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Abstract—With the conventional energy resources diminishing at a rapid rate, it has become extremely important 
that alternate sources of energy be found to drive vehicles. Electricity is one such option. But it has been observed 
that by making use of electricity a slight change in the vehicular hardware is required. As a result the plug-in hybrid 
electric vehicles (PHEV) and the plug-in electric vehicles (PEV) have been developed. These vehicles have to be 
charged for their usage. It is observed that the electric power distribution grid is not currently prepared to effectively 
accommodate the increase in load caused by charging of the Electric Vehicle (EVs) batteries. Solving this issue 
involves infrastructure development such as establishment of smart grids and also application of a number of signal 
processing techniques. This paper introduces the main issues related with the operation of EVs in a smart grid 
infrastructure and the different signal processing techniques can be applied in this context.

Index Terms—Coordinated charging, distribution grid, smart grid, plug-in hybrid electric vehicles,plug-in electric 
vehicles, dynamic programming, quadratic programming.

I. INTRODUCTION

IT would not be very long before the available 

energy sources to drive vehicles, namely, the fossil 
fuels, completely vanish. As a result there would be 
no fuel to power transportation vehicles. Therefore, it 
is the need of the hour to find out the forms of the 
energy that can be used to power vehicles. Of late it 
has been observed that with minor modifications done 
to vehicular hardware, electricity can be used as the 
energy source to drive cars and other vehicles.

While the release of new models for plug-inhybrid 
electric vehicles (PHEVs) andplug-in electric vehicles 
(PEVs) bringattention on theprogress towards 
reducing carbon emissionsand other greenhouse gases, 
the work in this areainvolves not only the vehicles 
themselves but, importantly, alsothe electric power 
grid infrastructurethat will support them. Forecasting 
results are emphasizing theobservation that the electric 
power distribution grid is not currentlyprepared to 
accommodate the predicted increase in load caused by 
chargingof the EVs batteries. Solving this issue 
requires infrastructure developmentsuch as the use of
smart grid technology and a number ofsignal 
processing techniques. In this sense, EVs prove to be a 
challengeforresearch that interweaves signal 
processing with numerous othertechniques aimed at 
integrating and managing in a unified system a
regional electric grid with distributed local 

powergeneration, storage, and intelligent loads. 
Furthermore, the integration of EVs intothe smart grid 
is significant since the involved signal processing 
techniques will lead to and be a prime application 
forthe development of a unified smart infrastructure.

The growing deployment of EVs is still a recent area 
of research. As such, the focus of ongoing research is 
the work that studies the effect of the extra loading 
from EVs on the electric grid. The role of signal 
processing in this research is both in the forecasting 
methods to predict the impact on the grid and with 
techniques to address the observed issues.

II. EVS AND SMART GRID

PHEVs and PEVs are vehicles powered by electricity 
which is stored in onboard energy storage devices—in 
most cases batteries—that are charged by plugging 
them into the electric grid. These vehicles may or may
not have additionally an internal combustion engine 
for cruising or for powering the car after the batteries 
are discharged. The vehicles that are exclusively 
powered by onboard batteries are called PEVs and 
those with an additional internal combustion engine 
are called PHEVs. Naturally, PEVs are equipped with 
a larger battery capacity than PHEVs.

The EV batteries need to be periodically charged even 
though PEVs and PHEVs feature technologies to 
maximize the energy stored in the batteries, such as 
using some of the car’s kinetic energy to charge back 
the batteries when the vehicle brakes are applied (a 



Uma Mahesh Reddy I* et al. / (IJITR) INTERNATIONAL JOURNAL OF INNOVATIVE TECHNOLOGY AND RESEARCH
Volume No.2, Issue No. 2, February – March 2014, 896 – 900.

ISSN  2320 –5547 @ 2013 http://www.ijitr.com All rights Reserved.      Page | 897

technique called regenerative braking), and in the case 
of PHEVs, batteries are supported by a gasoline 
engine. Autonomy exclusively from electricity is 
limited by the batteries large size and weight.

