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Abstract: Analysis of human behavior through visual information is a highly active research topic in the 

computer vision community. This analysis is achieved in the literature via images from the conventional 

cameras; however recently depth sensors are used to obtain new type of images known as depth images. 

This human motion analysis can be widely applied to various domains, such as security surveillance in 

public spaces, shopping centers and airports. Home care for elderly people and children can use live video 

streaming from an integrated home monitoring system to prompt timely assistance. Moreover, automatic 

human motion analysis can be used in Human–Computer/Robot Interaction (HCI/HRI), video retrieval, 

virtual reality, computer gaming and many other fields. Human motion analysis using a depth sensor is 

still a new research area. Most work is focused on motion capture of articulated body skeletons. However, 

the research community is showing interest in higher level action related research. This report explains the 

advantages of depth imagery and then describes the new categories of depth sensors such as Microsoft 

Kinect that are available to obtain depth images. High-resolution real-time depth images are cheaply 

available because of tools like Microsoft Kinect. The main published research on the use of depth imagery 

for analyzing human activity is reviewed. A growing research area is the recognition of human actions and 

hence the existing work focuses mainly on body part detection and pose estimation. The publicly available 

datasets that include depth imagery are listed in this report, and also the software libraries that are 

available for the depth sensors are explained.  With the development of depth sensors, an increasing 

number of algorithms have employed depth data in vision-based human action recognition. The increasing 

availability of depth sensors is broadening the scope for future research. This reports provides an overview 

of this emerging field followed by various vision based algorithms used for human motion analysis. 

I. INTRODUCTION TO HUMAN MOTION 

ANALYSIS 

Human motion analysis has been a highly active 

research area in computer visions, whose goal is to 

automatically segment, capture and recognize 

human motion in real time, and perhaps predict 

ongoing human activities. Home care for elderly 

people and children could use live video streaming 

from an integrated home monitoring system to 

prompt timely assistance. If machines could 

automatically interpret the activities people perform 

in everyday life, many tasks would be 

revolutionized. For example, automatic human 

motion analysis can be used in Human–

Computer/Robot Interaction (HCI/HRI), video 

retrieval, virtual reality, computer gaming and many 

other fields. It can also be applied to various 

domains, such as security surveillance in public 

spaces, including shopping centers and airports 

II. RESEARCH LITERATURE STUDY 

Various systems use depth information this way to 

extract the scene foreground (Grammalidis et al., 

2001[13]; Schwarz et al., 2011[8], 2012[23]; Van 

and Van (2011) [1]; Schwarz et al. (2012) [2]; 

Jansen et al. (2007) [3]; Guomundsson et al. (2008) 

[4]) built a freehand interactive surface system 

called DepthTouch to track hand gestures using a 

ZSense depth camera and chose a simple 3D region 

of interest to segment a user’s hands. There has not 

been much published work on the issue of holes in 

depth images. This is because until recently most 

work used a ToF camera.  Zhang and Parker (2011) 

[5] use Kinect, and mention a hole filling process 

performed along with noise reduction, although they 

do not give precise details. To model a 3D human 

body, first the body parts must be found. These may 

include the head, torso, arms, hands, legs and feet. 

Several methods have been presented for finding 

human body parts from depth imagery (Plagemann 

et al., 2010 [6]; Siddiqui and Medioni, 2010 [7]; 

Kalogerakis et al., 2010[10]; Holt et al., 2011[14]; 

Shotton et al., 2012 [12]; Anguelov et al. (2005) [9]; 

Zhu and Fujimura (2007) [11]; Schwarz et al. (2011) 

[8]). Space-time approaches treat each action video 

as a 3D volume along spatial (x; y) and temporal (t) 

axes. The video can be processed either as a whole 

(Holte and Moeslund, 2007 [24]; Roh et al., 2010 

[25]; Ni et al., 2011 [26]; Wu et al., 2012 [27]), or as 

collection of local feature points (Li et al., 2010 

[29]; Zhang and Parker, 2011 [5]; Ni et al., 

2011[26]; Malgireddy et al., 2012[30]). Generally, 

these approaches are suitable for simple actions such 

as walking, running, jumping and waving. Depth 

images viewed as a function of time (Wang et al. 

