
 Soujanya.M* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.4, Issue No.1, December - January 2016, 2735 – 2740.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 2735

A Study on Smart City IoT Platform with

Micro Service Architecture
SOUJANYA. M

M. Tech - Student

Computer Science and Engineering,

R V College of Engineering,

Bangalore, Karnataka, India

Abstract: A smart city uses information and communication technologies (ICT) to enhance quality,

performance and interactivity of urban services, to reduce costs and resource consumption and to

improve contact between citizens and government. Sectors that have been developing smart city

technology include government services, transport and traffic management, energy, health care, water

and waste. Smart city applications are developed with the goal of improving the management of urban

flows and allowing for real time responses to challenges. A smart city may therefore be more prepared to

respond to challenges than one with a simple 'transactional' relationship with its citizens.

Key words: Cyberville, Digital City, Electronic Communities, Flexicity

I. INTRODUCTION

Major technological, economic and environmental

changes have generated interest in smart cities,

including climate change, economic restructuring,

and the move to online retail and entertainment,

ageing populations, and pressures on public

finances. The European Union (EU) has devoted

constant efforts to devising a strategy for achieving

'smart' urban growth for its metropolitan city-

regions. The EU has developed a range of

programmes under ‘Europe’s Digital Agenda". In

2010, it highlighted its focus on strengthening

innovation and investment in ICT services for the

purpose of improving public services and quality of

life. Arup estimates that the global market for smart

urban services will be $400 billion per annum by

2020.Examples of Smart City technologies and

programs have been implemented in Milton

Keynes, Southampton, Amsterdam, Barcelona and

Stockholm. It has been suggested that a smart city

(also community, Business cluster, urban

agglomeration or region) use information

technologies to: 1. Make more efficient use of

physical infrastructure (roads, built environment

and other physical assets) through artificial

intelligence and data analytics to support a strong

and healthy economic, social, cultural

development. 2. Engage effectively with local

people in local governance and decision by use

of open innovation processes and e-

participation, improving the collective intelligence

of the city’s institutions through E-

Governance, with emphasis placed on citizen

participation and co-design. 3. Learn, adapt and

innovate and thereby respond more effectively and

promptly to changing circumstances by improving

the intelligence of the city. They evolve towards a

strong integration of all dimensions of human

intelligence, collective intelligence, and

also artificial intelligence within the city. The

intelligence of cities "resides in the increasingly

effective combination of digital telecommunication

networks (the nerves), ubiquitously embedded

intelligence (the brains), sensors and tags (the

sensory organs), and software (the knowledge and

cognitive competence)". This is implemented

through: A common IP infrastructure that is open to

researchers to develop applications.; Wireless

meters and devices transmit information at the

point in time.; A number of homes being provided

with smart energy meters to become aware of

energy consumption and reduce energy usage;

Solar power garbage compactors, car recharging

stations and energy saving lamps.

II. RELATED RESEARCH WORK

Several ongoing research and industry efforts are

aiming at developing standards and best practices

for designing Internet of Things systems and

platforms. Due to the great diversity of IoT

application domains, there is a high demand in the

correspondingly diverse standards capturing the

requirements of individual applications at different

layers of the protocol stack. In the recent years, a

number of standards for the physical, network, and

transport layers, as well as security mechanisms

tailored to resource-constrained IoT devices have

been introduced. The recently standardized CoAP

[1] and MQTT[2] protocols together with HTTP

finalize the protocol stack by building an

application layer. Several industrial alliances and

research projects are working on integrating these

and new standards in different application domains,

enabling interoperability among hardware and

software vendors, and defining best practices for

building large-scale IoT platforms and applications.

The Constrained Application Protocol (CoAP) is a

specialized web transfer protocol for use with

constrained nodes and constrained (e.g., low-

power, lossy) networks. The nodes often have 8-bit

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Innovative Technology and Research (IJITR)

https://core.ac.uk/display/228547568?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://en.wikipedia.org/wiki/Urban_agglomeration
https://en.wikipedia.org/wiki/Urban_agglomeration

 Soujanya.M* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.4, Issue No.1, December - January 2016, 2735 – 2740.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 2736

microcontrollers with small amounts of ROM and

RAM, while constrained networks such as IPv6

over Low-Power Wireless Personal Area

Networks(6LoWPANs) often have high packet

error rates and a typical throughput of 10s of kbit/s.

