
Proceedings of the International Conference , “Computational Systems for Health & Sustainability”
17-18, April, 2015 - by R.V.College of Engineering,

Bangalore,Karnataka,PIN-560059,INDIA

All Copyrights Reserved by R.V. College of Engineering, Bangalore, Karnataka Page | 5

A Novel Refactoring Appraoch to Remove the Smels Present in Programming
Languages

K. Malini
Software Engineering, Anna University

Sri Ramakrishna Engineering College, Coimbatore
Tamil Nadu, India-641022

Dr. N. Rajkumar
Professor & HOD(Software Engineering)

Sri Ramakrishna Engineering College, Coimbatore
Tamil Nadu, India-641022

Abstract: Mash ups are the one which is created as a new source by using the knowledge of already existing sources. The Mash
ups are used to create and develop new innovative ideas from the already existing knowledge’s. However the mash up creation by
users may tend to some deficiencies which need to be concentrated to avoid the complexity. There may be a possibility of creation
of smells during the mash up creation process which need to be addressed well in order to avoid the software failure. This is
avoided by introducing the methodology called refactoring approach which tends to find and eliminate the possible smells which
may occur at the time of mash up creation. However in programming cannot support the programming languages with different
object behavior in different places. The refactoring cannot be applicable for the smells identified in the new type of programming
language. It is overcome in our work by analyzing the object behavior when it is used in different places. Based on this
knowledge, refactoring has been applied with the consideration of the moving the objects across different classes and modules and
predict the behavior changes occurred in the programming languages. By doing so, efficient refactoring can be done which can be
used for any type of programming languages in order to avoid the smells at the time of mash up creation. The experimental
conducted were proves that the proposed methodology lead to better performance than the existing approach in terms of mash up
creation.

Keywords: Mash up, Refactoring, Smells, Behavior change.

INTRODUCTION

Software engineering is the process of gathering, analyzing
and developing new innovative ideas. The software
engineering tends to maintain the good qualified software
development. It is a one of the most popular approach in
which the already existing knowledge of program will be
utilized to create new ideas.

Mash up is the most improved and accepted approach in
today world through which burden of users can be reduced
considerably and the more knowledge can be learned. From
the name itself it is explained clearly that the mash ups are
the one which is used to gather and integrate the knowledge
from many sources. The important characteristics of mash
ups are visualization, integration and aggregation process
through which one can learn the most useful information. It
is the one which can be used to further produce the most
essential information. There are various types of mash ups
are present in today world, those are:

 Business mash up
 Consumer mash up
 Data mash up

Business mash up is the one which is used to combine the
resources of current application and the data from outside
resources to create a new source of language. It can be
useful for the business team in order to make collaboration
among the people and the developers.

Consumer mash up is created by analyzing the public
sources and combining the features from those data sources.
Consumer mash up can be used to create a new source for
the satisfaction of the users.

Data mash up is the one which is created by combining the
knowledge from the data driven applications like media and
information in order to produce a new type of information.

This data mash up is useful for the person who tends to do a
research process.

The characteristics of the mash up creation may suffer from
various deficiencies. One of the important deficiencies
which may occur at the time of mash up creation was smell
creation. This smell creation may affect the execution of
mash up in the worst manner. Thus smell creation during
mash u need to be considered more for the efficient
processing. And another limitation which may occur is the
data from different sources cannot be incorporated together
due to the different nature of the data. This problem needs to
be addressed in order to enable an incorporation of the
different type of data sources.

The main contribution of this work is to introduce the
efficient refactoring approach by using which the new code
can be constructed from the already existing codes without
changing the behavior. It can lead to an efficient
construction of the innovating methodology form the
existing approaches. And also this work focus to support an
different types of programming languages with different
behavior by using the same refactoring approach.

The organization of this work is given as follows: Section 1
gives the brief introduction about the refactoring and its
usage in today world. Section 2 gives an analysis of the
related researches which has been conducted already.
Section 3 gives a brief description about the proposed
methodology for achieving effective refactoring. Section 4
discusses as experimental test which has been conducted to
prove the effectiveness of the proposed methodology. And
finally in section 5 results that were obtained are concluded.

RELATED WORKS

In [1], refactoring with the satisfaction of user is achieved
by considering the smells present in the mash up. This work
aims to reduce the smell which occurs during the run time of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International Journal of Innovative Technology and Research (IJITR)

https://core.ac.uk/display/228547081?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Proceedings of the International Conference , “Computational Systems for Health & Sustainability”
17-18, April, 2015 - by R.V.College of Engineering,

Bangalore,Karnataka,PIN-560059,INDIA

All Copyrights Reserved by R.V. College of Engineering, Bangalore, Karnataka Page | 6

mash up creation and remove it during the mash up creation.
This process is tested in the yahoo pipe environment. Pipes
are nothing but the interface to connect the processing of the
new module and old module. The well efficient pipe can
combine the new module with the old module in the
efficient manner. The various types of smells are discussed
in this work for the construction of the good mash up
creation environment.

