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Abstract --Usually in sample surveys information on more than one characteristic are collected and the 

data obtained are analyzed to get the required estimates for the multivariate population under study. If 

stratified sampling design is to be applied on such a population the individual optimum allocations don’t 

help much unless the characteristics are highly correlated. Therefore, in multivariate stratified sampling 

we need to work out an allocation that is optimum for all characteristics in some sense, that is, near 

optimum for all characteristics. Such an allocation is called a compromise allocation. Furthermore, in 

surveys usually the per unit measurement costs are taken as deterministic, that is, they remain constant 

throughout the survey. In practice the costs of measurement of different characteristics in various strata 

may change during the course of survey for reasons beyond the control of the sampler. Thus in some 

practical situations the measurement costs may become a random variable and the  problem of obtaining 

a compromise allocation becomes a Stochastic Integer Nonlinear Programming Problem (SINLPP). The 

present paper addresses the problem of obtaining an integer compromise allocation for multivariate 

stratified sampling with random cost of measurements. A solution procedure has been developed for the 

formulated problem. A practical application of the procedure is also given through a numerical example 

to illustrate the computational details.    

Keywords- multivariate stratified sampling; compromise allocation; random measurement costs  

I. INTRODUCTION 

In the study of multivariate stratified sampling, individual optimum allocation is of no use unless the 

characteristics are highly correlated to each other (See Cochran[1]). With the goal of achieving a common 

allocation in a multivariate stratified sampling that suits all the characteristics several compromise criteria have 

been adopted by various authors. 

The problem of determining a compromise allocation in multivariate stratified sampling was studied by many 

authors e.g., Neyman [2], Peter and Bucher [3] Geary [4], Dalenius [5], Ghosh [6], Yates [7], Folks and Antle 

[8], Kokan and Khan [9], Chatterjee [10], [11] and [12], Ahsan and Khan[13] and [14], Schittkowski [15], 

Chromy [16], Bethel [17] and [18], Jahan, Khan and Ahsan [19], Khan, Jahan and Ahsan[20], Rahim [21], 

Holmberg [22], Bosch and Wildner [23], Singh [24], Kozak [25], Diaz Garcia and Garay Tapia [26], Javed, 

Bakhshi and Khalid [27], Bakhshi, Khan and Ahmad [28], Khowaja, Ghufran and Ahsan [29] and others.  

Assuming that the population means are of interest Chatterjee [10] proposed a compromise criteria as 

minimizing the sum of relative increases in the variances of the stratified sample means, when a non optimum 

allocation is used instead of individual optimum allocations for a fixed total cost. It was observed that in case of 

small strata sizes the results computed by Chatterjee’s formula may became infeasible due to oversampling. 

Khan, Jahan and Ahsan [20], considered this problem as an Integer Nonlinear Programming Problem and 

proposed a method of solution using Dynamic programming technique. 

The present paper deals with the problem of obtaining a compromise allocation by using Chatterjee’s [10] 

compromise criterion when within stratum costs of measurement are random variables. A small probability of 

violation is attached with the cost constraint. Chance Constrained Technique is used to obtain a solution to the 

formulated Stochastic Integer Nonlinear Programming Problem (SINLPP). 
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II. FORMULATION OF THE PROBLEM AS A SINLPP 

Consider a multivariate stratified population with L strata and p characteristics. Assume that the estimation of p 

population means                are of interest. In this manuscript the notations of Cochran [1] are used 

unless specified otherwise. The problem of finding a compromise allocation by minimizing the sum of relative 

increases in the variances of the stratified sample means       of the p population means     ;            using 

a non optimum allocation for a fixed budget has been formulated by Chatterjee [10] as  

Minimize 
 

 
  

      
     

 

  

 
   

 
    (1) 

Subject to C =      
 
    (2) 

Where    denote the costs of measuring all the p characteristics in the     stratum;              

He obtained the continuous solution by using Lagrange Multipliers Technique as 

   
      

  
 

        
  

 

 (3) 

Where    
             denote the optimum allocation for the               characteristics. 

