
Proceedings of the International Conference, “Computational Systems for Health & Sustainability”
17-18, April, 2015 - by R.V.College of Engineering,

Bangalore, Karnataka, PIN-560059, INDIA

All Copyrights Reserved by R.V. College of Engineering, Bangalore, Karnataka Page | 156

Eye Movement-Based Human-Computer Interaction Techniques
SARADA.T

SRI SAI RAM COLLEGE OF ENGINEERING,
MONISHA.S

SRI SAI RAM COLLEGE OF ENGINEERING,

Guided by:
SRINATH D.K,
Asst.Professor,

SRI SAIRAM COLLEGE OF ENGINEERING.

Abstract: User-computer dialogues are typically one-sided, with the bandwidth from computer to user far greater than that from user
to computer. The movement of a user’s eyes can provide a convenient, natural, and high-bandwidth source of additional user input, to
help redress this imbalance. We therefore investigate the introduction of eye movements as a computer input medium. Our emphasis is
on the study of interaction techniques that incorporate eye movements into the user-computer dialogue in a convenient and natural
way. This chapter describes research at NRL on developing such interaction techniques and the broader issue raised by non-command-
based interaction styles. It discusses some of the human factors and technical considerations that arise in trying to use eye movements
as an input medium, describes our approach and the first eye movement-based interaction techniques that we have devised and
implemented in our laboratory, reports our experiences and observations on them, and considers eye movement-based interaction as
an exemplar of a new, more general class of non-command-based user computer interaction.

I. INTRODUCTION

In searching for better interfaces between users and their
computers, an additional mode of communication between the
two parties would be of great use. The problem of human
computer interaction can be viewed as two powerful
information processors (human and computer) attempting to
communicate with each other via a narrow-bandwidth, highly
constrained interface [25]. Faster, more natural, more
convenient (and, particularly, more parallel, less sequential)
means for users and computers to exchange information are
needed to increase the useful bandwidth across that interface.
On the user’s side, the constraints are in the nature of the
communication organs and abilities with which humans are
endowed; on the computer side, the only constraint is the
range of devices and interaction techniques that we can invent
and their performance. Current technology has been stronger
in the computer-to-user direction than user-to-computer; hence
today’s user-computer dialogues are typically one-sided, with
the bandwidth from the computer to the user far greater than
that from user to computer. We are especially interested in
input media that can help redress this imbalance by obtaining
data from the user conveniently and rapidly. We therefore
investigate the possibility of using the movements of a user’s
eyes to provide a high-bandwidth source of additional user
input. While the technology for measuring a user’s visual line
of gaze (where he or she is looking in space) and reporting it
in real time has been improving, what is needed is appropriate
interaction techniques that incorporate eye movements into the
user-computer dialogue in a convenient and natural way. An
interaction techniques a way of using a physical input device
to perform a generic task in a human-computer dialogue
[7].Because eye movements are so different from conventional
computer inputs, our basic approach to designing interaction
techniques has been, wherever possible, to obtain information

from the natural movements of the user’s eye while viewing
the display, rather than requiring the user to make specific
trained eye movements to actuate the system. We therefore
begin by studying the characteristics of natural eye
movements and then attempt to recognize corresponding
patterns in the raw data obtainable from the eye tracker,
convert them into tokens with higher-level meaning, and then
build dialogues based on the known characteristics of eye
movements. In addition, eye movement-based interaction
techniques provide a useful exemplar of a new, non-command
style of interaction. Some of the qualities that distinguish eye
movement based interaction from more conventional types of
interaction are shared by other newly emerging styles of
human-computer interaction that can collectively be
characterized as ‘‘non-command-based.’’ In a non-command-
based dialogue, the user does not issue specific commands;
instead, the computer passively observes the user and provides
appropriate responses. On-command-based interfaces will also
have a significant effect on user interface software because of
their emphasis on continuous, parallel input streams and real-
time timing constraints, in contrast to conventional single-
thread dialogues based on discrete tokens. We describe the
simple user interface management system and user interface
description language incorporated into our system and the
more general requirements of user interface software for
highly interactive, non-command styles of interaction.

