kinematic 

hardening material model is used to address the stable hysteresis cycles of the material. Cyclic hardening 

phenomenon is addressed by introducing cyclic hardening in the material model. The elastic plastic FE 

code ABAQUS is used for finite element simulation of LCF behavior. The plastic modulus formulation 

with zeigler kinematic hardening rule and exponential isotropic hardening rule has been used for 

simulation. Using the incremental plasticity theories the cyclic plastic stress-strain responses were 

analyzed and the results obtained from FE simulations have been compared with the experimental results 

at different strain amplitudes. Variation of cyclic yield stress with strain amplitudes has also been studied 

in this paper. 

Keywords- Cyclic hardening, elastic-plastic finite element, incremental plasticity, Kinematic hardening, 

LCF, plastic modulus. 

I. INTRODUCTION 

The material Sa 333 C-Mn steel is used in Indian 

PHWR as primary heat transport (PHT) pipe 

material. The cyclic plastic behavior includes 

symmetric strain controlled low cycle fatigue, cyclic 

hardening/ softening character of the material in 

transition cycles (from virgin state to saturated 

state) and uniaxial ratcheting phenomenon for non-

symmetric stress controlled cyclic loading. Low 

cycle fatigue [1-3] must be considered during 

design of nuclear pressure vessels, steam turbines 

and other type of power machineries where life is 

nominally characterized as a function of the strain 

range and the component fails after a small number 

of cycles at a high stress, and the deformation is 

largely plastic.  Experimental observation shows 

that various cyclic plastic behavior [4-7] of the 

material. Those are i.) Bauschinger effect ii.) Cyclic 

hardening [8]. Above all, there is additional 

hardening due to non proportional loading  path. 

This is generally modeled by using proper evolution 

laws of back stress tensor. A simplest choice is a 

linear kinematic hardening law proposed by Prager 

[9]. Armstrong and Frederick [10] introduced a 

nonlinear law with recall term. Armstrong –

Frederick law is modified by  Chaboche [11], Ohno 

[12] for better matching with experimental results. 

Cyclic hardening of this material is observed during 

strain controlled symmetric tension- compression 

cyclic loading. Hardening stress gets saturated after 

few cycles which depend on the material. Some 

materials exhibits cyclic softening during symmetric 

loading. During first few cycles the rate of 

hardening is relatively high and gradually drops 

down to a constant value. Chaboche [13], Ohno and 

Wang [14], Jiang and Sehitoglu [15],Bari and 

Hassan [16], and many others  researchers 

developed their cyclic plasticity models for 

improving cyclic plastic phenomena of the material. 

The aim of this present work is to characterize the 

cyclic plastic behavior of this material i.e the 

simulation of stable hysteresis loops for different 

strain amplitudes and simulation of cyclic hardening 

with no of cycles for various strain amplitudes. 

Another aim of this work is to study the variation of 

cyclic yield stress with the various strain amplitude. 

II. MATERIAL CHARACTERIZATION 

A. Low cycle fatigue tests 

The material selected for investigation is Sa 333 

Gr.6 Carbon Manganese steel used in primary heat 

transport pipes of Indian in PHWR. Uniaxial cyclic 

experiments are performed at room temperature on 

8mm diameter fatigue specimens, gauge length 

18mm made of Sa 333 Gr.6 Carbon Manganese 

steel(Fig-2.1) under strain controlled (Fig-2.2) 

mode. A 100 KN servo-hydraulic universal testing 

machine (Instron UTM) is used. A 12.5mm gauge 

length extensometer is attached to the specimen to 

measure the strain during the test. The extensometer 

is capable of measuring 20% strain. The strain-

controlled tests are performed on the specimens for 

symmetric tension-compression strain cycles with 

the strain amplitudes ±0.50%, ±0.70%,±0.85%, 

±1.00%, ±1.20%,±1.4% and1.6% for low cycle 

fatigue. During the test triangular wave form is used 

with a constant strain rate of 10-3/s. The frequency 

is adjusted accordingly. The stabilized hysteresis 

loops of -p for various strain amplitudes are 

obtained from the test (Fig-2.3). This plot is used to 
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calculate the kinematic hardening coefficients. The 

kinematic hardening coefficients obtained from the 

experiments are used in FE simulation. Cyclic 

hardening is observed in the experiment as shown in 

Fig-2.4 .The material gets saturated after30 cycles 

and the stabilized loop is obtained for all the cases. 