For practical implementation, one needs integer sample sizes. The continuous solution (3) may be rounded off to 

the nearest integer. A major problem with this approach is that the rounded off integer solution may become 

infeasible or non optimum. Using (3) there are also chances of encountering the problem of oversampling, that 

is, the sample size    for some   may exceed the corresponding stratum size     Furthermore, for estimating the 

stratum variances   
  we need      for all h.  

Taking into account the above discussed points a more general formulation of the problem       (1) – (2) may be 

given as the following Integer Nonlinear Programming Problem (INLPP). 

Minimize f (                 
 

  
  

      
     

 

  

 
   

 
    (4) 

Subject to      
 
       (5) 

                                 (6) 

                                                (7)                                                                  

Where the total cost of the survey C is given by 

                                   
 
   , 

    is the overhead cost and          

The cost constraint is expressed as an inequality because an equality sign may lead to an infeasible problem. In 

usual practice the stratum wise costs of measurement    are taken as deterministic, that is, they remain constant 

during the course of survey. However, there may be situations where    varies due to the random causes beyond 

the control of the sampler. In such cases the deterministic model (4) - (7) to obtain a compromise allocation will 

not be appropriate. Thus it would be more realistic to assume that    are random variables with a known 

probability distribution. We assume that    are independently and normally distributed random variables with 

means     and variances    
  h = 1, 2, . . . ,L. Under the above assumptions the INLPP (4) - (7) will become a 

Stochastic Integer Nonlinear Programming Problem (SINLPP).  

To apply the Chance Constrained Technique the constraint in (5) is expressed as  

                        P              (8)  

Where (1   ) denote a small probability of violation of the constraint. This gives the SINLPP as  

Minimize f (n) = 
 

  
  

      
     

 

  

 
   

 
                                                                      (9) 

Subject to                (10) 
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 (11)

                       (12) 

Where               
                

III. THE DETERMINISTIC EQUIVALENT OF THE SINLPP 

Assuming that the sample estimates of      and    
  are available as            

   objective function in (4) will be 

a random variable with estimate of its mean and variance as    
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respectively. 

Using (13) and (14) the deterministic equivalent of the objective function (11) may be given as  

F (n) =   
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Where           are non negative constants whose values indicate the relative importance of the mean and the 

standard deviation of f (n). Without loss of generality we assume that        . 

Let              
 
                                                                             (16) 

Since    are normally distributed random variables, d will also be normally distributed with mean 

       
 
       (17) 

and variance V (d)  =            (18) 

Where n = (            ) and V is the variance-covariance matrix  

 

                              

                                 
 

          
 

          
 

        

      of ch.                            

Since             are independent, the covariance terms vanish. 

The constraint (10) can now be expressed as 

                       P            

or                   P  
     

       
    

      

       
        

or                  P     
      

       
       (19) 

where Z            

The probability of realizing d     is given by 

                      P         = Ø  
       

       
   (20) 

where      represents the cumulative distribution function of the standard normal distribution evaluated at x. If 

  denotes the value of the standard normal variable at which Ø ( )   , then 

                    Ø 
      

       
          (21) 

Inequality (21) will be satisfied if and only if 
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or     +         -      0 

or                
 
                   (22) 

Inequality (22) gives the deterministic equivalent to the linear chance constraint (10) (See Rao [32]). 

Using (15) and (22) the deterministic equivalent of the SINLPP (9) - (12) may be given as:   

 Minimize    
 

  
  

       
     

 

  

 
   

 
         

 

  
   

    
     

     
 

  
 

 
   

 
     (23) 

Subject to     
 
                  (24) 

                  2        (25)   

                        (26) 

When numerical values of the parameters of the INLPP (23)-(26) are available it can be solved by using an 

appropriate nonlinear programming technique. 

IV. SOME OTHER COMPROMISE ALLOCATIONS 

In this section proportional and some other well known compromise allocations are worked out, for random 

cost, for the sake of comparison with the proposed method. 

A. Proportional allocation 

In stratified sample surveys proportional allocation is the most convenient for obtaining an allocation. In this 

allocation the sample sizes    are taken proportional to the corresponding strata weights, that is, 

                 

 or        (27) 

where      
 
    is the total sample size. 