The protocol is designed for machine-to-machine

(M2M) applications such as smart energy and

building automation. CoAP provides a

request/response interaction model between

application endpoints, supports built-in discovery

of services and resources, and includes key

concepts of the Web such as URIs and Internet

media types. CoAP is designed to easily interface

with HTTP for integration with the Web while

meeting specialized requirement such as multicast

support, very low overhead, and simplicity for

constrained environments. MQTT stands for MQ

Telemetry Transport. It is publish/subscribe,

extremely simple and lightweight messaging

protocol, designed for constrained devices and low-

bandwidth, high-latency or unreliable networks.

The design principles are to minimise network

bandwidth and device resource requirements whilst

also attempting to ensure reliability and some

degree of assurance of delivery. These principles

also turn out to make the protocol ideal of the

emerging “machine-to-machine” (M2M) or

“Internet of Things” world of connected devices,

and for mobile applications where bandwidth and

battery power are at a premium. This is a product

from IBM which implements the MQTT protocol

in a very scalable manner and which interoperates

directly with the Web Sphere MQ family of

products. There are other implementations of

MQTT listed on the Software page.

OneM2M and different application domains

The efforts focusing on interoperability across

different application domains include IoT-A [4],

OneM2M [3], and FI-WARE [11]. IoT-A is a

research project developing an Architectural

Reference Model for IoT solutions. It promotes

common understanding of the problem space by

providing an IoT Reference Model, describes

essential building blocks of an IoT solution by

defining a Reference Architecture, and guides

architects in designing IoT solutions by providing

Guidelines. It does not cover implementation

aspects or define new interoperability standards,

instead providing a conceptual framework and best

practices for designing IoT solutions supporting

interoperability. OneM2M [3] is a global telecom

initiative for interoperability of M2M (Machine-to-

Machine) and IoT devices and applications. Its

main goal is to develop a common specification of

a Service Layer Platform that builds on the existing

IoT and Web standards, defining specifications of

protocols and service APIs. The purpose and goal

of oneM2M is to develop technical specifications

which address the need for a common M2M

Service Layer that can be readily embedded within

various hardware and software, and relied upon to

connect the myriad of devices in the field with

M2M application servers worldwide.

Technical Specifications and Technical Reports

 Use cases and requirements for a common set

of Service Layer capabilities;

 Service Layer aspects with high level and

detailed service architecture, in light of an

access independent view of end-to-end services;

 Protocols/APIs/standard objects based on this

architecture (open interfaces & protocols);

 Security and privacy aspects (authentication,

encryption, integrity verification);

 Reachability and discovery of applications;

 Interoperability, including test and conformance

specifications;

 Collection of data for charging records (to be

used for billing and statistical purposes);

 Identification and naming of devices and

applications;

 Information models and data management

(including store and subscribe/notify

functionality);

 Management aspects (including remote

management of entities); and

 Common use cases, terminal/module aspects,

including Service Layer interfaces/APIs

between:

o Application and Service Layers;

o Service Layer and communication

functions

FI-WARE – ongoing project

FI-WARE [11] is a research project aiming at

building a platform for the Future Internet that

would provide a novel service infrastructure built

of reusable components (Generic Enablers). The

vision is that to build an IoT service platform for

the application domain at hand, one would select

existing Generic Enablers from the FI-WARE

catalog and complement them by implementing

additional Specific Enablers. FI-WARE is an

ongoing project and many of the Generic Enablers

constituting the core platform are under

development. Several systems for specific use

cases have been developed by the partners of the

FI-WARE project so far [12], [13], and it remains

to be seen whether it will receive adoption in the

wider community. In [14], authors show that the

level of generalization provided by the FI-WARE

platform may lead to overly complex architecture

 Soujanya.M* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.4, Issue No.1, December - January 2016, 2735 – 2740.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 2737

in simple applications. The FIWARE platform

provides a rather simple yet powerful set of APIs

(Application Programming Interfaces) that ease the

development of Smart Applications in multiple

vertical sectors. The specifications of these APIs

public and royalty-free. Besides, an open source

reference implementation of each of the FIWARE

components is publicly available so that multiple

FIWARE providers can emerge faster in the market

with a low-cost proposition. FIWARE Lab is a

non-commercial sandbox environment where

innovation and experimentation based on FIWARE

technologies take place. Entrepreneurs and

individuals can test the technology as well as their

applications on FIWARE Lab, exploiting Open

Data published by cities and other organizations.

FIWARE Lab is deployed over a geographically

distributed network of federated nodes leveraging

on a wide range of experimental infrastructures.