The variation of cyclic yield stress with strain 

amplitudes is obtained in Fig-2.3. The cyclic yield 

stress yc
is calculated from the linear part of the 

loading branch which is equal to yc2
.Those 

values are listed in Table-2.2. 

TABLE-2.2:VARIATION OF CYCLIC YIELD STRESS 

WITH STRAIN AMPLITUDES 

Strain amplitudes σyc (MPa) 

0.85% 227.5 

1.0% 237.5 

1.2% 245 

1.6% 260 

 

 

Figure 2.1: Uniaxial Fatigue Specimen. 

 

Figure 2.2:Loading history during strain-

controlled test. 

 

Figure 2.3:Stabilized hysteresis plots for 

different strainamplitudes with cyclic 

stressstrain curve. 

 

Figure 2.4:Experimental stress strain response up 

to 30th cycles for 1% strain amplitude   

curve. 

III. FINITE ELEMENT SIMULATION 

3.1 Modeling of cyclic plasticity: 

The cyclic behavior of the material was modeled 

using Von mises yield function, flow rules and the 

nonlinear isotropic-kinematic hardening model and 

consistency condition as follows 

3.1.1 Yield Function: -  

The Von mises yield function is as follows.  

   0
2

3 2   cijijijij SS
...(3.1) 

c
 Current flow stress of matrix material, 

 Sij = deviatoric part of stress tensor, 

ijmijij S  
, 

m
 Mean Stress, 

αij = back stress tensor, also deviatoric in nature. 

3.1.2The Flow Rule: 

The Plastic strain rate, 

p

ij , follows from the flow 

rules as 
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3.1.3 Non linear version of Ziegler’s kinematic 

hardening law: 

The kinematic hardening component is defined to 

be an additive combination of a purely kinematic 

term (linear Ziegler[17] hardening law) and a 

relaxation term (the recall term), which introduces 

the no linearity. When temperature and field 

variable dependencies are omitted, the hardening 

law is  

   


 
pp

c

C 
1

...(3.3) 

Where, and  are material parameters that is 

calibrated from cyclic test data.  is the initial 

kinematic hardening modulus, and  determines 

the rate at which the kinematic hardening modulus 

decreases with increasing plastic deformation. The 

kinematic hardening law can be separated into a 

deviatoric part and a hydrostatic part; only the 

deviatoric part has an effect on the material 

behavior. When and are zero, the model 

reduces to an isotropic hardening model. When is 

zero, the linear Ziegler hardening law is recovered. 

The isotropic hardening behavior of the model 

defines the evolution of the yield surface size, c
 

as a function of the equivalent plastic strain 


p

. 

This evolution can be introduced by specifying c

directly as a function of 


p

.  

For the isotropic hardening rule, Chaboche [18] 

proposed the following equation: 
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where  and  are the isotropic hardening 

material parameters are computed from 

experimental stress–strain loop results of LCF test 

of plain fatigue specimens. Using the initial 

condition
  0

p
R

, on integration of the above 

differential equation, we get 
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Now the simple exponential law is 
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Where, 0


 is the yield stress at zero plastic strain 

and  and are material parameters.   is 

the maximum change in the size of the yield 

surface, and ‘b’ defines the rate at which the size of 

the yield surface changes as plastic straining 

develops. When the equivalent stress defining the 

size of the yield surface remains constant (

0
 

c ), the model reduces to a nonlinear 

kinematic hardening model.  