(2012) [31]; Jansen et al. (2007) [3]; Chen et al.  

(2011) [32]; Reyes et al. (2011) [33]; Sempena et 
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al., 2011 [34]; Sung et al. (2012) [35]; Xia et al.  

(2012) [36]; Wang et al. (2012) [37]; Shotton et al. 

(2012) [12]) can be used to analyse the human 

motion. There are three types of sensors discussed in 

this section namely stereo cameras, ToF cameras 

and Structured light sensors. Apart from these there 

are many sensors that can capture range data. For 

instance, a 3D body scanner from Cyberware and 

the Minolta 3D scanner which has been used for the 

face recognition. 

Stereo Cameras 

Stereo machine vision is biomimetic: it is inspired 

by human vision. Stereo cameras have been made 

into products especially for research use, such as the 

Bumblebee series from Point Grey Research. It 

infers the 3D structure of a scene from two (or 

more) images from different viewpoints, as is the 

case for human stereo vision. Depth map acquisition 

from stereo vision is an important computer vision 

research field dating back to the 1960s.  Stereo 

intensity images are sensitive to light changes, 

which increases difficulties with correspondence 

matching for triangulation. Due to the complexities 

of stereo geometry calculation, reconstruction of a 

depth map from stereo images still remains a 

challenge. These issues make the depth map 

reconstruction from stereo vision still impractical 

for real-time real-world applications. 

Time-of-Flight Cameras 

Human stereo vision works well, however this does 

not mean machines must view the world as humans 

do. To make a robust method, different sensing 

technologies may be adopted. In contrast with stereo 

vision, a time-of-flight (ToF) camera estimates 

distance to an object surface using active light 

pulses from a single camera, whose time to reflect 

from the object, together with the speed of light, 

give the distance. Compared with other laser 3D 

scanning devices, ToF cameras are cheaper and 

smaller. Most current commercial devices use a 

sinusoidally modulated infrared light signal, and 

distance is estimated using the phase shift of the 

reflected signal on a standard CMOS or CCD 

detector. The resolution of the depth image is 

currently between 64 48 and 200 200 pixels, and the 

range varies from 5m to 10m. Because their distance 

calculation is computationally simple, ToF cameras 

can achieve high frame rates, which make them 

suitable for real-time applications.  The main 

advantages of ToF cameras are their high speed, and 

their dense depth map that covers every pixel. The 

major practical drawback is their high price 

although they are still cheaper than some other 3D 

scanning devices. The major technical drawback is 

the low resolution. 

 

 

Structured Light Sensors 

Microsoft released an imaging device called Kinect, 

4 which is priced at a consumer level for domestic 

use. Kinect consists of an RGB camera and a depth 

sensor. The depth sensor provides images at640 480 

pixels and 30 frames per second. The range is 

around 0.8– 3.5 m, with a resolution of about 1 cm. 

Kinect computes depth from structured light, which 

is a topic that has been studied since the 1970s. The 

idea is based on stereo vision. One camera is 

replaced by a light source that projects a known 

pattern, hence the light is structured. The Kinect 

depth sensor consists of an infrared projector and 

infrared CMOS sensor. An irregular pattern of dots 

is projected onto the scene, and the depth 

measurement is based on triangulation. The 

advantage of structured light devices over ToF 

devices is that they are much cheaper. This makes 

them suitable for everyday applications. A major 

issue with structured light is that the depth images 

have holes because some areas cannot be seen by 

both the projector and the camera. ToF cameras do 

not have this problem. 

Sensing Summary and Comparison 

The ranges of ToF and structuredlight sensors are 

limited by the distance to which the light can 

penetrate and be reflected back because they are 

active vision systems. The range of stereo cameras 

is only limited by how the baseline is set, and the 

ambient light in the scene. Stereo cameras and 

structured light have holes in the depth images 

because some locations are not visible to both 

cameras. Because ToF cameras have a single 

viewpoint there will be no holes in the images. 

Table compares three types of depth sensors. Apart 

from these three types of sensors, there are other 

sensors that can capture range data. For instance, a 

3D body scanner from Cyberware. In recent years, 

large advances have made depth cameras cheap and 

readily available for research and domestic use. This 

has caused a change in the research community, 

which is now developing new directions of research 

on imagery from ToF cameras and Kinect. In 

particular, Kinect has opened new possibilities in 

human motion analysis. 