V. METHODS FOR MEASURING EYE MOVEMENTS

What to Measure

For human-computer dialogues, we wish to measure visual
line of gaze, rather than simply the position of the eye in space
or the relative motion of the eye within the head. Visual line of
gaze is a line radiating forward in space from the eye; the user
is looking at something along that line. To illustrate the



Proceedings of the International Conference, “Computational Systems for Health & Sustainability”
17-18, April, 2015 - by R.V.College of Engineering,

Bangalore, Karnataka, PIN-560059, INDIA

All Copyrights Reserved by R.V. College of Engineering, Bangalore, Karnataka Page | 157

difference, suppose an eye-tracking instrument detected a
small lateral motion of the pupil. It could mean either that the
user’s head moved in space (and his or her eye is still looking
at nearly the same point) or that the eye rotated with respect to
the head (causing a large change in where the eye is looking).
We need to measure where the eye is pointing in space; not all
eye tracking techniques do this. We do not normally measure
how far out along the visual line of gaze the user is focusing
(i.e., accommodation), but when viewing a two-dimensional
surface like a computer console, it will be easy to deduce.
Since both eyes generally point together, it is customary to
track only one eye.

Electronic Methods

The simplest eye tracking technique is electronic recording,
using electrodes placed on the skin around the eye to measure
changes in the orientation of the potential difference that exists
between the cornea and the retina. However, this method is
more useful for measuring relative eye movements (i.e., AC
electrode measurements) than absolute position (which
requires DC measurements). It can cover a wide range of eye
movements, but gives poor accuracy (particularly in absolute
position). It is principally useful for diagnosing neurological
problems revealed by eye movement patterns. Further details
on this and the other eye tracking methods discussed here can
be found in [27].

Mechanical Methods

Perhaps the least user-friendly approach uses a non-slipping
contact lens ground to fit precisely over the corneal bulge. A
slight suction is applied between the lens and the eye to hold it
in place. The contact lens then has either a small mechanical
lever, magnetic coil, or mirror attached for tracking. This
method is extremely accurate, particularly for investigation of
tiny eye movements, but practical only for laboratory studies.
It is very awkward and uncomfortable, covers only a limited
range, and interferes with blinking.

VI. PROBLEMS IN USING EYE MOVEMENTS IN A
HUMAN-COMPUTER DIALOGUE

The most naive approach to using eye position as an input
might be to use it as a direct substitute for a mouse: changes in
the user’s line of gaze would directly cause the mouse cursor
to move. This turns out to be an unworkable (and annoying)
design. There are two culprits for why direct substitution of an
eye tracker for a mouse is not possible. The first is the eye
itself, the jerky way it moves and the fact that it rarely sits
still, even when its owner thinks he or she is looking steadily
at a single object; the other is the instability of the available
eye tracking hardware. There are significant differences
between a manual input source like the mouse and eye
position; some are advantages and some, disadvantages; they

must all be considered in designing eye movement-based
interaction techniques.

VII. EXPERIENCE WITH EYE MOVEMENTS

Configuration

As noted, we use an Applied Science Laboratories eye tracker
in our laboratory. The user sits at a conventional (government-
issue) desk, with a 16" Sun computer display, mouse, and
keyboard, in a standard chair and office. The eye tracker
camera/illuminator sits on the desk next to the monitor. Other
than the illuminator box with its dim red glow, the overall
setting is thus far just like that for an ordinary office computer
user. In addition, the room lights are dimmed to keep the
user’s pupil from becoming too small. The eye tracker
transmits the x and y coordinates for the user’s visual line of
gaze every 1/60 second, on a serial port, to a Sun4/260
computer. The Sun performs all further processing, filtering,
fixation recognition, and some additional calibration. Software
on the Sun parses the raw eye tracker data stream into tokens
that represent events meaningful to the user-computer
dialogue. Our user interface management system, closely
modeled after that described in [12], multiplexes these tokens
with other inputs (such as mouse and keyboard) and processes
them to implement the user interfaces under study. The eye
tracker is, strictly speaking, non-intrusive and does not touch
the user in anyway. Our setting is almost identical to that for a
user of a conventional office computer. Never the less, we find
it is difficult to ignore the eye tracker. It is noisy; the dimmed
room lighting is unusual; the dull red light, while not
annoying, is a constant reminder of the equipment; and, most
significantly, the action of the servo-controlled mirror, which
results in the red light following the slightest motions of user’s
head gives one the eerie feeling of being watched. One further
wrinkle is that the eye tracker is designed for use in
experiments, where there is a ‘‘subject’’ whose eye is tracked
and an ‘‘experimenter’’ who monitors and adjusts the
equipment. Operation by a single user playing both roles
simultaneously is somewhat awkward because, as soon as you
look at the eye tracker control panel to make an adjustment,
your eye is no longer pointed where it should be for tracking.