3.1.4 Consistency condition: 

During plastic deformation stress vector remain on 

the yield surface. This leads to consistency 

equation, =0 

Finally, the elastic–plastic tensor, ijklD
, is 

represented as: 
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Calibration of kinematic hardening coefficient 

forZiegler law for the material Sa 333 C-Mn steel. 

To simulate the saturated loops at different strain 

amplitude the coefficients- C and γ of Ziegler 

kinematic hardening rule are calculated form 

stabilized hysteresis loop plot of -p. Saturated 

hysteresis loop for ±1.6% strain amplitude is used 

for calculating the values of C and γ. Those are 

finally tuned to have a good match with the 

experimental results. Table 3.1 shows the values of 

Ziegler kinematic hardening coefficient C and γ 

along with other mechanical properties of Sa 333 C-

Mn steel. Table 3.2 shows the cyclic hardening 

parameters as used in ABAQUS package. 

TABLE-3.1 KINEMATIC HARDENING COEFFICIENTS 

OF ZIEGLER’S NONLINEAR KINEMATIC HARDENING 

RULE FOR SA 333 C-MN STEEL. 

Young’s 

Modulus(

E) 

(GPa) 

Poisson

’s 

Ratio 

Yield 

Strength(

c0) 

(MPa) 

C 

(MP

a) 

 

200 0.3 275 

3200

0 

21

4 

 

TABLE-3.2 CYCLIC HARDENING  PARAMETERS FOR 

SA 333 C-MN STEEL AS USED IN ABAQUS 

PACKAGE 

C 

(MPa) 

 Q  

(MPa) 

b 

32000 214 18.5 2.5 
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IV. SIMULATION OF STABLE 

HYSTERESIS LOOPS AND CYCLIC 

HARDENING FOR VARIOUS STRAIN 

AMPLITUDE 

Strain controlled tension compression loading is 

implemented on a round bar specimen for 

simulation of stable hysteresis loops and cyclic 

hardening for various strain amplitude. The Ziegler 

isotropic-kinematic hardening laws have been used 

for simulation. The non-linear version of Ziegler 

kinematic hardening rule plugged in elasto-plastic 

finite element FE code ABAQUS. The working 

length of the specimen is discretized with eight 

noded axisymmetric element of mesh size as 

0.2mmX 0.2mm. For symmetry in geometry, 

loading and boundary conditions one quarter of the 

specimen is discretized. Fig.8 shows FE mesh of the 

specimen together with boundary conditions. FE 

computations are done with Von Mises yield 

function(equation 3.1), flow rules and the kinematic 

hardening rules together with the consistency 

condition, as discussed earlier. The axial component 

of stress strain values, calculated at the center node 

of the specimen, is taken as the representative axial 

stress and axial strain values of the specimen. The 

cyclic loading is plastic strain controlled. A 

triangular waveform is used for symmetric cyclic 

load time history. The saturated values of Ziegler 

kinematic hardening coefficients as obtained from 

experimental saturated loop of 1.6% strain 

amplitudes are used to simulate the hysteresis loops 

and peak stress vs. cycles of all the strain 

amplitudes.  

 

Figure 4.1 FE mesh of the specimen with 

boundary condition. 

Fig-4.2 (a,b,c,d) show the simulation results for 

stable hysteresis loop using Ziegler’s  non-linear 

model. Those results are compared with 

experimental stable hysteresis loops (at 30th cycle). 

Ziegler’s coefficients are obtained from 

experimental stable hysteresis loop for 1.6% strain 

amplitudes are used for other strain amplitudes also. 

The cyclic yield stress yc
 is taken as 275MPa for 

all strain amplitudes. For the strain amplitude 

±1.6%, the simulated results closely follow the 

experimental results in the non-linear portion of the 

loading/unloading branch. Still there is some 

mismatch at the elastic plastic knee region. It is 

expected that the prediction from the simulated 

results for ±1.6% strain amplitudes will show better 

match with the experimental values because the 

Ziegler’s kinematic hardening coefficients are 

calibrated from ±1.6% strain amplitude 

experimental values. For other strain amplitudes the 

mismatch in the non-linear part of 

loading/unloading branch is predominant.  