Table - Comparison of Depth Sensors 

Sensor 

type 

Stereo 

cameras 

Time of 

flight 

Structured 

light 

Resolution 

High: 640   

480 or 

more 

Low: 64   

48 to 200   

200 

High: 640   

480 

Speed Slow Fast Fast 

Range 

Only 

limited by 

baseline 

Varies 

from 5 m 

to 10 m 

(indoors 

0.8 – 3.5 m 

(typically 

indoors) 
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or 

outdoors) 

Depth 

resolution 

Depends 

on camera 

baseline 

and 

resolution 

Less than 

5 mm 

Less than 1 

cm 

Field of 

views 

Not 

limited; 

Depends 

on camera 

lenses 

Approx. 

43L(v), 

69L(h) 

43L(v), 

57L(h) 

Holes in 

depth map Yes No Yes 

Price Cheap Expensive Cheap 

Sensitive 

to lighting Yes No No 

Body Part Detection 

Siddiqui and Medioni (2010) [7] built different 

detectors for head, forearm and hand with kinematic 

constraints.  Segmentation and labelling of objects 

from 2D or 3D data is an important research area in 

computer vision. Most work does not aim especially 

at segmenting human body parts, however a few 

projects have demonstrated articulated human body 

segmentation.  Anguelov et al. (2005) [9] used 

Markov Random Fields (MRFs) to segment 

articulated wooden puppets into head, limbs, torso 

and background, from a set of depth images. They 

apply their approach to many types of objects, not 

just human bodies. Similarly Kalogerakis et al. 

(2010) [10] used a datadriven Conditional Random 

Field (CRF) model to segment and label object parts 

from a closed 3D mesh. They showed that a human 

body mesh can be segmented into eight parts.  Zhu 

and Fujimura (2007) [11] use handengineered 

heuristics for coarse upper body part labelling based 

on depth constraints, color constraints, and 

coherence between successive frames. This is used 

as the first step of upper body pose estimation.  

Body Pose Modelling 

Some early work with depth images fitted a body 

model directly to the image.  Grammalidis et al. 

(2001) [13] proposed an iterative approach to 

estimate MPEG-4 Body Animation Parameters 

(BAPs) of an arm by minimizing the error between 

synthetic and real depth images. Downhill simplex 

minimization was used for iterative minimization, 

which is sensitive to local minima, and requires a 

good initial guess of the BAPs.  Shotton et al. 

(2012) [12] proposed a skeleton model where the 

joints are fitted to previously labelled body parts 

using mean shift. Their system is based on depth 

pixels rather than converting to a 3D point cloud.  

Holt et al. (2011) [14] proposed an approach for 

static upper body pose estimation through ‘poselet’ 

detection and classification, which does not track 

the pose. They also used a randomized decision 

forest for the classification task. They claim their 

approach does not require a large amount of training 

data.  Charlesand Everingham (2011) [15] inferred 

an articulated 2D human pose from a body 

silhouette extracted from a single depth image using 

a Pictorial Structure Model (PSM). The main 

contribution is that, instead of a conventional 

rectangular limb model, they model each limb with 

a mixture of probabilistic shape templates, which 

showed a promising improvement accuracy. 

Zhu and Fujimura (2007) [11] proposed a method 

for human upperbody (hand, torso and arms) pose 

estimation and tracking from ToF depth sequences. 

They first label the upper body parts then fit a 3D 

body model by inverse kinematics constraints using 

ICP on each body part. A T-pose initialization is 

required to scale the skeleton model. ICP is a 

popular algorithm for fitting a model to a 3D point 

cloud, but a major drawback is the need for a good 

initial position and it is difficult to recover from a 

tracking failure. Other methods have also been used.  