In [2], refactoring approach in the object oriented
programming languages is discussed in the detailed manner
which aims to provide suitable environment for the mash up
creation. The object oriented programming languages is the
combination of various functions and modules together in
order to create useful information. There will be a presence
of more interrelationship among the various functions and
modules where the input and output details will be shared.
In this environment, mash up creation will be more difficult
process which needs to consider more. This work aims to
build a refactoring for the object oriented programming
language in which more suitable environment can be
created.

In [3], new methodology for mash up creation is introduced
in which mash up is created with the consideration of the
user wish. In this work, at each and every iteration mash up
are created with the consideration of the users wish. The
mash up will be created by analyzing the nature of the
existing code and the new code. The result obtained after
combination of the old code with the new code, it will be
analyzed and revised based on the user requirement. After
gathering the requirements from the users, the efficient mash
up can be created with the consideration of the user requests.
And also this work considers the abstraction details of the
programming language through which one can obtain the
good refactoring code.

In [4], tool was developed through which the advice for the
good mash up creation can be obtained. It is done to
evaluate the more suitable environment through which one
can obtain the more efficient and useful information and one
can evaluate the various information of the coding structure.
MashUp advisor aims to provide ideas for the good mash up
creation by analyzing the factor of nature of programming,
the type of abstraction present in the environment and then
the different fields through which one can obtain the good
mash up environment. It is enabled by predicting the nature
and flow of information transaction among the various
constraints.

In [5], automatic creation of mash up is discussed through
which the complete coding can be analyzed and mash up can
be created. To do so, the entire environment will be
analyzed and predicted the nature of a coding and
requirement that has been obtained. Matchup methodology
is introduced to compare the existence features with the
following new idea. Match up module is used to identify the
similar measures which are present in the coding and thus it
is obtained by predicting the various features. Data model
and ranking metric is used to predict the nature of the coding
environment which exists in the various places.

In [6], mash up creation for the intranet application have
been discussed. Intranet application is the one which is used
to provide the network services for the organization or for
the one coverage area. There will be more communication
will arise among the different system that are connected
together for sharing the network information. In this phase,
mash up creation will be difficult where objects behavior
will be different in different places. This factor needs to be
considered in mind in order to predict the nature of the mash
up which is going to be proposed. The mash up creation
must provide useful information for the new innovative
ideas.

REFACTORING METHODOLOGY

Mash up is the one which intends to create a new source
from the presence of the existing sources. It is used to make
use of already existing sources and reduce the burden of
developers to create new innovative ideas. The refactoring is
one of efficient methodology which aims to create a new
source from the already existing source without changing
the behavior of the code. The main limitation which may
occur at the time of mash up creation was the smell creation
which needs to be avoided in order to give an efficient code.
In the existing work, the different types of smells are
identified and that are refactored to create a good mash up.
However, existing work cannot support the programming
languages where there is a lot of communication exists
among different modules and behavior of objects will be
different in different classes. In the proposed work, the
refactoring approach for the programming languages is
introduced which aims to eliminate the smells which may
occur due to the different behavior of objects and provide an
efficient mash up.

Refactoring in the programming languages are done with the
consideration of the program behavior. While combining the
new features with the already existing code, behavior of the
existing code should not be changed. It is the most essential
thing which needs to be considered in mind at the time of
refactoring process. The refactoring which is compiled in
our work to reach an efficient mash up are given as follows

 Constructing an super class form the more than two
available class

 Improving the performance of class by introducing the
sub class in which conditional test will be eliminated

 Placing the parent class into the class from which it is
inherited

 Replacing an member variables and functions of class
 Inter changing the original code with the function call
 Changing the meaning and name of the classes and

variables

The way to do this refactoring is discussed in the following
sub section in the detailed manner.

A. Constructing an super class form the more than two
available class

The construction of the super class from the existing classes
is done provide a new class in which behavior of all of the
existing class can be preserved. It is achieved by analyzing

Proceedings of the International Conference , “Computational Systems for Health & Sustainability”
17-18, April, 2015 - by R.V.College of Engineering,

Bangalore,Karnataka,PIN-560059,INDIA

All Copyrights Reserved by R.V. College of Engineering, Bangalore, Karnataka Page | 7

and predicting the behavior and nature of the available
classes and integrates them in to the new class. It is done by
extracting the inter relation present among the objects of the
different classes and presenting them in the hierarchical
manner. It is done so that the super class can be created
efficiently by abstracting the related objects of different
classes together.

B. Improving the performance of class by introducing the
sub class in which conditional test will be eliminated

In this step, refactoring is applied by considering the
conditional statements which are exist on the super class.
The super class may consist of various sub conditions which
will be more time consuming process. And also, the user
may want the new refactoring code among the set of
conditional which is present in the super class. It will be
more burdens to retrieve and present the super class with the
more conditions. To overcome this problem, the following
phase refactoring aims to present a class with various
conditional statements as the single class. For example, the
switch statement can be represented as the sub classes,
where each and every case is defined as the sub class. By
doing so, the complexity and burden of the code handling
can be reduced considerably.