It is expected that EVs are to be charged in between 
every day to three days. To charge the batteries, EVs 
are connected to the electric grid, which provides 
different connection options called “charging 
levels.”The most widely accepted charging profile 
characterization produced by the Society of 
Automotive Engineers, SAE J1772 [1], involves three 
charging levels. Level I is the slowest of charging 
levels, taking a PHEV between seven to ten hours to 
be fully charged and a PEV between 17 to 22 hoursto 
be charged, assuming that the EVs are completely
discharged. The next, faster charging level is Level II. 
Level II charging requires a 240 V outlet. Its 
maximum power rating is 20 kW.At this power level, 
completely discharged PEVs and PHEVs can be fully 
charged in a little over an hour and in a little less than 
half an hour, respectively.Level III is the fastest 
charging approach for EVs. Its power rating is over 20 
kW, with the most commonly found rating of 50 kW. 

With the introduction of EVs, electrification helps to 
address the issues in the vehicular transportation 
industry arising from the use of internal combustion 
engines (such as the un-sustainability of oil resources 
and environmental concerns from the increase in 
greenhouse gasses emissions), but it may also create 
issues to electric grids.One important issue is that 
even at the slowest charging regime, PHEVs and 
PEVs double the load of a typical home. This issue is 
particularly true where power distribution 
transformers typically serve three to five homes, so 
any significant load increaseas represented by PHEVs 
and PEVs will translate into a significant relative load 
increase for transformers that are not designed to 
accommodate.

However, since a home’s load is not constant, the 
proposed solution to this problem is to charge EVs at 
night, when the home load is at its minimum. Still, to 
control when to charge an electric car, there mustexist 
a communication and information exchange between 
the grid and the EV charging hardware. However, in 
conventional power grids, there are no communication 
and control mechanisms embedded at such level of the 
distribution grid. To address these and other issues, 
conventional power grids have recently started to be 
transformed to add technologies that, importantly, 
include distributed communications and control 
systems. These systems are key enabling technologies, 
added to conventional grids because they provide the 
possibility of having the bidirectional flow of 
information and control actions in power grids. These 
enhanced power grids, with added technologies that 
enable an integrated bidirectional flow of power, 
information, and control actions, have come to be 
known as smart grid.

Currently, many smart grids initiatives feature basic 
levels of technology development, in which the key 
fundamental addition to conventional grids are smart 
meters at the consumers’ homes and businesses. The 
smart meters transmit energy consumption 
information at a grid connection point, back to the 
utility so as to implement some basic control actions, 
such as demand response programs. The basic 
principle behind demand response programs is to 
control demand levels based on various mechanisms, 
such as through differentiated pricing that motivate 
users to charge their EVs at night. In extreme cases, 
the control signal may directly disconnect the EV 
charging circuit until load levels are reduced. Hence, 
demand response programs act as a virtual energy 
storage mechanism that shift load during the day 
based on information and control action exchanges. A 
number of techniques that may be seen within the 
demand response category will be discussed in the 
“Signal Processing Techniques for PHEVs/PEVs 
Charging Management” section. Nevertheless, 
operations of this basic smart grid still relies on a 
relatively unreliable and inflexible centralized 
architecture in which demand increases need to be 
match instantaneously with an additional generation 
output in large power plants. The responsibility for 
controlling generation output typically relies in a 
centralized dispatch center that evaluates voltage and 
frequency deviations and considers economic aspects 
and lines loading to decide the optimal way of serving 
the load.