Siddiqui and Medioni (2010) [7] model a 3D body 

with fixedwidth cylinders based on relative distance 

and anglesbetween body parts. The main 

contribution of their work is applying a datadriven 

Markov Chain Monte Carlo (MCMC) approach, 

comparing it with an ICP-based approach, and 

demonstrating their MCMC approach outperforms 

ICP. Their method does not require a large training 

dataset, however, it is sensitive to fast motion and 

occlusions.  Pellegrini and Iocchi (2008) [19] built a 

3D body model composed of two sections: a head-

torso block and a leg block with three principle 

joints: head, pelvis, and the legs’ contact with the 

floor. Their model does not contain arms. Pose is 

estimated using the five angles between different 

parts. This system is limited to observation of very 

simple human movement without details, from 

sources like surveillance imagery.  Zhu et al. (2008) 

[20] proposed another method based on their 

previous work (Zhu and Fujimura, 2007 [11]). They 

built a key point detector to define anatomical 

landmarks for a human upper body. This also 

requires an open-arm pose for initialization.  Zhu 

and Fujimura (2010) [21] further extend their work 

to full-body motion tracking. They addressed 

robustness of continually tracking body parts 

through self-occlusion, which sometimes caused 

failure of their previous method.  Schwarz et al. 

(2010, 2012) [22] [23] estimate a coarse full-body 

model from a 3D point cloud. They first find the 

centroid of the body and the external bounding 

points. Poses are represented simply by a list of the 

vectors between these points. Accuracy comes 

mostly from the priors on body postures. 
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Space-time Approaches 

Some previous work on intensity images has 

successfully represented an action as a 3D shape in 

space-time. A template matching method can be 

applied to find the nearest action. An example of 

this is the movement of a single person’s silhouette 

stacked over time, as in the Motion History Image 

(MHI). The recognition is done by estimating the 

similarity of the captured volume to previously 

labelled volumes. Such approaches may require 

human body shape extraction, such as a body 

silhouette. In intensity images this is still a 

challenging task, but in depth images foreground 

can be easily extracted.  Holte and Moeslund (2007) 

[24] proposed a basic approach to recognize one and 

two-arm gestures. They use double difference range 

images to detect the movements. Each arm gesture 

is modelled using shape contexts based on a 

spherical histogram centered on the upper body. For 

each gesture, start and end points must be given. (Ni 

et al., 2011) [26] extended MHIs to create 3D-MHIs 

by adding two more channels: forward motion 

history (fDMHI) and backward motion history 

(bDMHI) calculated by thresholding depth changes. 

They tested the approach on their dataset 

(HuDaAct) and results showed an improvement of 

nearly 30% recognition accuracy compared with the 

original MHI approach.  Wu et al. (2012) [27] also 

extended MHIs (Extended-MHI) by combining two 

more elements: gait energy information (GEI) and 

inversed recording (INV), which are designed to 

handle the poor performance of the original MHIs 

at representing repetitive actions and to recover the 

loss of the initial frames’ action information, 

respectively. The 3D depthinformation is not used 

explicitly, but only as an intensity image would be. 

Ni et al. (2011) [26] evaluated the extension of 2D 

spatio-temporal features to 3D space by adding 

depth information for action recognition. They 

simply divide the depth range into multiple bins, and 

create a code word histogram for each bin using 

Histogram of Orientated Gradient 

(HOG)/Histogram of Optical Flow (HOF). 

Obviously, their method is not invariant to 

translation along the z axis, however, it obtained 

good results for the dataset on which it was tested, 

where each action occurs in the same spatial region. 

They compared performance with a conventional 

approach using spatio-temporal bag of local 

features, and the results showed a small 

improvement in recognition accuracy. 

Tracking Based Approaches 

Current space-time approaches can recognize simple 

human actions by image appearance, but they 

cannot handle complex activities. Since the 

emergence of depth sensors, 3D human body part 

tracking has become feasible for highlevel 

recognition tasks. In particular, the middleware for 

Kinect has provided robust human skeleton tracking. 

Recently, several approaches have built on this. The 

advantage is that more complex human actions can 

be modelled, higherlevel algorithms can be based on 

the skeleton data. Actions may involve interactions 

with other humans or objects, although this may rely 

heavily on robust object labelling, detection or 

tracking. Algorithms such as layered Hidden 

Markov Models (HMMs), Convolutional Neural 

Networks (CNNs), Conditional Random Fields 

(CRFs), Allen’s Interval Algebra (IA), Probabilistic 

Petri Nets (PPN), and Dynamic Time Warping 

(DTW) can be applied for tracking based systems. 