IX. USER INTERFACE MANAGEMENT SYSTEM

In order to make the eye tracker data more tractable for use as
input to an interactive user interface, we turn the output of the
recognition algorithm into a stream of tokens. We report
tokens for eye events considered meaningful to the user-
computer dialogue, analogous to the way that raw input from a
keyboard (shift key went down, letter a key went down, etc.)
is turned into meaningful events (one ASCII upper case A was
typed). We report tokens for the start, continuation (every 50
ms., in case the dialogue is waiting to respond to a fixation of
a certain duration), and end of each detected fixation. Each
such token is tagged with the actual fixation duration to date,



Proceedings of the International Conference, “Computational Systems for Health & Sustainability”
17-18, April, 2015 - by R.V.College of Engineering,

Bangalore, Karnataka, PIN-560059, INDIA

All Copyrights Reserved by R.V. College of Engineering, Bangalore, Karnataka Page | 158

so an interaction technique that expects a fixation of a
particular length will not be skewed by delays in processing
by the UIMS (user interface management system) or by the
delay inherent in the fixation recognition algorithm. Between
fixations, we periodically report a non-fixation token
indicating where the eye is, although our current interaction
techniques ignore this token in preference to the fixation
tokens, which are more filtered. A token is also reported
whenever the eye tracker fails to determine eye position
for200 ms. and again when it resumes tracking. In addition,
tokens are generated whenever a new fixation enters or exits a
monitored region, just as is done for the mouse. Note that jitter
during a single fixation will never cause such an enter or exit
token, though, since the nominal position of a fixation is
determined at the start of a fixation and never changes during
the fixation. These tokens, having been processed by the
algorithms described above, are suitable for use in a user-
computer dialogue in the same way as tokens generated by
mouse or keyboard events. We then multiplex the eye tokens
into the same stream with those generated by the mouse and
keyboard and present the overall token stream as input to our
user interface management system [12]. The desired user
interface is specified to the UIMS as a collection of relatively
simple individual dialogues, represented by separate
interaction objects, which comprise the user interface
description language (UIDL). They are connected by an
executive that activates and suspends them with retained state,
like coroutines. A typical object might be a screen button,
scroll bar, text field, or eye-selectable graphic object. Since, at
the level of individual objects, each such object conducts only
a single-thread dialogue, with all inputs serialized and with a
remembered state whenever the individual dialogue is
interrupted by that of another interaction object, the operation
of each interaction object is conveniently specified as a simple
single-thread state transition diagram that accepts the tokens
as input. Each object can accept any combination of eye,
mouse, and keyboard tokens, as specified in its own syntax
diagram, and provides a standard method that the executive
can call to offer it an input token and traverse its diagram.
Each interaction object is also capable of redrawing itself upon
command (it contains the needed state information or else
contains calls to the access functions that will obtain such
from its domain object). An interaction object can have
different screen extents for purposes of re-drawing, accepting
mouse tokens, and accepting eye tokens. A standard executive
is then defined for the outer dialogue loop. It operates by
collecting all of the state diagrams of the interaction objects
and executing them as a collection of coroutines, assigning
input tokens to them and arbitrating among them as they
proceed. Whenever the currently-active dialogue receives a
token it cannot accept, the executive causes it to relinquish
control by co routine call to whatever dialogue can, given its
current state, accept it. If none can, executive discards the