A more complex smart grid further expands the 
portfolio of technologies added to conventional grids 
by including advanced autonomous distributed 
controls, home energy management systems, 
distributed generation, e.g., PV modules, fuel cells, 
and micro turbines, and actual local energy storage. 
The addition of these technologies provides significant 
added operational flexibility that allows addressing the 
integration of a disruptive technology, such as EVs, 
and use of renewable energy sources (which introduce 
the challenge of exhibiting avariable output power 
profile), in a more comprehensive way. For example, 
local energy storage can be combined with local PV 
generation to be able to store the excess power 
generated by the PV modules during the day so as to 
rapidly charge an EV at night. With this approach, the 
extra power consumption of the car is not being 
presented to the grid. These are resources that would 
not typically fall within the control domain of the 
dispatch center found in conventional power grids and 
basic smart grids. Implicit within this solution is the 
need for anticipating demand adequately, so energy 
can be managed effectively and impact on the grid of 
EV charging is reduced or eliminated. This demand 
forecasting function can be implemented through 
embedded algorithms both on the utility side system 
controllers and in the customer side home energy 
management systems.
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III. EFFECT OF EVS ON THE GRID

The growing deployment of EVs is still a recent area 
of research. As such, the focus of ongoing research is
works that study the effect of the extra loading from 
EVs on the electric grid. The role of signal processing 
in this research is both in the forecasting methods to 
predict the impact on the grid and with techniques to 
address the observed issues. One of the first studies in 
the recent epoch of smart grid development is [2]. 
Here, it is acknowledged the complexity in studying 
the effects of EVs on the smart grid because the 
results depend on many variables (power level, 
timing, duration of the EV connection to the grid) and 
the effects could be on several factors (capacity needs, 
emissions generated).From the perspective of 
envisioning demand forecasting mechanisms, the grid 
load results in [2] appear as signals with clear periodic 
components. While the introductions of EVs affects 
the loads, specially increasing the peak demand, these 
periodic components still remain, this is a useful 
observation in the development of forecasting 
algorithms.

A charging EV may present a load to the electric grid 
of the same order of magnitude as a typical home. The 
connection of loads of this magnitude may create 
power quality problems, such as momentary voltage 
drops. With today’s grid, these drops can be 
exemplified by, and related to, what is commonly 
observed at homes when the lights dim as the air 
conditioner or the dishwasher is turned on. The impact 
of charging EVs is studied from the perspective of this 
type of effect on the quality of the electric power 
distribution to homes. Specifically, the quality is 
evaluated by estimating the deviations in the supplied 
voltage, i.e., voltage drops, from a nominal target 
value.

One other important perspective when studying the 
effect of EVs on the electric grid is its stability. 
Indeed, since most of the involved components, e.g., 
the distribution grid or the batteries’ equivalent 
models, are in effect resistive, inductive, capacitive 
(RLC) circuits, the whole grid-EV system can be 
thought of as a filter, where the signal is the voltage or 
current delivering power to the loads. Albeit being 
based on a simplified grid model, the work presents a 
study of the effects of EVs on the stability of the grid. 
The results, derived from solving linear circuit 
equations to calculate the grid-EV Eigenvalues and 
transfer function, show that while the system without 
EVs is reasonably damped, the introduction of 
charging EVs notably increases the amplitude and 
duration in the angle and voltage oscillations, both 
signs of increased grid instability. 

The design of future EV charging management 
algorithms will need to consider this effect so as to 
stabilize the grid, by introducing damping components 
when controlling the charging of the EV.

EVs will also have an impact on the operation of the 
grid, not as a load but as a source for local electrical 
power by dis-charging their batteries into the grid, in 
V2G applications. In these applications, signal 
processing algorithms may be used to control both real 
and reactive power injected back into the grid. For 
example, signal processing techniques may be used to 
control the delivery of energy from EVs to maintain 
grid stability (by measuring frequency deviations) 
while considering the batteries state of charge estimate 
and the near future EVs charge scheduling need for 
transportation use. The work is an example of this 
class of algorithms, where a simple charging-
discharging control is implemented by estimating 
batteries state of charge and considering the maximum 
and minimum values for it. Power flow is set based on 
the supply-demand imbalance of the power system 
estimated from the frequency deviation at the plug-in 
terminal.

IV. SIGNAL PROCESSING TECHNIQUES
FOR CHARGE MANAGEMENT OF EVS

Un-coordinated charging of EVs may result in 
degradation of electric energy distribution quality. 
Thus, it will be necessary to build into the smart grid 
technologies to manage the charging of PHEVs and 
PEVs. A number of these techniques rely on data and 
controls provided by the smart grid. Voltage drops can 
be possibly thought as an “error signal,” few 
techniques are presented to manage EV charging. 