C. Placing the parent class in to the class from which it is
inherited

In object oriented programming languages there may be a
possibility of presence of various sub classes which are
inherited from the single sub classes. It will be more
complex process, where there is a presence of many sub
classes. It can be aggregated together in order to create an
single aggregated class by using which behavior of every
sub classes can be obtained in the single place. However it
will lead to creation of smells due to the nature of presence
of the different behavior of the classes.

D. Replacing an member variables and functions of class

In object oriented programming languages, different classes
will consists of the different member and attributes. Each
and every attribute is used to create a more suitable
environment which intends to provide different behavior.
These attributes from different class may be wanted to
provide an single behavior based on the user requirement.
To achieve this, the movement of member class attributes
and function into the single class is done with the
consideration of the behavior changes. And also
consistences among the different attributes are taken in mind
in order to avoid the creation of smells in the mash up
creation process.

E. Inter changing the original code with the function call

The user may want to have an behavior of the programming
language but they may try to eliminate some part of coding
and introduce a new concept instead of it. But it will create
more smells by replacing the function with the different
function due to the change of behavior. This is done by
creating the new pipeline which intends to avoid the smell

creation and supports the integration of different behavior of
function with the same.

F. Changing the meaning and name of the classes and
variables

In some cases, the new programming may be wanted create
by without changing any of the behavior of the coding. It
can be done by renaming or replacing the attribute with the
help of another attribute. It is done by considering the
behavior similarity level of each and every attribute with the
other attributes. It is done by changing the class name,
variable name, member function name, data type of variable,
access control mode etc.,

Thus, efficient refactoring on the programming language is
achieved by following the above methodology. By following
this technique efficient refactoring can be achieved without
the presence of the smells and also these refactoring
methodology can be applied to any type of programming
language in which inter relationship are present.

EXPERIMENTAL RESULTS

The refactoring procedure proposed in this work is done
using the programming languages with many module and
functions. In our work, java programming is considered in
which refactoring is done. The experimental test were
conducted to prove that the effectiveness of the algorithm by
comparing it with the existing methodology in terms of the
processing time. The comparison is shown in the following
graph.

A. Processing Time

The processing time is the time taken to construct the
refactoring process. The less processing time will lead to a
more refactoring and support of many modules in the
particular period of time. The processing time obtained in
the existing work and proposed work is shown in the
following table.

Table 1. Processing Time For Each Data

Number
of Data

Processing Time in ms

Existing work Proposed work

50 22 17

100 28 19

150 33 22

200 37 25

250 41 27

300 46 32

350 49 37

400 54 42

The graphical result for the comparison of proposed
methodology with the existing method is shown in the
following figure 1.

Proceedings of the International Conference , “Computational Systems for Health & Sustainability”
17-18, April, 2015 - by R.V.College of Engineering,

Bangalore,Karnataka,PIN-560059,INDIA

All Copyrights Reserved by R.V. College of Engineering, Bangalore, Karnataka Page | 8

Fig.1. Efficiency of the process compared.

The above graph proves the proposed methodology
constructs a refactoring better than the existing
methodology. In the x axis total number of data is taken and
in the y axis processing time is taken. The comparison
proves that the existing methodology consumes more
processing time whereas the proposed methodology works
efficiently.

CONCLUSION

Refactoring is a methodology which is used to construct a
new source from the already existing sources by preserving
the behavior of the coding. In this work, the refactoring
approach for the programming language is introduced which
aims to reduce the problem of not supporting the different
programming languages. The proposed work can tolerate the
programming language with more condition which aims to
improve the performance and reduce the complexity level.
The experimental test conducted were proves that the
proposed methodology can provide better results than the
existing methodology.

REFERENCE

[1]. Kathryn T. Stolee, Sebastian Elbaum, “Refactoring
Pipe-like Mashups for End-User Programmers”,
Software Engineering (ICSE), 2011 33rd
International Conference on 21-28 May 2011

[2]. William F. Opdyke,”Refactoring Object-Oriented
Frameworks”, University of Illinois at Urbana-
Champaign Champaign, IL, USA, 1992

[3]. Anton V. Riabov, Eric Bouillet, Mark D. Feblowitz,
Zhen Liu and Anand Ranganathan, “Wishful Search:
Interactive Composition of Data Mashups”, Web
Engineering - Web Service Composition, 2008

[4]. Hazem Elmeleegy Anca Ivan, Rama Akkiraju,
Richard Goodwin, “MashupAdvisor: A
Recommendation Tool for Mashup Development”,
2008 IEEE International Conference on Web Services

[5]. Ohad Greenshpan, Tova Milo, Neoklis Polyzotis,
“Autocompletion for Mashups”, Proceedings of the
VLDB Endowment, Volume 2 Issue 1, August 2009

[6]. David E. Simmen, Mehmet Altinel, Volker Markl,
Sriram Padmanabhan, Ashutosh Singh, “Damia: Data
Mashups for Intranet Applications”, Proceedings of
the 2008 ACM SIGMOD international conference on
Management of data, Pages 1171-1182.

0

10

20

30

40

50

60

50 150 250 350

P
ro

ce
si

ng
 ti

m
e

in
 m

s

Total Number of Data

Existing work

Proposed work