token and proceeds. For example, each ship (see Figure 6) is a
separate interaction object (but all are of the same class, Ship).
An additional lower-level interaction object (Gazer) is
provided to perform the translation of fixations into gazes, as
described above. That is, every interaction object such as Ship
also has a Gazer interaction object associated with it. The
Gazer accepts fixations on (or near, according to the criteria
described above, and by means of a class variable shared by
all the active Gazers) its parent object and then combines such
consecutive fixations into a single gaze token, which it sends
to its parent object (the Ship). Figure 7shows the syntax
diagram for Gazer; it accepts the tokens generated by the
fixation recognition algorithm (EYEFIXSTART,
EYEFIXCONT, and EYEFIXEND), tests whether they lie
within its extent or else meet the criteria for off-target
fixations described above (implemented in the call to Is Mine),
accumulates them into gazes, and sends gaze tokens
(EYEGAZESTART, EYEGAZECONT, and
EYEGAZEEND) directly to its parent object. The Ship
interaction object syntax then need only accept and respond to
the gaze tokens sent by its Gazer. Figure 7 also shows the
portion of the Ship interaction object syntax diagram
concerned with selecting a ship by looking at it for a given
dwell time (for clarity the syntax for dragging and other
operations described below is not shown in the figure; also not
shown are the tokens that the selected ship sends to the other
ships to deselect the previously-selected ship, if any). When a
user operation upon a ship causes a semantic-level
consequence (e.g., moving a ship changes the track data), the
Ship interaction object calls its parent, an application domain
object, to do the work. Although the syntax may seem
complicated as described here, it is well matched to the natural
saccades and fixations of the eye.

X. INTERACTION TECHNIQUES

Interaction techniques provide a useful focus for this type of
research because they are specific, yet not bound to a single
application. An interaction technique represents an abstraction
of some common class of interactive task, for example,
choosing one of several objects shown on a display screen.
Research in this area studies the primitive elements of human
computer dialogues, which apply across a wide variety of
individual applications. The goal is to add new, high-
bandwidth methods to the available store of input/output
devices, interaction techniques, and generic dialogue
components. Mockups of such techniques are then studied by
measuring their properties, and attempts are made to
determine their composition rules. This section describes the
first few eye movement-based interaction techniques that we
have implemented and our initial observations from using
them.



Proceedings of the International Conference, “Computational Systems for Health & Sustainability”
17-18, April, 2015 - by R.V.College of Engineering,

Bangalore, Karnataka, PIN-560059, INDIA

All Copyrights Reserved by R.V. College of Engineering, Bangalore, Karnataka Page | 159

Moving an Object

Another important interaction technique, particularly for direct
manipulation systems, is moving an object on the display. We
experimented with two methods. Our initial notion was that, in
a direct manipulation system, a mouse is typically used for
two distinct operations–selecting an object to be manipulated
and performing the manipulation. The two functions could be
separated and each assigned to an appropriate input device. In
particular, the selection could be performed by eye position,
and the hand input device devoted exclusively to the
manipulations. We therefore implemented a technique
whereby the eye selects an object (ship) to be manipulated
(moved on the map, in this case) and then the mouse is used to
move it. The eye selection is made precisely as in the
previously-described interaction techniques. Then, the user
grabs the mouse, presses a button, drags the mouse in the
direction the object is to be moved, and releases the button.
There is no visible mouse cursor in this scheme, and the
mouse is used as a relative position device–it starts moving
from wherever the eye-selected ship was. Our second
approach used the eye to select and drag the ship, and a
pushbutton to pick it up and put it down. The user selects a
ship, and then presses a button; while the button is depressed,
the ship drags along with the user’s eye. (Since the processing
described previously is performed on the eye movements, the
ship actually jumps to each fixation after about 100 ms. and
then remains steadily there–despite actual eye jitter–until the
next fixation.) When the button is released, the ship is left in
its new position. Our initial guess was that the second method
would be too unpredictable; eye movements would be fine for
selecting an object, but picking it up and having it jump
around on the screen in response to eye movements would be
annoying–a mouse would give more concrete control. Once
again, our initial guess was not borne out. While the eye-to-
select/mouse-todrag method worked well, the user was
quickly spoiled by the eye-only method. Once you begin to
expect the system to know where you are looking, the mouse-
to-drag operation seems awkward and slow. After looking at
the desired ship and pressing the ‘‘pick up’’ button, the natural
thing to do is to look at where you are planning to move the
ship. At this point, you feel, ‘‘I’m looking right at the
destination I want, why do I now have to go get the mouse to
drag the ship over here?’’ With eye movements processed to
suppress jitter and respond only to recognized fixations, the
motion of the dragging ship is reasonably smooth and
predictable and yet appears subjectively instantaneous. It
works best when the destination of the move is a recognizable
feature on the screen (another ship, or a harbor on a map);
when the destination is an arbitrary blank spot, it is more
difficult to make your eye look at it, as the eye is always
drawn to features.