The FIWARE Acceleration Programme aims at

promoting the take up of FIWARE technologies

among solution integrators and application

developers, with special focus on SMEs and start-

ups. Linked to this program, the EU launched an

ambitious campaign in September 2014 mobilizing

80M€ to support SMEs and entrepreneurs who will

develop innovative applications based on

FIWARE. Similar programmes may be defined in

other regions. Although it was born in Europe,

FIWARE has been designed with a global

ambition, so that benefits can spread to other

regions. The FIWARE Mundus programme is

designed to bring coverage to this effort engaging

local ICT players and domain stakeholders, and

eventually liaising with local governments in

different parts of the world, including Latin

American, Africa and Asia. Think globally but act

locally is a distinguishing mark of the FIWARE

ecosystem. The network of FIWARE iHubs will

play a fundamental role in building the community

of adopters as well as contributors at local level.

The FIWARE iHubs Programme aims at

supporting the creation and the operations of iHubs

nodes worldwide. The experience shared in [14]

highlights one of the main problems inherent to

standardization efforts similar to FIWARE that

result in a high level of generalization. The

experience of the Web and the success of

distributed systems built using its basic principles

[15] encourages simple standards and flexibility in

their implementation. Using Web standards and

experience is recognized as a common approach to

building IoT platforms. E.g., the urban IoT system

described in [16] is built using RESTful Web

services approach to design the service platform

part of the system. Successfully applying this

approach to designing an interoperable Smart City

platform, authors highlight its benefits in enabling

cross-domain applications while reusing the

existing development experience of the Web. The

Web-based approach is also recommended by the

IoT-A and has been successfully adopted in other

projects to build Smart City platforms, e.g.,

SmartSantander1 and ALMANAC2.

Microservice Architecture

One of the recent trends in the practices of building

distributed Web applications is micro service

architecture. Emerged as a pattern from the real-

world experience of building distributed

applications, it does not have a formal definition.

Informally, it can be defined as an approach to

developing a single application as a suite of small

services, each running in its own process and

communicating with lightweight mechanisms [8].

These services are small, highly decoupled and

focus on doing a small task [18]. Although our

natural inclination is to pass such things by with a

contemptuous glance, this bit of terminology

describes a style of software systems that we are

finding more and more appealing. We've seen

many projects use this style in the last few years,

and results so far have been positive, so much so

that for many of our colleagues this is becoming

the default style for building enterprise

applications. Sadly, however, there's not much

information that outlines what the micro service

style is and how to do it. In short, the micro service

architectural style is an approach to developing a

single application as a suite of small services, each

running in its own process and communicating with

lightweight mechanisms, often an HTTP resource

API. These services are built around business

capabilities and independently deployable by fully

automated deployment machinery. There is a bare

minimum of centralized management of these

services, which may be written in different

programming languages and use different data

storage technologies. To start explaining the micro

service style it's useful to compare it to the

monolithic style: a monolithic application built as a

single unit. Enterprise Applications are often built

in three main parts: a client-side user interface

(consisting of HTML pages and JavaScript running

in a browser on the user's machine) a database

(consisting of many tables inserted into a common,

and usually relational, database management

system), and a server-side application. The server-

side application will handle HTTP requests,

execute domain logic, retrieve and update data

from the database, and select and populate HTML

views to be sent to the browser. This server-side

application is a monolith - a single logical

executable. Any changes to the system involve

building and deploying a new version of the server-

side application. Such a monolithic server is a

natural way to approach building such a system.

All your logic for handling a request runs in a

single process, allowing you to use the basic

features of your language to divide up the

 Soujanya.M* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.4, Issue No.1, December - January 2016, 2735 – 2740.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 2738

application into classes, functions, and namespaces.

With some care, you can run and test the

application on a developer's laptop, and use a

deployment pipeline to ensure that changes are

properly tested and deployed into production. You

can horizontally scale the monolith by running

many instances behind a load-balancer. Services

are the building blocks comprising the systems

built with micro service architecture. They define

the main characteristics and competitive

advantages of these systems, as well as differentiate

this architectural approach from others falling

under the Service Oriented Architecture (SOA)

umbrella. The key characteristics of the micro

service architecture relevant in the context of this

work are described below.

Componentization via Services

Componentization or modularity are considered as

a generally good practice in software engineering,

yet achieving it often deems challenging. With

micro service architecture, componentization is

achieved via breaking systems down into services,

which are independently replaceable, upgradeable,

and deployable. Instead of using in-memory

function calls, components in micro service

architecture are interacting via service interfaces,

which puts restrictions on introducing undesirable

tight coupling between components and leaking of

functionality from one component into another.

