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Abstract: - This paper illustrates an atomic-scale finite element method AFEM to study the post buckling
behavior of Carbon Nano Tubes CNTs. The computed energy curves and critical strain for the (8, 0)
single-walled CNT SWNT agree with atomistic simulations. The AFEM is very fast and flexible
outstanding to the competence of the finite element method. For the SWNT, the strain energy curves have
apparent jumps at morphology changes and during the smooth continuation stages of post buckling, the
strain energy varies in the linear order with the strain. For the double-walled CNT, there are only small
strain energy releases, and the strain energy also changes approximately piecewise linearly with the
strain. The morphologies are obtained in detail. AFEM is computationally rapid and is an alternative
efficient way to study the post buckling of CNTs.
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I. INTRODUCTION

Experimental analysis and hypothetical research
have displayed exclusive mechanical properties of
carbon nanotubes CNTs1-2. Large deformation of
CNTs in the post buckling stage was found in the
atomic force microscope test of Falvo5 and the
transmission electron microscopy test of Lou-rie6.
Because there are few quantitative investigational
results on their post buckling characteristics,
extensive hypothetical research has been carried out
to examine their post-buckling behavior. In general,
the widely used theoretical methods include
atomistic based methods7-9 and continuum
mechanics12-17.  Using molecular dynamics (MD),
Yakobson7 found that single-walled CNT SWNT
switches into different morphological patterns under
large strain and that each shape change corresponds
to an sudden release of energy. Garg8 performed
MD simulation on the interactions between
proximal probe guidelines composed of CNTs and
diamond, and between the probe instructions and
grapheme surfaces. Liew11 studied the axial
instability of SWNT and MWNTs. The atomistic
based methods are currently far from predicting
CNTs behavior in large length and time scales, due
to insufficient computing power.11,18 Several
elasticity models can be relatively used. Ru12

presented a shell model for the axial buckling of a
double-walled CNT DWNT. He recognized a shell
buckling model based on the van der Waals
interaction between any two layers of MWNT.
Pantano16 presented a structural mechanics model
for the wrinkling study of MWNT. Shen17 presented
an elastic shell model for the post buckling of
DWNT subject to external hydrostatic pres-sure. In
the above continuum models, the behavior of
discrete atoms and concrete configuration of CNT

in the post-buckling stage can barely be achieved.
Liu19, 20 proposed an atomic-scale finite element
method AFEM. Using interatomic potential to
consider the multibody interactions, AFEM is as
precise as molecular mechanics. It is much faster
than molecular mechanics because it uses first and
second order derivatives of total energy, while
molecular mechanics employs the conjugate
gradient method which only uses its first order
derivative.

This paper employs AFEM to study the
postbuckling behavior of CNTs. The achieved
energy curves and critical strain for the 8, 0 SWNT
agree well with the fresh atomistic simulations. It is
also found that the AFEM simulation employing the
second generation empirical potential of Brenner .21

is better than that employing Brenners first
generation empirical potential.22 In the strain energy
curves for the (7,7) SWNT, there are apparent
jumps at morphology changes. In the smooth
continuation stages of postbuckling, the strain
energy increases roughly linear. Different results on
the critical strains and the postbuckling
characteristics are compared and discussed for two
Brenners poten-tials. For the DWNT, there are only
small strain energy releases at morphology changes,
and during each stage of postbuckling, the strain
energy also varies roughly linear with the strain. For
the SWNT and DWNT in the post-buckling stages,
their morphologies are presented in detail, and the
different characteristics such as the strain energy
and morphologies are compared.
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II. POTENTIAL FUNCTION AND AFEM
FOR CNT’S

Using Brenners potential21, the total potential
energy Utot stored in the atomic bonds of a CNT is
expressed as

[1]

Here, N is the number of total atoms in the system
and EvdW is the energy due to vdW interaction. The
inter atomic forces are modeled according to the
covalent bonding interactions

[2]

where functions VR and VA are pair-additive
interactions that represent all the inter atomic
repulsions core-core, etc. and attractions from
valence electrons, respectively. The quantity rij is
the distance between a pair of the nearest-neighbor
atoms i and j, and bij is the reactive empirical bond
order. Each carbon atom interacts with both the
nearest- and second nearest-neighboring atoms, due
to the reliance of the inter atomic potential on bond
length and bond angle. For a SWNT, the covalent
bond among atoms is the dominant interaction. In
the following simulation on the SWNT, vdW
interaction is neglected. For a MWNT, vdW
interaction is taken as a nonlinear spring when the
distance between two carbon atoms is less than the
cutoff radius. The total energy Etot (x) is

[3]

Where x = x1, x2... xN
T is a vector of the positions of

atoms, and Fi is the external force exerted on atom i.