The scene captured from a depth camera can be 

combined with known 3D positions in the 

environment. For long term indoor monitoring the 

environment can be defined, then the 3D position of 

a person used in activity recognition.  Jansen et al. 

(2007) [3] use a simple distance constraint on the 

height of a person’s silhouette to recognize if the 

person is standing, sitting or lying. They claim the 

system is useful for elderly people’s home care. This 

is early work with very basic use of depth 

constraints to detect a person’s state.  Chen et al.  

(2011) [32] address home monitoring using depth 

sensors, by aiming to recognize domestic activities 

such as drinking. Their approach uses distance 

between body parts and objects over time, and 

models each activity via spatio-temporal reasoning 

using Allen’s Interval Algebra (IA). This approach 

could be extended to recognize higher level 

activities by adding more complex algebraic 

expressions.  Reyes et al. (2011) [33] represent a 

human model using a feature vector defined by 15 

joints on a 3D human skeleton model. The model is 

obtained using the Primesense human skeleton API. 

They use Dynamic Time Warping (DTW) with 

automatic feature weighing on each joint to achieve 

real-time action recognition. Similarly, (Sempena et 

al., 2011 [34]) also used the Prime Sense API with 

DTW. The skeleton joints are represented using 

quaternions to form a 60element feature vector for 

15 joints in total. Sung et al. (2012) [35] proposed a 

twolayered Maximum Entropy Markov Model 

(MEMM) to recognize domestic single person 

activity. The activity is modelled in each frame 

using a 459element feature vector from various 

body joints obtained from the Prime sense API. 

They claim their hierarchical MEMM has an 

advantage because a single state may connect to 

different parents for only a specified period of time, 

which would not be feasible in a Hierarchical 

Hidden Markov Model (HHMM). They tested on 

twelve activities and achieved an average 

recognition accuracy of 64.2%.  Xia et al.  (2012) 

[36] proposed a histogram technique on 3D joint 

locations (HOJ3D) using modified spherical 

coordinates. HMMs are applied for the classification 

task. The main advantage is real-time performance.  

Wang et al. (2012) [37] obtained and tracked 20 

body joints using the method from Shotton et al. 
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(2012) [12]. They used Fourier Temporal Pyramid 

(FTP) to model the temporal patterns of the joint 

feature vectors. Their main contribution is an 

Actionlet Ensemble (AE) model that can handle 

errors of the skeleton tracking and better 

characterize the intra-class variations. Theytested on 

the MSR-Action3D dataset (Li et al., 2010 [29]), 

achieving 88.2% recognition accuracy. 

III. CONCLUSIONS 

With the development of depth sensors, and 

especially the emergence of Microsoft Kinect, an 

increasing number of algorithms have employed 

depth data in vision based human action recognition. 

Computer vision researchers are exploring an 

extended research field with many potential 

applications.  Preprocessing for depth images is 

described, as it has not been adequately addressed 

before. The comprehensive review addresses 

articulated 3D body modelling for human pose 

estimation and human action recognition. Datasets 

and open libraries used for development of these 

algorithms are listed.  There has been much research 

in building algorithms on intensity imagery. Depth 

imagery may be processed with the same 

algorithms, as in some of the previous work (such as 

local feature detection), but would ideally have 

modified or new algorithms to suit its particular 

properties. These algorithms will be developed over 

time, as will techniques to combine intensity and 

depth imagery, using their advantages to 

complement each other and achieve better and more 

robust solutions. One big challenge for improving 

human action recognition is the lack of large and 

realistic action datasets, with wide ranges of human 

body shape, diversity of body movements and 

ground truth labels. Significant work has already 

been conducted on pose estimation from depth data. 

Higher resolution body part modelling including 

finger details still needs further exploration, to 

enable subtle hand gesture recognition and 

interaction tasks. A promising direction for future 

work is development of more sophisticated 

highlevel activity recognition, which should allow 

processing of interaction with objects and other 

people, and group activity. The most appropriate 

machine learning techniques should be chosen to 

allow this new depth imagery to be fully exploited 

in under-standing human behavior. 
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