Organization around Business Capabilities

 Organization is known to have a significant impact

on the systems design [19], and organizations

employing micro service architecture tend to

practice similar organization of technical teams.

More specifically, micro service architecture

motivates organization around business capabilities

instead of the traditional way of building teams

based on the technology layers. This results in

cross-functional teams, where each team has the

full range of skills required for a specific business

area and prevents the “logic everywhere” siloed

architectures [8].

Smart endpoints and dump pipes

Micro services commonly used lightweight

communication protocols to exchange messages

with services keeping their domain logic internal.

Compared to the Enterprise Service Bus (ESB) and

similar approaches where the communication

mechanism provides sophisticated functionality for

message transformation and choreography, micro

services use the communication medium to barely

exchange messages. Whether it is HTTP request

response or a lightweight message bus for

asynchronous communication with routing, the

business logic in micro service architecture always

remains in the endpoints – the services.

Decentralized Governance

Because micro service architecture relies on

independently deployable components, the

centralized governance of standards and technology

platforms can be relaxed. Each service in a system

built with micro service architecture can use its

own technology that is most suitable for the job.

This flexibility in the choice of implementation

technology provides the benefits of choosing the

best tools and platforms considering their trade-

offs, as well as allows to gradually adopt new

technologies.

Decentralized Data Management

Micro service architecture enables decentralized

data management, implying decentralization in

both the conceptual models and the storage back

ends used by services. The decentralization in

conceptual models means that different

components (services) have different conceptual

models of the world, e.g., by operating with

different attributes of the same entities. The

decentralization in the storage backend means that

every service has its own, independent, storage

subsystem that is isolated from other services.

Evolutionary Design

Related to several characteristics described above,

evolutionary design is a typical characteristic of

micro service architecture where services

decomposition is used as a driving force to enable

frequent and controlled changes in the system. On

the one hand, limited functionality of single

components emerging from their focus on small

tasks limits the efforts required to introduce

changes in individual services. On the other hand,

independently deployable and replaceable

components together with decentralized

governance allow the services to be re-

implemented from scratch, possibly using another

technology, without affecting the rest of the

system. Exhibiting the described characteristics,

systems built with micro service architecture are

typically associated with the following benefits

[18]:

Technology Heterogeneity

It is also known as polyglot programming and

persistence [20], is enabled by the decentralized

governance and data management that allows

coexistence of different technologies used by

different components in the system. Resilience and

ease of deployment are enabled by decomposition

via services that provides components with clear

boundaries, allowing to isolate failures and

gradually degrade the system functionality, as well

as update and deploy individual services

independently. Scaling with micro services can be

achieved in all of the three axis of the scaling cube

[21]. In addition to the typical scaling by horizontal

 Soujanya.M* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.4, Issue No.1, December - January 2016, 2735 – 2740.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 2739

duplication (X-axis) and data partitioning (Z axis),

micro services also enable scaling by functional

decomposition (Y-axis). Organizational

alignment is enabled by organization around

business capabilities and motivates smaller focused

teams working on components with smaller code-

bases. Composability follows from the fine-

grained componentization via services, enabling

creating new system capabilities by composing and

re-using existing services. As HTTP protocol and

REST APIs are commonly used for

communication, micro services also encourage the

serendipitous reuse [22]. Despite the described

benefits of the micro service architecture,

successfully implementing it in practice might be

challenging [23]. Decomposing distributed systems

into independent granular components, micro

services bring the complexity of distributed

systems and a great deal of operational overhead.

The growing popularity of DevOps culture and the

infrastructure automation tools, as well as the

accumulated experience in dealing with problems

of distributed systems address many of these

challenges. Therefore, when designing software

systems with micro services, deployment and

operational aspects of the resulting systems need to

be considered carefully.

III. CONCLUSIONS

The Smart City vision is to make a better use of the

public resources, increasing the quality of the

services offered to the citizens while reducing the

operational costs of the public administration.

Realizing this vision involves building a large-scale

urban IoT system and a service platform on top of

it that would provide access to the IoT data and

Smart City services. The latter is represented by a

large variety of services with varying requirements

to the platform infrastructure .Considering the early

stage of the IoT development and its progressive

adoption, the Smart City IoT platforms designed

today need to be able to support new standards and

services in the future. Designing large-scale

distributed systems that evolve as the underlying

technology and requirements change is one of the

challenges addressed by the modern Web and cloud

applications. The simplicity of interfaces and loose

coupling of individual components promoted by the

REST architectural principles coupled with the

commodity computing model and elasticity

provided by the cloud build the foundation of

modern distributed Web applications.