A. Techniques Based on Error Signal

These techniques aim to solve the same problem: 
finding the EVs charger power, subject to limitations 
on the maximum charging power, which minimize the 
voltage drop such that the EV batteries are fully 
charged.

Voltage drop due to PEV charging is considered as 
“error signal” [3]and two techniques are presented to 
manage EV charging. Both of the techniques aim to
find the optimal EVs charger power, which minimizes 
the voltage drop and charges EVs batteries fully.While 
one technique solves the problem through quadratic 
programming, the other uses dynamic programming.

In [4] and [5], the total load at a time t is separated 
into a part from EVs, Lev(t), and a remainder part from 
other appliances. The load from EVs is assumed to be 
proportional to the number of charging EVs, N(t), by a 
factor -g: Lev(t) = -g N(t). The problem of predicting 
the load becomes that of predicting N(t) through 
estimation of the parameters of a queuing system that 
models arrivals of charging vehicles and their 
charging. Two scenarios were considered: 
uncontrolled vehicles charging and controlled vehicles 
charging. N(t) is modeled as Poisson random variable 
with a mean 
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Where λ (t) the arrival rate at time t, Tc isis the 
vehicles charging time, and Ceis a random variable. 
The arrival rate of charging vehicles, λ (t) is not 
directly observable, and so it is estimated from 
counting the number of arriving vehicles over a period 
of time T, C (t). 

In the second scenario in [5] the EVs are entered into 
a queue to wait for authorization to charge. The state 
of this queue evolution is modeled as 

St= St-1–αt-1+Dt

Where Dt is the number of vehicles arriving during the 
time interval t into the system to be charged andαtis a 
matrix of Poisson random variables that specify the 
number of vehicles that can be charged.Using this 
model, the control center can estimate the statistics of 
Stand decide on the next action.

B. Decentralized Charging Algorithm

In [6], a decentralized charging algorithm is proposed 
where EVs can plug in at different times, with 
different battery charge, and have different maximum 
charging speed and deadlines. This algorithm is 
designed with the goal of minimizing the aggregated 
demand from EVs during the charging period. 

The proposed algorithm is divided into two parts that 
are executed iteratively. In the first part, each EV 
calculates a charging profile so as to minimize the 
objective function.

In the second part of the algorithm, the utility sets the 
price profile using a relation directly related with the 
aggregate demand. Higher the demand, higher the 
price charged by the utility in the next iteration.

C. Local and Global Strategies

Local and Global strategies are proposed in [7], the 
difference being that in the local strategy, charging 
involves a single vehicle and other loads include a 
single house, where as for global strategy multiple 
EVs and the whole residential area is considered.

Charging management algorithms for the local and 
global strategies share the same goal in determining 
the charging loads for the EVs so that the difference 
between the actual load and an optimal load is 
minimized. 

The optimal load is calculated as the sum of the 
average of the original base load profile over a time 
interval[t1,t2] and a constant averaged charging load.

D. Charge Scheduler

Another technique that manages charging of EV 
includes implementation of a charge scheduler [8].

Charge scheduler is implemented using a multi agent 
system. Two agents are defined: a “PHEV agent,” 
which is the software controlling the charging of one 
PHEV and a “transformer agent,” which is the 
software that controls the power delivered through a 
transformer so that the load profile is flattened.

In this technique, first a PHEV sends a request for 
maximum charging power. A transformer agent 
receives this request and calculates the peak. This 
calculated peak load is smoothed through low-pass 
filtering and the resulting smoothed power profile 
“signal” is delivered by a high-voltage transformer as 
long as it does not exceed a maximum limit. 

E. Grid Frequency Algorithm

From a signal processing perspective, another signal 
that can be used in EV management algorithms is the 
grid frequency. This is because changes in this 
variable indicate imbalance between the power being 
introduced to the grid and the power required by the 
load. In [9], a control loop is designed based on this 
phenomenon for a smart EV grid interface.Depending 
on the frequency variation, the interface allows for EV 
charging or even to inject power to the grid.

