
Proceedings of the International Conference , “Computational Systems for Health & Sustainability”
17-18, April, 2015 - by R.V.College of Engineering,

Bangalore,Karnataka,PIN-560059,INDIA

All Copyrights Reserved by R.V. College of Engineering, Bangalore, Karnataka Page | 185

Implementation of Content Based Video Retrieval in Multimedia Applications
Using Histogram Difference

Dr. Nagaraja G. S
Professor

RVCE, BANGALORE

Ramesh. B
Ass. Professor

CEC, BANGALORE

Divya K.S
Research Associate

RVCE,BANGALORE

Abstract
The increasing use of multimedia applications nowadays necessitates the development of effective methodologies for manipulating

databases storing video, audio information. Moreover, in its beginning stage, content-based access to video scenes requires parsing of each
video scenes into its building blocks. The video stream is constitutes number of shots, each shot is a sequence of frames pictured using a
single camera. Switching from one camera to another indicates the transition from a shot to the next one. Therefore, the detection of these
changes is known as scene transition or shot transition, is the initial step in any video-analysis system. A number of proposed techniques for
solving the problem of shot boundary detection exist, but the major criticisms to them are their inefficiency and lack of reliability. The
reliability of the scene change detection stage is a very significant requirement because it is the first stage in any video retrieval system; thus,
its performance has a direct impact on the performance of all other stages. On the other hand, efficiency is also crucial due to the
voluminous amounts of information found in video streams. This paper proposes a new robust and efficient paradigm capable of detecting
scene changes on compressed .AVI video data. A single core processor takes a lot of time to execute single thread execution of algorithms in a
very big video database to overcome this drawback a High performance computing is required (HPC) to make use of GPU for
multithreaded execution for video processing algorithms.

Keywords: Shot Detection, Histogram, GPU, CUDA.

I. INTRODUCTION

With the growth of internet and development of digital content,
content-based video retrieval (CBVR) has become an integral
part of information retrieval technology. CBVR technique is
searching videos in database similar to the query video, according
to the video features related to content. This technique is based
on automatic shot detection and shot extraction with features in
it, retrieves by automatically comparing the features of query
video (such as color, shape, texture, etc.). With the similar
features of video feature library, and finally outputs the best
matching videos and its corresponding information.
Shot Detection
A shot is an unbroken sequence of frames from one camera.
Thus, a movie sequence that alternated between views of two
people would consist of multiple shots. A scene is defined as a
collection of one or more adjoining shots that focus on an object
or objects of interest. For example, a shot consist of a rock and
water side by in the next shot bird has standing on it while
drinking water. There are a number of different types of
transitions or boundaries between shots.
Histograms
In our implementations of shot boundary detection we focused on
a histogram-based approach, significant due to its performance
and accuracy. Our procedure was on hard cut detection rather
than gradual shot transitions such as fades or dissolves. Our
technique firstly computes a color histogram for each block of a
frame of video, secondly calculates the difference between
adjacent frames depending on vector distance and lastly identifies
candidate shot transitions by comparing adjacent frame

similarities with a threshold. This straightforward technique has
been evaluated by us.
GPU Video Processing
Real time video processing with Graphical Processing Unit is
parallel programming framework with Combined Unified Device
architecture which increases the speedy computations in the
video processing.

II. RELATED WORK

The tested methods to a few number of short video sequences and
sometimes tuned the methods to work well on the sequences.
This total is matched against a second threshold to determine if a
shot boundary has been found. Hang, Kankanhalli, and Smoliar1
implemented this method with the additional step of using 333
averaging filter before the comparison to avoid camera motion
and noise effects. They found that by selecting a threshold
tailored to the input sequence better results were obtained,
although the method was slow. We note that manually adjusting
the threshold is no practical. St hahraray4 divided the images into
12 regions and found the best match for each region in a
neighborhood around the region in the other image. This
matching process duplicates the process used to extract motion
vectors from an image pair. The pixel differences for the region
were sorted, and the weighted sum of the sorted region
differences provided the image difference measure. Hampapur,
Jain, and Wey mouth computed what the call chromatic images
by dividing the change in gray level of each pixel between two
images by the gray level of that pixel in the second image.
During dissolves and fades, this chromatic image assumes a
reasonably constant value. They also computed a similar image
that detects wipes. But, this technique is very sensitive to camera
and object motion.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Innovative Technology and Research (IJITR)

https://core.ac.uk/display/228547162?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Proceedings of the International Conference , “Computational Systems for Health & Sustainability”
17-18, April, 2015 - by R.V.College of Engineering,