In AFEM for CNTs proposed by Liu19, an atomic-
scale finite element consists of ten atoms because
each carbon atom has three nearest-neighboring
atoms and six second nearest-neighboring atoms.
The associated element stiffness matrix and the non
equilibrium force vector are therein. The number of
nonzero entries in the global stiffness matrix K is of
order N, so is the computational effort to solve Ku=
P.19

III. SIMULATION ON POSTBUCKLING
OF CNT’S

Consider an initial equilibrium configuration of
CNT. One end of the CNT is fixed, and the in-plane
displacements of the other end are proscribed. An
axial displacement can be applied to compress it.
The AFEM is performed to obtain its new
symmetry configuration. Then a further
displacement is applied in small step. It deforms
linearly when the strain is small. In the graph of
average strain energy per atom versus strain, an
equilibrium path representing linear deformation is
extended until the stiffness matrix K loses positive
assuredness.

After that, K is no longer positive definite, it is
replaced by K* = K + I, where I is the identity
matrix and is a positive number to ensure the
positive assuredness of K*.19,20 A trial arrangement
is achieved by the AFEM. Based on the trial initial
configuration, a new is chosen to make sure the
positive definiteness of the new K*. We execute the
AFEM computation and replace the stiffness matrix
frequently.

The computation will finally meet without replacing
the stiffness matrix and a new point in the
equilibrium path is found. The repeated alternate of
stiffness matrix is an efficient way to obtain the
modified initial configuration, and the final
modified initial configuration may lead to a
converged result. In the last step the replacement is
not performed, so the final results will be the
equilibrium configuration of the original system.
Based on the new point, a new stable equilibrium
path can be obtained. All calculation is performed
by ABAQUS via its UEL User-defined elements
subroutine.22

Figure 1: Comparison among the curves of
average strain energy for the (8,0) SWNT.

A. Verification of AFEM

We use a (8, 0) zigzag SWNT, with a length of 4.07
nm and a diameter of 0.63 nm, under axial
compression as a first example. The common strain
energy per atom is considered as the difference in
the average energy per atom in the strained and the
unstrained states as a function of strain shown in
Fig. 1. To show the effect of dissimilar potential on
buckling, Brenners first generation and second
generation empirical potentials are engaged. In Ref.
9, the structural deformation of the (8, 0) SWNT
strained at 0.12 in the comprehensive tight-binding
MD is totally spontaneous, most important to plastic
collapse of the tube. Using the second generation
empirical potential of Brenner, Xiao10 investigated
the axial instability of the SWNT by MD simulation
and found that it can deform elastically up to a
strain of 0.10. Liew11 performed MD simulation on
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a (8, 0) SWNT also with the second generation
empirical potential of Brenner. and showed that it
can be compressed up to a strain of 0.135 before
buckling. In our calculation, when the second
generation empirical potential of Brenner is
engaged, the critical strain is 0.105; when Brenner’s
first generation empirical potential is engaged, the
critical strain is 0.078. The strain energy curves of
Srivastava, Xiao, and Liew. are compared in Fig. 1.
It can be easily observed that our energy curve
approaches their directly. The energy curves of
Xiao and ours based on the second generation
empirical potential of Brenner et al. is almost
concurrent. Srivastava achieved the highest strain
energy using the generalized tight-binding MD
scheme of Menon23 the simulations based on which
are in good agreement with investigational results
for the structural and vibrational properties of
CNTs. Judging from the energy curve and the
critical strain of Srivastava, our AFEM simulation
based on the second generation empirical potential
of Brenner is improved than that based on Brenner’s
first generation empirical potential. The time
required actually depends on the control parameters
such as the applied total displacement step size and
the initial step size. In this recreation, only ten
seconds are needed to achieve the final critical
strain.