V. CONCLUSION

Currently, power distribution utilities plan their grid 
locally within the area of the distribution utility, and 
no information about loads of neighbouring electric 
power distribution utilities is considered.However, 
due to the mobile nature of EVs a given utility will 
need to know not only how the load behaves locally, 
but also to anticipate charging behaviour of EVs in 
other zones outside the utility area.Therefore, 
extending signal processing analysis to electric power 
distribution planning processes and tools will be a 
certain future challenge.

Also EVs appear as a prime application for the 
development of a unified smart infrastructure 
seamlessly integrating energy generation and 
distribution, intelligent transportation systems, and 
ubiquitous communications and data networking. The 
future challenge will then be to develop signal 
processing technology that will be able to collect 
information from the different types of sources in a 
unified smart infrastructure and make effective use of 
them through joint processing.
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Abstract—With the conventional energy resources diminishing at a rapid rate, it has become extremely important that alternate sources of energy be found to drive vehicles. Electricity is one such option. But it has been observed that by making use of electricity a slight change in the vehicular hardware is required. As a result the plug-in hybrid electric vehicles (PHEV) and the plug-in electric vehicles (PEV) have been developed. These vehicles have to be charged for their usage. It is observed that the electric power distribution grid is not currently prepared to effectively accommodate the increase in load caused by charging of the Electric Vehicle (EVs) batteries. Solving this issue involves infrastructure development such as establishment of smart grids and also application of a number of signal processing techniques. This paper introduces the main issues related with the operation of EVs in a smart grid infrastructure and the different signal processing techniques can be applied in this context.

 Index Terms—Coordinated charging, distribution grid, smart grid, plug-in hybrid electric vehicles,plug-in electric vehicles, dynamic programming, quadratic programming.



I. Introduction

IT would not be very long before the available energy sources to drive vehicles, namely, the fossil fuels, completely vanish. As a result there would be no fuel to power transportation vehicles. Therefore, it is the need of the hour to find out the forms of the energy that can be used to power vehicles. Of late it has been observed that with minor modifications done to vehicular hardware, electricity can be used as the energy source to drive cars and other vehicles.

While the release of new models for plug-inhybrid electric vehicles (PHEVs) andplug-in electric vehicles (PEVs) bringattention on theprogress towards reducing carbon emissionsand other greenhouse gases, the work in this areainvolves not only the vehicles themselves but, importantly, alsothe electric power grid infrastructurethat will support them. Forecasting results are emphasizing theobservation that the electric power distribution grid is not currentlyprepared to accommodate the predicted increase in load caused by chargingof the EVs batteries. Solving this issue requires infrastructure developmentsuch as the use of smart grid technology and a number ofsignal processing techniques. In this sense, EVs prove to be a challengeforresearch that interweaves signal processing with numerous othertechniques aimed at integrating and managing in a unified system a regional electric grid with distributed local powergeneration, storage, and intelligent loads. Furthermore, the integration of EVs intothe smart grid is significant since the involved signal processing techniques will lead to and be a prime application forthe development of a unified smart infrastructure.

The growing deployment of EVs is still a recent area of research. As such, the focus of ongoing research is the work that studies the effect of the extra loading from EVs on the electric grid. The role of signal processing in this research is both in the forecasting methods to predict the impact on the grid and with techniques to address the observed issues.

II. EVs and SMART GRID

PHEVs and PEVs are vehicles powered by electricity which is stored in onboard energy storage devices—in most cases batteries—that are charged by plugging them into the electric grid. These vehicles may or may not have additionally an internal combustion engine for cruising or for powering the car after the batteries are discharged. The vehicles that are exclusively powered by onboard batteries are called PEVs and those with an additional internal combustion engine are called PHEVs. Naturally, PEVs are equipped with a larger battery capacity than PHEVs.

