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I. PRELIMINARIES  

Let X be a non-empty set and I= [0,1]. A fuzzy set 

on X is a mapping from X in to I. The null fuzzy set 

0 is the mapping from X in to I which assumes only 

the value is 0 and whole fuzzy sets 1 is a mapping 

from X on to I which takes the values 1 only. The 

union (resp. intersection) of a family {Aα: Λ}of 

fuzzy sets of X is defined by  to be the mapping sup 

Aα (resp. inf Aα) . A fuzzy set A of X is contained in 

a fuzzy  set B of X if A(x) ≤ B(x) for each xX. A 

fuzzy point xβ in X is a fuzzy set defined by xβ (y)=β 

for y=x and x(y) =0 for y  x, β[0,1] and y  X .A 

fuzzy point xβ is said to be quasi-coincident with the 

fuzzy set A denoted by xβqA if and only if β + A(x) 

> 1. A fuzzy set A is quasi –coincident with a fuzzy  

set B denoted by AqB if and only if there exists a 

point xX such that A(x) + B(x) > 1 .A ≤ B if and 

only if (AqB
c
). A family  of fuzzy sets of X is 

called a fuzzy topology [2] on X if 0,1 belongs to  

and  is super closed with respect to arbitrary union 

and finite intersection .The members of  are called  

fuzzy super open sets  and their complement are 

fuzzy super closed sets. For any fuzzy set A of X the 

closure of A (denoted by cl(A)) is the intersection  

of all the fuzzy super closed super sets of A  and the 

interior of A (denoted by int(A) )is the union of all 

fuzzy super open subsets of A. 

Defination1.1[5]:- Let  (X,)  fuzzy topological 

space and AX then 

1. Fuzzy Super closure  

scl(A)={xX:cl(U)A≠} 

2. Fuzzy Super interior  sint(A) 

={xX:cl(U)≤A≠} 

Definition 1.2[5]: -A fuzzy set A of a fuzzy  

topological space (X,) is called: 

(a)  Fuzzy super closed if scl(A )  A. 

(b)  Fuzzy super open   if 1-A is  fuzzy super 

closed sint(A)=A 

Remark 1.1[5]:- Every fuzzy closed set is fuzzy 

super closed but the converses may not be true. 

Remark 1.2[5]:- Let A and B are two fuzzy super 

closed sets in a fuzzy topological space (X,), then 

A  B is fuzzy super closed. 

Remark 1.3[5]:- The intersection of two fuzzy super 

closed sets in a fuzzy topological space (X,) may  

not be fuzzy super closed.  

Definition 1.3[1,5,6,7]:- A fuzzy set A of a fuzzy 

topological space (X,) is called: 

(a) fuzzy semi super open if there exists a super 

open set O such that O A cl(O). 

(b) fuzzy semi super closed if its complement 1-

A is fuzzy semi super open. 

Remark 1.4[1,5,7]:- Every fuzzy super open (resp. 

fuzzy super closed) set is fuzzy semi super open 

(resp. fuzzy semi super closed) but the converse 

may not be true .  

Definition 1.4[5]:- The intersection of all fuzzy  

super closed sets which contains A is called the semi 

super closure of a fuzzy  set A of a fuzzy topological 

space (X,) . It is denoted by scl(A). 

Definition 1.5[3,8,9,10, 11]:- A fuzzy set A of a 

fuzzy topological space (X,) is called: 

1. fuzzy g- super closed if cl(A) ≤ G whenever A 

≤ G and G is super open. 

2. fuzzy g- super open if its complement 1-A is 

fuzzy g- super closed. 

3. fuzzy sg- super closed if scl(A)  ≤ O whenever 

A ≤ O and O is  fuzzy semi super open.  

4. fuzzy sg- super open if  if  its complement 1-A  

is sg- super closed. 

5. fuzzy gs- super closed if scl(A) ≤ O whenever 

A ≤ O and O is   fuzzy super open. 

6. fuzzy gs- super open if  if  its complement 1-A  

is gs- super closed. 

Remark 1.5[10,11]:- Every fuzzy super closed 

(resp. fuzzy super open) set is fuzzy g- super closed 

(resp. fuzzy g- super open) and every fuzzy g-super 

closed (resp. fuzzy g-super open) set is fuzzy gs-
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super closed (resp. gs –super open) but the   

converses may not be true. 

Remark 1.6[10,11]:- Every fuzzy semi super closed 

(resp. fuzzy semi super open) set is fuzzy sg-super 

closed (resp. fuzzy sg-super open) and every fuzzy  

sg-super closed (resp. fuzzy sg-super open) set is 

fuzzy gs-super closed (resp. gs - super open) but the 

converses may not be true. 