Bangalore,Karnataka,PIN-560059,INDIA

All Copyrights Reserved by R.V. College of Engineering, Bangalore, Karnataka Page | 186

Statistical methods expand on the idea of pixel differences by
breaking the images into regions and comparing statistical
measures of the pixels in those regions. For example, Kasturi and
Jain compute a measure based on the mean and standard
deviation of the gray levels in of the images, but is slow due the
complexity of the statistical formulas. It also generates many
false positives ~i.e., changes not caused by a shot boundary.
Histograms are the most common method used to detect shot
boundaries. The simplest histogram method computes histograms
of the frames from videos. If the bin-wise difference between the
histograms is above threshold, a shot boundary is assumed. Ueda,
Miyatake, and Yoshizawa7 used the color histogram change rate
to find shot boundaries. Nagasaka and Tanaka studied several
simple statistics based on gray level and color histograms. Better
results are made by breaking the images into 16 regions, using a
x2 test on color histograms of those regions, and neglecting the
eight largest differences to reduce the effects of object motion
and noise. Swanberg, Shu, and Jain8 used gray level histogram
differences in regions, weighted by how likely the region was to
change in the video sequence. This worked out because their
news videos had a very regular spatial structure. They did some
simple shot categorization by comparing shots with the known
types ~e.g., anchor person shot! from the database. They were
also able to group shots into higher level objects such as scenes
and segments by matching the shot types with the known
temporal structure. Hang, Kankanhalli, and Smoliar1 compared
pixel differences, statistical differences, and several loading QoS
adjusting to various types of terminals.

Our shot boundary detection and key frame selection procedure
work with blocks within video frames. Thus the process of taking
a video file and dividing into frames and then blocks.It is a first
step in this process which takes a significant proportion of the
overall time required for the entire process, and represents a good
candidate for acceleration on the GPU. This has already been
done by a number of graphics processor vendors, such as in
NVidia’s Pure Video technology, and ATi’s Avivo. Both
companies’ technologies offload a number of the most
computationally intensive aspects of . avi processing on the
GPU, in order to speed up the process over the CPU alone so we
will concentrate our work on the feature extraction using GPU
and CUDA C.

III.PROPOSED METHOD

In this method of processing video clips/data and gives it to the
media descriptors the media descriptor performs the feature
extraction of that video and then the key frame is chosen from the
available frame and indexing is done on that key frame and
indexes are stored in database along with indexes and various
other features also gets stored on the database.

Fig-1
GPU Architecture

GPU is Graphics Processing Unit used for high performance
parallel computing. It is a processor which has evolved over few
years, from a fixed-function special-purpose processor into a full-
fledged parallel programmable processor with few extra fixed-
function special-purpose functionality. GPU computing is the use
of GPU together with CPU (Central Processing Unit) to
accelerate general-purpose scientific and engineering
applications.

Fig-2
CUDA Architecture

CUDA is Compute Unified Design Architecture. It was
introduced by NVIDIA in November 2006. It allows a soft-ware
developers to use GPUs through a programming language, ‘C.
For CUDA .A compiled CUDA program can execute on any
number of 366 processor cores. CUDA C is the language mainly
designed to provide general purpose computing on GPU.CUDA
C adds the global qualifier to standard C.

Fig-3

Proceedings of the International Conference , “Computational Systems for Health & Sustainability”
17-18, April, 2015 - by R.V.College of Engineering,

Bangalore,Karnataka,PIN-560059,INDIA

All Copyrights Reserved by R.V. College of Engineering, Bangalore, Karnataka Page | 187