The EV batteries need to be periodically charged even though PEVs and PHEVs feature technologies to maximize the energy stored in the batteries, such as using some of the car’s kinetic energy to charge back the batteries when the vehicle brakes are applied (a technique called regenerative braking), and in the case of PHEVs, batteries are supported by a gasoline engine. Autonomy exclusively from electricity is limited by the batteries large size and weight.

It is expected that EVs are to be charged in between every day to three days. To charge the batteries, EVs are connected to the electric grid, which provides different connection options called “charging levels.”The most widely accepted charging profile characterization produced by the Society of Automotive Engineers, SAE J1772 [1], involves three charging levels. Level I is the slowest of charging levels, taking a PHEV between seven to ten hours to be fully charged and a PEV between 17 to 22 hours[image: ]to be charged, assuming that the EVs are completely discharged. The next, faster charging level is Level II. Level II charging requires a 240 V outlet. Its maximum power rating is 20 kW.At this power level, completely discharged PEVs and PHEVs can be fully charged in a little over an hour and in a little less than half an hour, respectively.Level III is the fastest charging approach for EVs. Its power rating is over 20 kW, with the most commonly found rating of 50 kW. 

With the introduction of EVs, electrification helps to address the issues in the vehicular transportation industry arising from the use of internal combustion engines (such as the un-sustainability of oil resources and environmental concerns from the increase in greenhouse gasses emissions), but it may also create issues to electric grids.One important issue is that even at the slowest charging regime, PHEVs and PEVs double the load of a typical home. This issue is particularly true where power distribution transformers typically serve three to five homes, so any significant load increaseas represented by PHEVs and PEVs will translate into a significant relative load increase for transformers that are not designed to accommodate.

However, since a home’s load is not constant, the proposed solution to this problem is to charge EVs at night, when the home load is at its minimum. Still, to control when to charge an electric car, there mustexist a communication and information exchange between the grid and the EV charging hardware. However, in conventional power grids, there are no communication and control mechanisms embedded at such level of the distribution grid. To address these and other issues, conventional power grids have recently started to be transformed to add technologies that, importantly, include distributed communications and control systems. These systems are key enabling technologies, added to conventional grids because they provide the possibility of having the bidirectional flow of information and control actions in power grids. These enhanced power grids, with added technologies that enable an integrated bidirectional flow of power, information, and control actions, have come to be known as smart grid.

Currently, many smart grids initiatives feature basic levels of technology development, in which the key fundamental addition to conventional grids are smart meters at the consumers’ homes and businesses. The smart meters transmit energy consumption information at a grid connection point, back to the utility so as to implement some basic control actions, such as demand response programs. The basic principle behind demand response programs is to control demand levels based on various mechanisms, such as through differentiated pricing that motivate users to charge their EVs at night. In extreme cases, the control signal may directly disconnect the EV charging circuit until load levels are reduced. Hence, demand response programs act as a virtual energy storage mechanism that shift load during the day based on information and control action exchanges. A number of techniques that may be seen within the demand response category will be discussed in the “Signal Processing Techniques for PHEVs/PEVs Charging Management” section. Nevertheless, operations of this basic smart grid still relies on a relatively unreliable and inflexible centralized architecture in which demand increases need to be match instantaneously with an additional generation output in large power plants. The responsibility for controlling generation output typically relies in a centralized dispatch center that evaluates voltage and frequency deviations and considers economic aspects and lines loading to decide the optimal way of serving the load.

A more complex smart grid further expands the portfolio of technologies added to conventional grids by including advanced autonomous distributed controls, home energy management systems, distributed generation, e.g., PV modules, fuel cells, and micro turbines, and actual local energy storage. The addition of these technologies provides significant added operational flexibility that allows addressing the integration of a disruptive technology, such as EVs, and use of renewable energy sources (which introduce the challenge of exhibiting a[image: ]variable output power profile), in a more comprehensive way. For example, local energy storage can be combined with local PV generation to be able to store the excess power generated by the PV modules during the day so as to rapidly charge an EV at night. With this approach, the extra power consumption of the car is not being presented to the grid. These are resources that would not typically fall within the control domain of the dispatch center found in conventional power grids and basic smart grids. Implicit within this solution is the need for anticipating demand adequately, so energy can be managed effectively and impact on the grid of EV charging is reduced or eliminated. This demand forecasting function can be implemented through embedded algorithms both on the utility side system controllers and in the customer side home energy management systems.