Definition 1.6.[3,8,9,10, 11] A fuzzy set A of (X,) 

is called : 

(1)  Fuzzy semi super open (briefly, Fs - super 

open) if A ≤ cl(int(A)) and a fuzzy semi 

super closed (briefly, Fs- super closed) if 

int(cl(A))≤ A . 

(2)  Fuzzy pre super open (briefly, Fp- super 

open) if A ≤ int(cl(A)) and a fuzzy pre super 

closed  (briefly, Fp- super closed) if 

cl(int(A)) ≤ A . 

(3) Fuzzy  super open (briefly, F- super open) 

if A ≤ IntCl(Int(A)) and a fuzzy - super 

closed (Briefly, F- super closed) if cl 

(int(cl(A))) ≤ A . 

(4)  Fuzzy semi-pre super open (briefly, Fsp- 

super open) if A ≤ cl(int(cl(A)) and a fuzzy  

semi-pre super closed (briefly, Fsp- super 

closed) if int(cl(int(A))) ≤ A]. By FSPO(X,), 

we denote the family of all fuzzy semi-pre 

super open sets of fts X .  

The semi closure ( resp - super closure , semi-pre 

super closure of a fuzzy set A of (X, ) is the 

intersection of all Fs- super closed (resp. F- super 

closed, Fsp- super closed) sets that contain A and is 

denoted by scl(A) (resp.  cl(A) and spcl(A)).  

Definition 1.7. [3,8,9,10, 11]:- A fuzzy set A of (X, 

 ) is called : 

(1)  Fuzzy generalized super closed (briefly, Fg-

super closed) if cl(A)  H, whenever A  H 

and H is fuzzy super open set in X; 

(2)  Generalized fuzzy semi super closed (briefly, 

gFs- super closed) if scl(A) H, whenever  A 

  H and H is Fs- super open set in X.  

(3)  Fuzzy generalized semi super closed (briefly, 

Fgs- super closed) if scl(A)  H, whenever A 

 H and H is fuzzy super open set in X; 

(4)  Fuzzy  generalized super closed (briefly, 

Fg- super closed) if  cl(A)H, whenever A 

 H and H is fuzzy super open set in X; 

(5)  Fuzzy generalized - super closed (briefly, 

Fg_- super closed) if  cl(A)  H, whenever 

A  H and H is F- super open set in X;  

(6)  Fuzzy generalized semi-pre super closed 

(briefly, Fgsp- super closed) if spcl(A)  H, 

whenever A  H and H is fuzzy super open 

set in X. 

Definition  1.8. [3,8,9,10, 11]:- A fuzzy point xpA 

is said to be quasi-coincident with the fuzzy set A 

denoted by xpqA iff p + A(x) > 1. A fuzzy set A is 

quasi-coincident with a fuzzy set B denoted by AqB 

iff there exists x  X such that A(x) + B(x) > 1. If A  

and B are not quasi-coincident then we write AqB. 

Note that A  B , Aq(1−B). 

Definition 1.9. [3,8,9,10, 11]:- A fuzzy topological 

space (X, ) is said to be fuzzy semi super connected 

(briefly, Fs- super connected) iff the only fuzzy sets 

which are both Fs- super open and Fs- super closed  

sets are 0 and 1. 

II. FUZZY G-S UPER CONTINUOUS  

MAPPINGS  

Definition 2.1: A mapping f: (X,) →(Y,σ) is said 

to be fuzzy g-super continuous if the inverse image 

of every fuzzy super closed set of Y is fuzzy g- 

super closed in X. 

Theorem 2.1:A mapping f: (X,) →(Y, σ) is fuzzy  

g-super continuous if and only if the inverse image 

of every fuzzy super open set of Y is fuzzy g- super 

open in . 

Proof: It is obvious because f
-1

(1 - U) 1 – f
-1

(U) for 

every fuzzy set U of Y. Remark 2.1: Every fuzzy  

super continuous mapping is fuzzy g-super 

continuous, but the converse may not be true. For, 

Example 2.1 : Let X = {a,b}, Y={x,y} and the fuzzy 

sets U  X, V  Y defined as follows U(a) = 0.5 

U(b) = 0.7, V(x) = 0.3 V(y) = 0.2, Let  = {0,U,1} 

and σ = {0,V,1} be topologies on X and Y 

respectively. Then the mapping f: (X,) →(Y, σ) 

defined by f(a) = x and f(b) =y is fuzzy. g-super 

continuous but not fuzzy super continuous. 