Shot Boundary Detection with GPU
The implementation of a CPU method of shot boundary detection
is simple and straightforward. We use a histogram class with
functions for generating a histogram based on a provided array of
frame data, and for calculating the distance between the frame
and a second frame passed to it. After a number of different
approaches, we achieved an efficient GPU implementation using
an approach which leverages the capability to query the GPU
based on a processor that is executing. This querying is exposed
by the API, and can be used in rendering graphics to determine,
for example, if an object is occluded or not (the application
would execute a processor to draw a proxy object in place of the
actual more complex version, and use a query to determine if the
object was drawn or discarded). This capability can be applied to
histogram computation by addressing each bin of the histogram
in turn. For each bin, the processor takes the frame as input, and
draws it unchanged to another buffer, but first it checks if the
pixel to be drawn is within the range of the current bin, whose
minimum and maximum values are passed as parameters. If the
pixel is within the given range it is drawn, if not it is discarded.
The query over this processor simply counts the number of pixels
drawn, effectively computing the value for the current bin. Note
that in this approach we are still passing over every frame n times
for n bins. However we can pass the bin’s minimum and
maximum values to the processor directly as parameters with
each pass, obviating the need for computation of the minimum
and maximum values within the processor, without sacrificing
parallel speedups.
We calculate the difference between adjacent frames histograms
in one processor pass by packing all the histograms into two
textures, one containing all textures from 0 to m− 1, where m is
the number of histograms, and the other contains all textures
from 1 to m. So in short, the second texture is the same as the
first, except shifted one histogram to the left. This allows the
shader to access a frames 1The word shader has a dual meaning
here, referring to processors in the GPU hardware itself, and to
software programs that run on them.
Feature extraction with GPU
In content-based video retrieval, feature vector of video frames
are automatically stored at index in feature database which
describe the content of the video. Features are extracted and
stored as feature vectors. The feature vectors of both the query
video clip and the video clips from database are compared and
thus the required video clips is retrieved. Features used here is
color be the query video D, T be the database and t be the
threshold distance. So, the distance between both the feature
vectors is given as, D (Feature (Q), Feature (T)) ≤ t.
Similarity matching with GPU
In this step the feature vectors of the query video as well as that
of the video database is compared for their similarities and thus
the suitable match is searched for. Graphical Processors Units
(GPU) play important role to speedup processing of database
images matching algorithms because it has more inbuilt
execution cores. One of the techniques is where the feature space

as well as similarity on this space is defined. The similarity
measure is done by k -th nearest neighbor search. To speed up the
computation 369 time, parallel implementation of the K-Means
search on a Graphic Processing Unit (GPU) using CUDA is
developed and it is observed that the computation time for one
similarity measure between two videos required 0.2s on average
.The online image matching can be enhanced by using GPUs.
K-means clustering
Clustering algorithm has been widely used in computer vision
such as image segmentation and database organization. The
purpose of clustering is to group images whose feature vectors
are similar by similarity judgment standard; meanwhile to
separate the dissimilar images. Clustering algorithms can be
broadly divided into two groups: hierarchical and partitioned.
Hierarchical clustering algorithms recursively find nested clusters
either in agglomerative mode (starting with each data point in its
own cluster and merging the most similar pair of clusters
successively to form a cluster hierarchy) or in divisive (top-
down) mode (starting with all the data points in one cluster and
recursively dividing each cluster into smaller clusters). .
Proposed algorithm can be shown as,
The main steps of k-means algorithm are as follows:

(1) Select an Starting partition with K=k clusters; repeat
Steps (2) and (3) until cluster membership stabilizes.

(2) Generate a new partition by assigning each pattern
to its nearest cluster center.

(3) Calculate new cluster centers

VI. CONCLUSION

This Paper has been done for the purpose of retrieving the video
from the Multimedia Database by using efficient algorithms to
increase the performance of the system which is difficult in
traditional video retrieving system. We are implementing Content
Based Video Retrieval System. Video data storage, searching and
indexing large databases efficiently and effectively has become a
challenging problem. In order to solve the problem, there exist two
distinct approaches in the literature. One solution is to annotate each
image manually with keywords or captions and then search images
using a conventional text search engine. The system uses a modified
k-means clustering algorithm to improve the image segmentation,
and uses a new similarity distance measure where object uniqueness
is considered during computation. The proposed system performs
better when the contrast between the main object and the background
is visible in the image and performs worse when the image is
complex and the objects have smooth edges. During the
implementation, by considering object uniqueness during similarity
distance computation improve the accuracy during retrieval.
The following are the advantages of the proposed method,
1) An improvement in video segmentation accuracy,
especially for simple videos.
2) An improvement during dissimilarity computation by using the
parameter of object uniqueness into consideration by k-means
algorithm.

Proceedings of the International Conference , “Computational Systems for Health & Sustainability”
17-18, April, 2015 - by R.V.College of Engineering,

Bangalore,Karnataka,PIN-560059,INDIA

All Copyrights Reserved by R.V. College of Engineering, Bangalore, Karnataka Page | 188

Our future work will involve testing the GPU implementation of
these operations using even more recent GPUs compared against
faster CPUs.

VII. REFERENCES

[1] Ashok Ghatol "Implementation of Parallel Image Processing
Using NVIDIA GPU framework." advances in Computing
Communication and Control. Springer Berlin Heidelberg, 2011.
457-464..