IV. ACKNOWLEDGEMENTS

The author thanks Dr. S. Sridhar, Professor and

Director, RV Cognitive & Central Computing, R.

V. College of Engineering, Bangalore, India for

communicating this article to this Journal for

publication. The author also thanks Dr. G. Shobha,

Professor and Head, Department of CSE, R. V.

College of Engineering, Bangalore, India for the

support given.

V. REFERENCES

[1]. Alexandr Krylovskiy, Marco Jahn, Edoardo

Patti, Fraunhofer FIT, Sankt Augustin,

Germany Dept. of Control and Computer

Engineering, Politecnico di Torino, Italy

“Designing a Smart City Internet of Things

Platform with Microservice Architecture”

IEEE Internet of Things Journal, 2015

[2]. The Constrained Application Protocol

(CoAP), IEEE Std. rfc7252, 2014.

[3]. Message Queue Telemetry Transport

(MQTT), OASIS Std., Rev. 3.1.1, 2014.

[4]. OneM2M Alliance. (2014) Onem2m:

Standards for m2m and the internet of

things. [Online]. Available:

http://onem2m.org

[5]. Nettstraeter, “Architectural reference model

for IoT,” EC FP7 IoT-A (257521) D, vol. 1,

p. 2, 2012.

[6]. Postcapes. (2014) Internet of Things

Platforms. [Online]. Available:

”http://postscapes.com/internet-of-things-

platforms”

[7]. R. C. Martin, Agile Software Development:

Principles, Patterns, and Practices. Upper

Saddle River, NJ, USA: Prentice Hall PTR,

2003.

[8]. M. Huettermann, DevOps for developers.

Apress, 2012.

[9]. M. Fowler and J. Lewis. (2014)

Microservices. [Online]. Available:”

http://martinfowler.com/articles/

microservices.html”

[10]. J. Turnbull, ”The Docker Book:

Containerization is the new virtualization”.

James Turnbul, 2015.

http://onem2m.org/

 Soujanya.M* et al.
 (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH

Volume No.4, Issue No.1, December - January 2016, 2735 – 2740.

2320 –5547 @ 2013-2016 http://www.ijitr.com All rights Reserved. Page | 2740

[11]. M. S. Fred Melo. (2014) Developing

Microservices for PaaS with Spring and

Cloud Foundry. [Online]. Available:

”http://www.infoq.com/presentations/micros

ervices-pass-springcloud- foundry”

[12]. FI-WARE. (2014) FI-WARE project.

[Online]. Available: ”http://fiware.org”

[13]. D. Havlik, J. Soriano, C. Granell, S. E.

Middleton, H. van der Schaaf, Berre, and J.

Pielorz. (2013) Future Internet enablers for

VGI applications. [Online]. Available:

http://eprints.soton.ac.uk/370583/

[14]. T. Usl¨ander, A. J. Berre, C. Granell, D.

Havlik, J. Lorenzo, Z. Sabeur, and S.

Modafferi, “The future internet enablement

of the environment information space,” in

Environmental Software Systems. Fostering

Information Sharing. Springer, 2013, pp.

109–120.

[15]. R. T. Fielding, “Architectural styles and the

design of network-based software

architectures,” Ph.D. dissertation, University

of California, Irvine, 2000.

[16]. Zanella, N. Bui, A. P. Castellani, L.

Vangelista, and M. Zorzi, “Internet of things

for smart cities,” IEEE Internet of Things

Journal, 2014.

[17]. Botta, W. de Donato, V. Persico, and A.

Pescap´e, “On the integration of cloud

computing and internet of things,” in

Proceedings of the 2nd International

Conference on Future Internet of Things and

Cloud (FiCloud-2014), 2014, pp. 27–29.

[18]. S. Newman, Building Microservices.

O’Reilly Media, Inc., 2015.

[19]. M. Fowler. (2011) PolyglotPersistence.

[Online]. Available:”

http://martinfowler.com/bliki/Polyglot

Persistence.html”

[20]. M. L. Abbott and M. T. Fisher, The art of

scalability: Scalable web architecture,

processes, and organizations for the modern

enterprise. Pearson Education, 2009.

[21]. S. Vinoski, “Serendipitous reuse,” IEEE

Internet Computing, vol. 12, no. 1, pp. 84–

87, Jan. 2008.

http://martinfowler.com/bliki/

	microservices_images_sketch.png