Eye-controlled Scrolling Text

A window of text is shown, but not all of the material to be
displayed can fit. As shown at the bottom left of Figure 8, a
row of arrows appears below the last line of the text and above
the first line, indicating that there is additional material not
shown. If the user looks at the arrows, the text itself starts to
scroll. Note, though, that it never scrolls when the user is
actually reading the text (rather than looking at the arrows).
The assumption is that, as soon as the text starts scrolling, the
user’s eye will be drawn to the moving display and away from
the arrows, which will stop the scrolling. The user can thus
read down to end of the window, then, after he or she finishes
reading the last line, look slightly below it, at the arrows, in
order to retrieve the next part of the text. The arrows are
visible above and/or below text display only when there is
additional scrollable material in that direction.

Listener Window

In a window system, the user must designate the active or
‘‘listener’’ window, that is, the one that receives keyboard
inputs. Current systems use an explicit mouse command to
designate the active window; in some, the command is simply
pointing, in others, it is pointing and clicking. Instead, we use
eye position–the listener window is simply the one the user is
looking at. A delay is built into the system, so that user can
look briefly at other windows without changing the listener
window designation. Fine cursor motions within a window are
still handled with the mouse, which gives an appropriate
partition of tasks between eye tracker and mouse, analogous to
that between speech and mouse used by Schmandt [22]. A
possible extension to this approach is for each window to
remember the location of the mouse cursor within it when the
user last left that window. When the window is reactivated (by
looking at it), the mouse cursor is restored to that remembered
position. This method works well in practice because the
resolution required for selecting a window on a typical display
is fairly coarse. It is convenient and fast, but the difficulty of
using the eye tracker in a natural setting and posture for an
extended time has made it difficult to frame a good
comparison to a conventional window manager in everyday
use.

XI. TOWARDS AND BEYOND NON-COMMAND
INTERFACES

Finally, we return to the broader question of the nature of
future human-computer interaction styles. Eye movement-
based interaction provides an example of several of the
characteristics–as well as the problems–of what seems to be an
emerging new user-computer interaction style. The new style,
which combines the non command attribute with other
somewhat correlated characteristics, is seen most dramatically
in virtual reality interfaces, but its characteristics are common
to a more general class of rich user-computer environments,



Proceedings of the International Conference, “Computational Systems for Health & Sustainability”
17-18, April, 2015 - by R.V.College of Engineering,

Bangalore, Karnataka, PIN-560059, INDIA

All Copyrights Reserved by R.V. College of Engineering, Bangalore, Karnataka Page | 160

such as new types of games, musical accompaniment systems,
interactive entertainment media, as well as eye movement-
based interfaces. They all share a higher degree of interactivity
than previous interfaces–continuous input/output exchanges
occurring in parallel, rather than one single thread dialogue.
Most also go a step further away from the traditional dialogue
toward a more subtle, implicit interchange based on passive
monitoring of the user’s actions rather than explicit
commands. The concepts behind these emerging new interface
styles can be better understood by decomposing them into two
main attributes, suggested in Figure 11. The non command-
based quality, which was described earlier, is just one of the
two.

XII. CONCLUSIONS

Following Brooks’ taxonomy [3], we present ‘‘observations,’’
rather than more formal ‘‘findings’’ of our experiences with
eye movement-based interaction:

• An eye tracker as an input device is far from ‘‘perfect,’’ in
the sense that a mouse or keyboard is, and that is caused both
by the limitations of current equipment and, more importantly,
by the nature of human eye movements. Obtainable accuracy
is more similar to a traditional touch screen than a mouse, and
the range can barely cover a single CRT display. The
equipment, while non-intrusive and non contacting, is difficult
to ignore. Nevertheless, it is perhaps amazing that eye
movement-based interaction can be done at all; when the
system is working well, it can give the powerful impression of
responding to its user’s intentions rather than his or her
explicit inputs.

• To achieve this, our overall approach in designing interaction
techniques is, wherever possible, to obtain information from a
user’s natural eye movements while viewing the screen rather
than requiring the user to make specific eye movements to
actuate the system. For example, we tried and rejected long
gazes because they are not natural eye movements, preferring
to use gazes only as long as natural fixations. We also found it
important to search for and recognize fixations in the raw eye
tracker data stream and construct our dialogue around these
higher-level events.