[2] O. Chapelle, P. Haffner, and V. Vapnik, ―Svms for histogram
based image classification,‖ IEEE Trans. Neural Netw., vol. 10,
pp. 1055–1064,1999.

[3] H. J. Zhang, A. Kankanhalli, and S. W. Smoliar, ‘‘Automatic
partitioning of full-motion video,’’ Multimedia Systems 1~1!,
10–28 993!.cs.berkeley.edu/

[4] A. Nagasaka and Y. Tanaka, ‘‘Automatic video indexing and
fullvideo search for object appearances,’’ in Visual Database
Systems II, E. Knuth and L. Wegner, Eds., pp. 113–127, Elsevier
Science Publishers~1992.

[5]. Content Based Video Retrieval Using Cluster Overlapping
Deepak C R1,Sreehari S2, Gokul M3, Anuvind B4.

[6] G. Cybenko, “Dynamic load balancing for distributed memory
multiprocessors,”J. Parallel Distrib. Comput., vol. 7, no. 2, pp.
279–301,1989.

[7] N. Snavely, S. M. Seitz, and R. Szeliski, “Photo tourism:
Exploring photo collectionsin 3D,” ACM Trans. Graph., vol. 25,
no. 3, pp. 835–846,2006.

[8] N. Snavely, S. M. Seitz, and R. Szeliski, “Modeling the world
from Internet photo collections,” Int. J. Comput. Vision, vol. 80,
no. 2, pp. 189–210, Nov.2008.

[9] The National Science Foundation. (2008, Sept. 30). Cyber-
physical systems.Program Announcements and Information.
NSF, Arlington,

[10] X.-S. Hua and S. Li., “Personal media sharing and authoring on
the web,” in Proc. ACM Int. Conf. Multimedia, Nov. 2005, pp.
375–378.

[11] S. F. Chang and A. Vetro, “Video adaptation: Concepts,
technologies, andopen issues,” Proc. IEEE, vol. 93, no. 1, pp.
148–158, 2005.

[12] Origin Digital. (2009, Nov. 17). Video services provider to
reduce transcoding costs up to half [Online]. Available: as
studies/Case_Study_Detail.aspx?CaseStudyID=4000005952

[13] A Novel Content Based Image Retrieval System using K-
means/KNN with Feature Extraction Ray-I Chang , Shu-Yu Lin ,
Jan-Ming Ho , Chi-Wen Fann 2, and Yu-Chun Wang 2 1 Dept.
of Engineering Science and Ocean Engineering National Taiwan
University Taipei, Taiwan.

[14] S. Shi, W. J. Jeon, K. Nahrstedt, and R. H. Campbel, “Real-time
remote rendering of 3D video for mobile devices,” in Proc. ACM
Multimedia, 2009, pp. 391–400.

[15] A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R.
Jain, “Content based image retrieval at the end of the early
years,” IEEE Trans. Pattern Anal. Machine Intell., vol. 22, no.
12, pp. 1349–1380, Dec. 2000.

[16]. Kato,T. Database architecture for content-based image retrieval.
Image Storage and Retrieval Systems, 112–123. (1999)

[17]. Datta, R., Joshi, D., Li, J., Wang, J. Z.: Image Retrieval: Ideas,
Influences, and Trends of the New Age. ACM Computing
Surveys, Vol. 40, No. 2, Article 5, April. (2008)

[18] P. Browne, C. Gurrin, H. Lee, K. M. Donald, S. Sav, A. F.
Smeaton, and J. Ye. Dublin City University Video Track
experiments for TREC 2001. In TREC 2001 - Text
Retrieval Conference, MD, USA, 2001. National Institute
of Standards and Technology.

[19] I. Buck. A Toolkit for Computation on GPUs. Addison-
Wesley, 2004.

[20] A. F. Smeaton, P. Over, andW. Kraaij. Evaluation
Campaigns and TRECVid. In MIR 2006 - 8th
ACMSIGMM International Workshop on Multimedia
Information Retrieval, 2006.

[21] H. Zhang, A. Kankanhalli, and S. Smoliar. Automatic
partitioning of full-motion video. Multimedia Systems,
1(1):10–28, 1993.

[22] Avinash N. Bhute, B.B. Meshram ―Automated ultimedia
Information Retrieval using Color and Texture Feature
technique‖ IJECCE Volume 3, Issue 5, ISSN (Online):
2249–071X, ISSN (Print): 2278–4209

[23] Ashok Ghatol "Implementation of Parallel Image
Processing Using NVIDIA GPU framework." Advances in
Computing Communication and Control. Springer Berlin
Heidelberg, 2011. 457-464.