 

Figure 4.2(a) Strain amplitude ± 1.6%. 

 

Figure 4.2(b) Strain amplitude ± 1.2%. 

 

Figure 4.2(c) Strain amplitude ± 1.0% 
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Figure 4.2 (d) Strain amplitude ± 0.85% 

Fig-4.2 (a,b,c,d): Stable stress strain hysteresis loop 

for various strain amplitudes using Ziegler rule 

(ABAQUS results) 

)275( 0 MPa  (Material Sa 333 C-Mn steel). 

Now the size of the yield surface is chosen to be 

different for different strain amplitude. These are 

260(MPa), 245(MPa), 237.5(MPa) and 227.5 (MPa) 

for 1.6% 1.2%,1.0% &0.85% strain 

amplitudes respectively.  It is found that the 

simulated hysteresis loops at saturation (after 30 

cycles) match well with the experimental results for 

the material Sa 333 Carbon Manganese steel.  

Fig 4.3 (a,b,c &d)  show similar results for the 

simulation of stable hysteresis loops for different 

strain amplitudes as obtained by using the Ziegler 

model with isotropic hardening in ABAQUS FE 

package. Here also the saturated loops are obtained 

after cycling of 30 cycles.   

  

Fig 4.4(a,b,c &d)  represent the simulated peak 

stress vs cycles as  obtained by using Ziegler 

kinematic hardening model together with isotropic 

hardening. It is seen that the matching is satisfactory 

in engineering sense. 

 

Figure 4.3(a) Strain amplitude ±1.6%. 

 

Figure 4.3 (b) Strain amplitude ± 1.2%. 

 

Figure 4.3(c) Strain amplitude ± 1.0%. 

 

Figure 4.3 (d) Strain amplitude ±0.85%. 

Fig-4.3 (a, b, c & d): Saturated stress – strain 

hysteresis loop for different strain amplitudes using 

Ziegler rule with isotropic hardening (ABAQUS 

results). 

 

Figure 4.4 (a) Strain amplitude ± 1.6%. 
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Figure 4.4 (b) Strain amplitude ± 1.2%. 

 

Figure 4.4 (c) Strain amplitude ± 1.0%. 

 

Figure 4.4 (d) Strain amplitude ± 0.85%. 

Fig-4.4 (a, b, c & d): Variation of peak stress with 

no of cycles for different strain amplitudes using 

Ziegler KH rule with isotropic hardening 

(ABAQUS results). 

V. DISCUSSION & CONCLUSIONS 

The present work is an attempt for verifying the 

cyclic yield stress that depends on strain amplitude 

and corresponding FE simulation of LCF behavior 

of Sa 333 C-Mn steel. The size of the yield surface 

has been chosen as 260(MPa), 245(MPa), 

237.5(MPa) and 227.5 (MPa) for 1.6% 

1.2%,1.0% &0.85% strain amplitudes 

respectively. The simulated hysteresis loops at 

saturation match well with the experimental results 

for 1.6% 1.2%,1.0% &0.85% strain 

amplitudes respectively as shown in the above 

Figure. Comparison between simulated and 

experimental loop is satisfactory in engineering 

sense. But there is some mismatch at the elasticity 

plastic knee region. This is because of using 

ziegler’s single segmented non linear kinematic 

hardening law which has the same deficiency as the 

single segmented Armstrong Frederick law, 

however results can be improved by using 

Chaboches 3 segmented non linear kinematic 

hardening model.  The next attempt of this study is 

to simulate peak stress value with no. of cycles for 

various strains amplitudes with varying yield stress 

i.e . 260(MPa), 245(MPa), 237.5(MPa) and 227.5 

(MPa) for 1.6% 1.2%,1.0% &0.85% strain 

amplitudes respectively. It is seen that the matching 

is satisfactory in engineering sense. 
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