• Our research concentrated on interaction techniques that can
naturally and conveniently incorporate eye movements into a
user-computer dialogue, rather than on the underlying eye
tracker technology itself. In our initial interaction techniques,
we observed the value of short dwell time eye-only object
selection for cases where a wrong pick immediately followed
by a correct pick is acceptable. For moving an object we found
filtered eye movements surprisingly effective, even though a
mouse initially seemed more appropriate for this task. For
menu commands, we found the eye alone appropriate for
popping up a menu or tentatively choosing an item, but
executing an item requires a button for confirmation rather

than a long dwell time. The next step in this research is to
perform more controlled observations on the new techniques.
Our first experiment will compare object selection by dwell
time with conventional selection by mouse pick. The
extraneous details of the ship display are removed for this
purpose, and a simple abstract display of circular targets is
used, as shown in Figure 10. In the experiment, one of the
targets will be designated, and the subject’s task is to find it
and select it, either by eye with dwell time or mouse.
Response time for the two methods will be compared. (Initial
pilot runs of this procedure suggest a 30 per cent decrease in
time for the eye over the mouse, although the eye trials show
more variability.)

Finally, we can view eye movement-based interaction as an
instance of an emerging new style of user-computer
interaction. This style exhibits changes from explicit to
implicit commands and from turn-taking, single-stream
dialogues to simultaneous, parallel interactions.

Such interfaces will levy new requirements on user interface
software and on the languages used to describe user-computer
dialogues to handle and describe complex and substantial
input/output processing, simultaneous parallel inputs,
continuous inputs and outputs, imprecise inputs, and real-time
constraints.

XIV. REFERENCES

[1]. R.A. Bolt, ‘‘Gaze-Orchestrated Dynamic Windows,
‘Computer Graphics 15(3) pp.109-119 (August 1981).

[2]. R.A. Bolt, ‘‘Eyes at the Interface,’’ Proc. ACM Human
Factors in Computer Systems Conference pp. 360-362
(1982).

[3]. F.P. Brooks, ‘‘Grasping Reality Through Illusion–
Interactive Graphics Serving Science, ’’Proc. ACM
CHI’88 Human Factors in Computing Systems
Conference pp. 1-11, Addison-Wesley/ACM Press
(1988).

[4]. S.K. Card, W.K. English, and B.J. Burr, ‘‘Evaluation of
Mouse, Rate-controlled Isometric Joystick, Step Keys,
and Text Keys for Text Selection on a CRT,’’
Ergonomics 21(8) pp.601-613 (1978).

[5]. H.D. Crane and C.M. Steele, ‘‘Generation-V Dual-
Purkinje-image Eye tracker,’’ Applied Optics 24(4) pp.
527-537 (1985).

[6]. S.K. Feiner and C.M. Beshers, ‘‘Worlds within Worlds:
Metaphors for Exploring n-Dimensional Virtual
Worlds,’’ Proc. ACM UIST’90 Symposium on User
Interface Software and Technology pp. 76-83, Addison-
Wesley/ACM Press, Snowbird, Utah (1990).



Proceedings of the International Conference, “Computational Systems for Health & Sustainability”
17-18, April, 2015 - by R.V.College of Engineering,

Bangalore, Karnataka, PIN-560059, INDIA

All Copyrights Reserved by R.V. College of Engineering, Bangalore, Karnataka Page | 161

[7]. J.D. Foley, A. van Dam, S.K. Feiner, and J.F. Hughes,
Computer Graphics: Principles and Practice, Addison-
Wesley, Reading, Mass. (1990).

[8]. F.A. Glenn and others, ‘‘Eye-voice-controlled
Interface,’’ Proc. 30th Annual Meeting of the Human
Factors Society pp. 322-326, Santa Monica, Calif.
(1986).

[9]. M. Green and R.J.K. Jacob, ‘‘Software Architectures
and Metaphors for Non-WIMP User Interfaces,’’
Computer Graphics 25(3) pp. 229-235 (July 1991).

[10]. R.N. Haber and M. Hershenson, the Psychology of
Visual Perception, Holt, Rinehart and Winston, New
York (1973).