III. EFFECT OF EVs ON THE GRID

The growing deployment of EVs is still a recent area of research. As such, the focus of ongoing research is works that study the effect of the extra loading from EVs on the electric grid. The role of signal processing in this research is both in the forecasting methods to predict the impact on the grid and with techniques to address the observed issues. One of the first studies in the recent epoch of smart grid development is [2]. Here, it is acknowledged the complexity in studying the effects of EVs on the smart grid because the results depend on many variables (power level, timing, duration of the EV connection to the grid) and the effects could be on several factors (capacity needs, emissions generated).From the perspective of envisioning demand forecasting mechanisms, the grid load results in [2] appear as signals with clear periodic components. While the introductions of EVs affects the loads, specially increasing the peak demand, these periodic components still remain, this is a useful observation in the development of forecasting algorithms.

A charging EV may present a load to the electric grid of the same order of magnitude as a typical home. The connection of loads of this magnitude may create power quality problems, such as momentary voltage drops. With today’s grid, these drops can be exemplified by, and related to, what is commonly observed at homes when the lights dim as the air conditioner or the dishwasher is turned on. The impact of charging EVs is studied from the perspective of this type of effect on the quality of the electric power distribution to homes. Specifically, the quality is evaluated by estimating the deviations in the supplied voltage, i.e., voltage drops, from a nominal target value.

One other important perspective when studying the effect of EVs on the electric grid is its stability. Indeed, since most of the involved components, e.g., the distribution grid or the batteries’ equivalent models, are in effect resistive, inductive, capacitive (RLC) circuits, the whole grid-EV system can be thought of as a filter, where the signal is the voltage or current delivering power to the loads. Albeit being based on a simplified grid model, the work presents a study of the effects of EVs on the stability of the grid. The results, derived from solving linear circuit equations to calculate the grid-EV Eigenvalues and transfer function, show that while the system without EVs is reasonably damped, the introduction of charging EVs notably increases the amplitude and duration in the angle and voltage oscillations, both signs of increased grid instability. 

The design of future EV charging management algorithms will need to consider this effect so as to stabilize the grid, by introducing damping components when controlling the charging of the EV.

EVs will also have an impact on the operation of the grid, not as a load but as a source for local electrical power by dis-charging their batteries into the grid, in V2G applications. In these applications, signal processing algorithms may be used to control both real and reactive power injected back into the grid. For example, signal processing techniques may be used to control the delivery of energy from EVs to maintain grid stability (by measuring frequency deviations) while considering the batteries state of charge estimate and the near future EVs charge scheduling need for transportation use. The work is an example of this class of algorithms, where a simple charging-discharging control is implemented by estimating batteries state of charge and considering the maximum and minimum values for it. Power flow is set based on the supply-demand imbalance of the power system estimated from the frequency deviation at the plug-in terminal.

IV. SIGNAL PROCESSING TECHNIQUES FOR CHARGE MANAGEMENT OF EVs

Un-coordinated charging of EVs may result in degradation of electric energy distribution quality. Thus, it will be necessary to build into the smart grid technologies to manage the charging of PHEVs and PEVs. A number of these techniques rely on data and controls provided by the smart grid. Voltage drops can be possibly thought as an “error signal,” few techniques are presented to manage EV charging. 

A. Techniques Based on Error Signal

These techniques aim to solve the same problem: finding the EVs charger power, subject to limitations on the maximum charging power, which minimize the voltage drop such that the EV batteries are fully charged.

Voltage drop due to PEV charging is considered as “error signal” [3]and two techniques are presented to manage EV charging. Both of the techniques aim to find the optimal EVs charger power, which minimizes the voltage drop and charges EVs batteries fully.While one technique solves the problem through quadratic programming, the other uses dynamic programming.