Theorem 2.2: If f: (X,) →(Y, σ) is fuzzy g-super 

continuous then for each fuzzy point xβ of X and 

each fuzzy super open set f(xβ )V there exists a 

fuzzy g- super open set U such that xβ  U and f(U) 

≤V. 

Proof: Let xβ  be a fuzzy point of X and V be a fuzzy  

super open set such that f(xβ) V put U =f
-1

(V) then 

by hypothesis U is a fuzzy g- super open set of X 

such that xβ  U and f(U) = (F
-1

(V)) ≤ V. 

Theorem 2.3: If  f: (X,) →(Y,σ) is fuzzy g-super 

continuous, then for each fuzzy point xβ  X and 

each fuzzy super open set V of Y such that f(xβ)q V, 

there exists a fuzzy g- super open set U of X such 

that xβqU and f(U) ≤V.  

Proof: Let xβ  be a fuzzy point of X and V be a fuzzy  

super open set such that f(xβ)qV. Put U = f
-1

(V). 
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Then by hypothesis  U is a fuzzy g- super open set of 

X such that xβ qU and f(U) = f(f
-1

(V)) ≤ V. 

Definition 2.2:Let (X,) be a fuzzy topological 

space. The generalized super closure of a fuzzy set 

A of X denoted by gcl(A) is defined as follows: 

gcl(A) = inf {B: B  A, B is fuzzy g- super closed 

set of (X,))} 

Remark 2.2: It is clear that, A ≤ gcl(A) ≤clA) for 

any fuzzy set A of X.  

Theorem 2.4: If f: (X,) →(Y,σ) is fuzzy g-super 

continuous, then f(gcl(A)) ≤cl(f(A)) for every fuzzy  

set A of X. 

Proof: Let A be a fuzzy set of X. Then cl(f(A)) is a 

fuzzy super closed set of Y. Since f is fuzzy g-super 

continuous f
-1

(clf(A)) is fuzzy g - super closed in X. 

Clearly A ≤f
-1

(cl(f(A))). Therefore gcl(A) ≤ gcl(f
-1

 

(cl(f(A)))) = f
-1

 (cl(f(A))). Hence f(gcl(A))≤ cl(f(A)).  

Remark 2.2: The converse of theorem 3.4 may not 

be true. For 

Example 2.2: Let X={a,b,c}, Y={x,y,z} and the 

fuzzy set U and V are defined as U(a) = 1, U(b) = 0, 

U(c) = 0 ,V(x) = 1, V(y) = 0, V(z) = 1 ,Let  = 

{0,U,1} and σ = {0,V,I} be fuzzy topologies on X 

and Y respectively and f: (X,) →(Y,σ) be a 

mapping defined by f(a)= y, f(b) = x, f(c) = z. Then 

f(gcl(A)) ≤ cl(f(A)) holds for every fuzzy set A of 

X, but I is not fuzzy g-super continuous.Definition 

2.2: A fuzzy topological space (X,-r) is said to be 

fuzzy T112 if every fuzzy g- super closed set in X is 

fuzzy closed in X. 

Theorem 2.5: A mapping f from a fuzzy T1/2 space 

(X,) to a fuzzy topological space (Y,σ) is fuzzy  

super continuous if and only if it  is fuzzy g-super 

continuous. 

Proof: Obvious. 

Remark 2.4: The composition of two fuzzy g-super 

continuous mappings may not be fuzzy g-super 

continuous. For,  

Example 2.3 : Let X = {a, b}, Y = {x, y} and Z = 

{p,q} and the fuzzy sets U  X,V  Y and W  Z 

are defined as follows U(a) = 0.5,. U(b) = 0.7,V 

V(x) = 0.3, V(y) = 0.2,,W(p) = 0.6, W(q) = 0.4,Let  

= {0,U,l}, σ = {0,V,I} and  = {0,W,l} be fuzzy  

topologies on X, Y and Z respectively. Let the 

mapping f: (X,) →(Y,σ) be defined by f(a)=x, 

f(b)=y and the mapping g : (Y,σ) — (Z,) be 

defined by g(x)=p and g(y)=q. Then f and g are 

fuzzy g-super continuous but gof is not fuzzy g-

super continuous. However,  

Theorem 2.6: If f: (X,) →(Y,σ)is fuzzy g-super 

continuous and g:(Y,σ) →(Z,) is fuzzy super 

continuous. Then gof: (X,)→(Z,) is fuzzy  g-super 

continuous. 