Figure 2: The curve of average strain energy for
the (7, 7) SWNT when both Brenner’s potentials

are employed.

B. Smulation results on postbuckling of SWNT

We Investigate a (7, 7) armchair SWNT, with a
length of 6 nm and a diameter of 0.95 nm, under
axial compression to study its postbuckling
behavior. Both Brenner’s potentials are employed,
and the two associated energy curves are presented
in Fig. 2 to show the effect of different Brenner’s
potential on the characteristics of postbuckling
behaviors. The strain energy apparently jumps at
morphology changes in the continuum mechanics.
Our current research shows that the energy curves
of the SWNT have the same feature. In the energy

curves of Yakobson7 and Iijima25 by MD
simulation, there are quick releases of energy, while
in our energy curves, there are always two apparent
jumps corresponding to abrupt morphologic
changes.

When the second generation empirical potential of
Brenner is employed, the morphologies of SWNT at
each characteristic strain are shown in Fig. 3. In the
postbuckling stages, its morphologies are not axis
symmetric. For illustration, we present them in two
perpendicular directions. At small strains, it
deforms linearly and keeps straight in Fig. 3a. The
strain energy grows parabolically as shown in the
part from the origin to point a in Fig. 2, until the
critical strain of 0.0492. After that, the strain energy
drops about 22%, and it enters into the postbuckling
stage. At the beginning of this stage, Fig. 3 b shows
three perpendicular battenings. With increasing
strain, the centre becomes batter and narrower in
Fig. 3 c. From point b to c in Fig. 2, the strain
energy increases approximately linearly until the
second critical strain of 0.101. Then the strain
energy drops about 30.5% to another straight line
and increases again. The battening corresponds to a
axis in Fig. 3 d, similar to that of Yakobson7. In
their work it is squashed entirely at a strain of 0.13,
while in our simulation, it can buckle steadily, with
only its central part being compressed, until the
strain of 0.17 in Fig. 3e .

When Brenner’s first generation empirical potential
is employed, similar to the former case, the energy
curve has one linear deformation stage and two
postbuckling stages. Its morphologies at each
characteristic strain are nearly the same as those in
the former case. The critical strain is 0.064. Liu et
al.19,20 also showed that it is between 0.06 and 0.07.
Then the strain energy drops about 17.2% and it
enters into the postbuckling stage where it also
displays three battening. The second critical strain is
0.904, and the strain energy drops about 20.9% to
another straight line and increases again. The
battening works as a hinge, too. It can deform
steadily until the strain of 0.174.

In the linear stages shown in Fig. 2, the energy
when the second generation empirical potential of
Brenner et al. is employed is always larger than that
when Brenner’s first generation empirical potential
is employed. In each case, it is found in Fig. 2 that
in the postbuckling stages the energy changes
approximately linearly with strain, in agreement
with Yakobson7 and Liew11. There are always
apparent drops at critical points in the energy curve,
consistent with the recent research. In each case,
due to two obvious energy drops, our maximum
strain energy is much smaller than that of
Yakobson7. For each curve, the slope of the straight
line in the second stage of post buckling is smaller
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than that in the first stage of post buckling. When
the second generation empirical potential of
Brenner is employed, the critical strain is smaller,
while the second critical strain is larger, and the
slope of the straight line is larger in the two stages
of post buckling, respectively.

Figure 3:. The morphologies of (7, 7) SWNT at
each characteristic strain when Brenner’s
“second generation” empirical potential is

employed. In the postbuckling stages (b)–(e), they
are presented in two perpendicular directions. (a)

Morphology of the SWNT at a characteristic
strain of 0.049 (point a in Fig. 2). (b) Morphology
of the SWNT at a characteristic strain of 0.0505
(point b in Fig. 2). (c) Morphology of the SWNT
at a characteristic strain of 0.100 (point c in Fig.

2). (d) Morphology of the SWNT at a
characteristic strain of 0.1016 (point d in Fig. 2).
(e) Morphology of the SWNT at a characteristic

strain of 0.176 (point e in Fig. 2).