In [4] and [5], the total load at a time t is separated into a part from EVs, Lev(t), and a remainder part from other appliances. The load from EVs is assumed to be proportional to the number of charging EVs, N(t), by a factor -g: Lev(t) = -g N(t). The problem of predicting the load becomes that of predicting N(t) through estimation of the parameters of a queuing system that models arrivals of charging vehicles and their charging. Two scenarios were considered: uncontrolled vehicles charging and controlled vehicles charging. N(t) is modeled as Poisson random variable with a mean 



Where λ (t) the arrival rate at time t, Tc isis the vehicles charging time, and Ceis a random variable. The arrival rate of charging vehicles, λ (t) is not directly observable, and so it is estimated from counting the number of arriving vehicles over a period of time T, C (t). 

In the second scenario in [5] the EVs are entered into a queue to wait for authorization to charge. The state of this queue evolution is modeled as 

St= St-1–αt-1+Dt

Where Dt is the number of vehicles arriving during the time interval t into the system to be charged andαtis a matrix of Poisson random variables that specify the number of vehicles that can be charged.Using this model, the control center can estimate the statistics of Stand decide on the next action.

B. Decentralized Charging Algorithm

In [6], a decentralized charging algorithm is proposed where EVs can plug in at different times, with different battery charge, and have different maximum charging speed and deadlines. This algorithm is designed with the goal of minimizing the aggregated demand from EVs during the charging period. 

The proposed algorithm is divided into two parts that are executed iteratively. In the first part, each EV calculates a charging profile so as to minimize the objective function.

In the second part of the algorithm, the utility sets the price profile using a relation directly related with the aggregate demand. Higher the demand, higher the price charged by the utility in the next iteration.

C. Local and Global Strategies

Local and Global strategies are proposed in [7], the difference being that in the local strategy, charging involves a single vehicle and other loads include a single house, where as for global strategy multiple EVs and the whole residential area is considered.

Charging management algorithms for the local and global strategies share the same goal in determining the charging loads for the EVs so that the difference between the actual load and an optimal load is minimized. 

The optimal load is calculated as the sum of the average of the original base load profile over a time interval[t1,t2] and a constant averaged charging load.

D. Charge Scheduler

Another technique that manages charging of EV includes implementation of a charge scheduler [8].

Charge scheduler is implemented using a multi agent system. Two agents are defined: a “PHEV agent,” which is the software controlling the charging of one PHEV and a “transformer agent,” which is the software that controls the power delivered through a transformer so that the load profile is flattened.

In this technique, first a PHEV sends a request for maximum charging power. A transformer agent receives this request and calculates the peak. This calculated peak load is smoothed through low-pass filtering and the resulting smoothed power profile “signal” is delivered by a high-voltage transformer as long as it does not exceed a maximum limit. 

E. Grid Frequency Algorithm

From a signal processing perspective, another signal that can be used in EV management algorithms is the grid frequency. This is because changes in this variable indicate imbalance between the power being introduced to the grid and the power required by the load. In [9], a control loop is designed based on this phenomenon for a smart EV grid interface.Depending on the frequency variation, the interface allows for EV charging or even to inject power to the grid.

V. CONCLUSION

Currently, power distribution utilities plan their grid locally within the area of the distribution utility, and no information about loads of neighbouring electric power distribution utilities is considered.However, due to the mobile nature of EVs a given utility will need to know not only how the load behaves locally, but also to anticipate charging behaviour of EVs in other zones outside the utility area.Therefore, extending signal processing analysis to electric power distribution planning processes and tools will be a certain future challenge.

Also EVs appear as a prime application for the development of a unified smart infrastructure seamlessly integrating energy generation and distribution, intelligent transportation systems, and ubiquitous communications and data networking. The future challenge will then be to develop signal processing technology that will be able to collect information from the different types of sources in a unified smart infrastructure and make effective use of them through joint processing.
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