B. Cochran’s Average allocation 

Cochran[1] suggested a compromise allocation by averaging the individual optimum allocations for all the 

characteristics. This gives  

   
 

 
    

 

 

   

            

When the costs are random variable the individual optimum allocations will be the solution to the ‘p’ SINLPPs 

 

          
  

    
 

   

 
                

                                  
        
            

               

 
 
 

 
 

                 

The deterministic equivalents of the problems in (28) are given by 
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Minimizing Trace of variance-covariance Matrix 

Sukhatme [30] obtained the compromise allocation by minimizing the trace of variance-covariance matrix of 

      for deterministic cost. This problem as an SINLPP may be given as  

Minimize   
  

    
 

  

 
   

 
     (30) 

Subject to P      
 
           (31) 

2        (32) 

                              (33) 

where               
    

The solution may be obtained by solving the equivalent deterministic INLPP 

   Minimize   
  

    
 

  

 
   

 
     (34)                               

   Subject to     
 
          

            (35) 

                    2              

                                       (37) 

V. AN APPLICATION OF THE PROPOSED ALLOCATION 

In stratification with three strata (L=3) and two variables (p=2), the values of   ,                       
  are 

given in Table I. The total cost C of the survey is fixed as 250 units with the overhead cost   =50 units. Thus 

                   For the sake of simplicity                                             

         Using standard normal area table we get                            . 

TABLE I. DATA FOR THREE STRATA AND TWO CHARACTERISTICS 

h                       
  

1 18 0.3 2 1.5 3 5 

2 27 0.45 4 2 4 7 

3 15 0.25 20 35 5 8 

On substituting the values from the data given in Table 1 the INLPP (23)-(26) takes the form 

Minimize 
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    (38) 

Subject to 

3                     
     

     
           (39)      

  
       
       
       

        (40) 

                              (41)  

Using the optimization software LINGO[31] the solution to the INLPP (38)-(41) is obtained as: 

                     with a total sample size of n = 21. 

The variances for the two characteristics under this allocation are                           
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A. Proportional allocation 

Using the values from Table I, (27) gives the proportional allocation for n = 21 as 

                                                      

5.2. Cochran’s Average allocation 

For the given data we get the INLPP (29) for j = 1 and j = 2 as follows: 

For j=1 

Minimize 
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Subject to 3                     
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                            (45) 

 Using LINGO the solution to the problem (42)-(45) is obtained as    

                    (46) 

For j=2: 

Minimize 
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Subject to 3                     
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                                                                                                     (50) 

Using LINGO software to the problem (47)-(50) we get  

                      (51) 

Averaging over the characters and rounding off, the Cochran’s allocations are obtained as: 

                                                                                                           

The corresponding values of the two variances are                              

C. Minimizing the Trace: 

When the numerical values of    ,                               
  are substituted from Table I, the INLPP (34) - 

(37) becomes 

 Minimize  
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Subject to 3                     
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The corresponding compromise allocations obtained by LINGO is 

                    

with the value of the objective function, which is also the trace value as 8.064583 
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VI. CONCLUSION 

The results are summarized in Table II. The table also gives a comparative statement of the discussed 

allocations as compared to the proportional allocation in terms of their relative efficiencies (R. E.).  

TABLE II. RELATIVE EFFICIENCIES (R. E.) OF THE COMPROMISE ALLOCATIONS AS COMPARED TO THE 

PROPORTIONAL ALLOCATION 

S. No. Proportional 

and 

Compromise 

allocations 

       

 

h = 1, 2, 3 

 

   

 

   

Trace R.E. 

            

1 

 

2 

 

3 

 

4 

Proportional 

 

Cochran’s 

 

Minimizing 

Trace 

Proposed 

6, 10, 5      

 

4, 8, 11       

 

2, 4 , 15 

 

2, 4 , 15 

5.38400 

 

2.76772 

 

- 

 

2.65666 

15.42725 

 

7.112102 

 

- 

 

5.40795 

20.81125 

 

 9.87982 

 

8.06458
* 

 

8.06395 

1.00000 

 

2.10644 

 

2.58057 

 

2.58077 

 

*The trace value is the value of the objective function given by LINGO. 

The last column of Table II shows that the relative efficiency of the proposed allocation is maximum as 

compared to other discussed allocations. Thus with random costs the proposed allocation gives better results.  
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