C. Smulation results on postbuckling of DWNT

The second-generation empirical potential of
Brenner et al. is employed to study postbuckling
behavior of 5, 5 and 10, 10 DWNT, with a length of
6.0 nm and a diameter of 1.356 nm. The strain
energy curve is shown in Fig. 4. The critical strain
is 0.046, where the strain energy is 0.061 eV and
then drops 4.6%. The strain energy curve has one

linear deformation stage and many postbuckling
stages, and there are only small energy releases at
morphology changes, while in the case of SWNT,
the strain energy can drop 10% - 30% at
morphology changes. In each postbuckling stage,
the strain energy increases approximately linearly,
and the slope of the latter line section is smaller than
that of the former one, consistent with the
simulation on the SWNT. Because there is no large
energy drops, the final strain energy at the strain of
0.11 is 2.6 times that at the critical strain.

Figure 4: The curve of average strain energy of
the (5, 5) and (10, 10) DWNT when the Òsecond

generation empirical potential of Brenner is
employed.

Forces that the inner wall and the outer wall
withstand are shown in Fig. 5 as a function of the
strain. Before the buckling, two forces increase very
fast and approximately linearly, and the latter is
almost twice of the former. At the critical strain, the
force that the inner wall withstands decreases
29.3%, and the force that the outer wall withstands
decreases 33.5%. In the first stage of post buckling,
two forces increase.

Figure 5: The forces suffered by the inner and
outer walls, respectively, and their resultant via the

strain for the (5, 5) and (10, 10) DWNT
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Figure 6: The morphologies of the (5, 5) and (10,
10) DWNT when the “second generation”

empirical potential of Brenner is employed. They
are presented in two perpendicular directions. (a)
Morphology of the DWNT at a strain of 0.05. (b)
Morphology of the DWNT at a strain of 0.07. (c)
Morphology of the DWNT at a strain of 0.09. (d)

Morphology of the DWNT at a strain of 0.11.

In the second stage of the postbuckling, the force
that the inner wall withstands increases slowly
while that the outer wall withstands decreases
slowly. In the following stages, two forces decrease
very slowly. When the strain is 0.114, the force the
inner wall withstands is 116.6 eV/nm, while the
force the outer wall withstands is 185.1 eV/nm, and
the latter is 1.59 times of the former. During the
postbuckling, the mechanism on how the applied
load is distributed to the two walls of DWNT is
changing with the configuration. The resultant force
that two walls of the DWNT withstand is also
shown in Fig. 5. Similarly, before the buckling, the
force increases very fast and approximately linearly.
At the critical strain, it decreases 32.1%. The force
increases with the strain in the Þrst stage of the
postbuckling and then decreases very slowly.

The morphologies at the strains of 0.05, 0.07, 0.09,
and 0.11 are shown in Fig. 6 in two perpendicular
directions. Similar to the SWNT, the morphologies
of both the inner and outer tubes of the DWNT are
not axis symmetric. Due to the complex vdW
interaction between two walls, its morphologies are
much more complicated than those of the SWNT 7,

7 though they have the nearly identical length. At
the strain of 0.05, it contains two perpendicular
battenings, as shown in Fig. 6 a. At the strains of
0.07, 0.09, and 0.11, it contains five perpendicular
battenings, as shown in Figs. 6 b - 6 d. With the
strain increasing, the battening also become batter
and narrower. At the strain of 0.11, the inner wall is
almost squashed. When the strain is very large, for
the SWNT, the central battening behaves like a
hinge, while for the DWNT, the battening still does
not behave like a hinge at the strain of 0.11.

IV. CONCLUSION

This paper illustrated the AFEM to study the
postbuckling of CNTs. The energy curves and
critical strain for the (8, 0) SWNT verify the
application of the AFEM. Whether Brenner’s or the
second generation empirical potential of Brenner is
adopted, the energy curve of SWNT always has one
linear deformation stage and several postbuckling
stages, and there are apparent jumps at morphology
changes. In the smooth postbuckling stages, the
strain energy increases approximately linearly with
the strain. For the DWNT, the strain energy has
relatively small drops, and during each stage of
postbuckling, it also changes approximately linearly
with the strain. For the SWNT and DWNT in the
postbuck-ling stages, their morphologies are
illustrated in detail, and the different characteristics
such as the strain energy and morphologies are
compared. The AFEM is very fast and flexible due
to the efficiency of the finite element method.
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