Proof: If A is fuzzy closed in Z, then g
-1

(A) is fuzzy 

closed in Y because g is fuzzy super continuous. 

Therefore (gof)
-1

(A) = f
-1

(g
-1

(A)) is fuzzy g-closed 

in X. Hence gof is fuzzy g-super continuous. 

Theorem 2.7: If f: (X,) →(Y,σ) and g : (Y,σ) — 

(Z,) are two fuzzy g-super continuous mappings 

and (Y,σ) is fuzzy T1/2 then gof: (X,)→ (Z,) is 

fuzzy g-super continuous. 

Proof: Obvious. 

Definition 2.3: A collection {A i: i  Λ} of fuzzy g- 

super open sets in a fuzzy topological space (X,) is 

called a fuzzy g- super open cover of a fuzzy set B 

of X if B ≤ ∪ {Ai: i  Λ} 

Definition 2.4: A fuzzy topological space (X,) is 

said to be fuzzy GO- super compact if every fuzzy  

g- super open cover of X has a fin ite sub cover.                                          
Definition 2.5: A fuzzy set B of a fuzzy topological 

space (X,) is said to be fuzzy GO- super compact 

relative to X, if for every collection {A i: i  Λ}of 

fuzzy g- super open subsets  of X such that B ≤ 

∪{Ai: i  Λ} there exists a finite subset Λ0 of A 

such that B ≤∪ {Ai: i  Λ0} 

Definition 2.6: A crisp subset B of a fuzzy  

topological space (X,) is said to be fuzzy GO- 

super compact if B is fuzzy GO- super compact as a 

fuzzy subspace of X.  

Theorem 2.8: A fuzzy g -closed crisp subset of fuzzy  

GO- super compact space is fuzzy GO- super 

compact relative to X.  

Proof: Let A be a fuzzy g- super closed crisp set of 

a fuzzy GO- super compact space (X,). Then 1-A is 

fuzzy g-open in X. Let M be a cover of A by fuzzy  

g- super open sets in X. Then {M, 1-A} is a fuzzy g- 

super open cover of X. Since X is fuzzy GO- super 

compact, it has a finite sub cover say {G1, G2 

,…..Gn }, if this sub cover contains 1-A, we discard 

it. Otherwise leave the sub cover as it is, thus we 

have obtained a finite fuzzy g- super open sub cover 

of A. Therefore A is fuzzy GO- super compact 

relative to X. 

Theorem 2.9: A fuzzy g-super continuous image of 

a fuzzy GO- super compact space is fuzzy super 

compact. 

Proof: Let f: (X,) →(Y, σ) be a fuzzy g-super 

continuous map from a fuzzy GO- super compact 

space (X,) onto a fuzzy topological space (Y, σ). 

Let {Ai : iΛ} be a fuzzy g- super open cover of Y 

then {f
-1

(Ai): iΛ} is a fuzz1y g- super open cover 

of X.. Since X is fuzzy GO- super compact it has 

fin ite fuzzy sub cover say { f
-1

 (A1), f
-1

(A2),….. f
-

1
(An)}. Since f is onto {A1 ,A2….An} is an fuzzy  

open cover of Y and so (Y, σ) is fuzzy super 

compact. 
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Definition 2.7: A fuzzy  topological space X is fuzzy  

GO- super connected if there is no proper fuzzy set 

of X which is both fuzzy g- super open and fuzzy g- 

super closed. 

Remark 2.5: Every fuzzy GO-super connected 

space is fuzzy super connected but the converse may 

not be true. For, - 

Example 2.5:Let X = {a,b} and U be defined as 

U(a) = 0.5, U(b) = 0.7,Let  = {0,U,1) be a topology 

on X, then (X,) is fuzzy super connected but not 

fuzzy GO-super connected. 

Theorem 2.10: A fuzzy T1/2 space (X,) is a fuzzy  

super connected if and only if it is fuzzy GO-super 

connected. 

Proof: Obvious. 

Theorem 2.11: If f : (X,)→ (Y,σ) is a fuzzy g-

super continuous surjection and X is fuzzy GO-

connected then Y is fuzzy connected. 

Proof: Suppose Y is not fuzzy connected. Then 

there exists a proper fuzzy set G of Y which both 

fuzzy super open and fuzzy super closed. Therefore 

f
-1

(G) is a proper fuzzy set of X, which is both fuzzy 

g-super open and fuzzy g-super closed, because f is 

fuzzy g-super continuous surjection. Hence X is not 

fuzzy GO-super connected, which is a contradiction.  
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