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Abstract: Micro-generators produce electrical energy when subjected to acceleration. Three architectures of inertial
micro-generator were identified as suitable for implementation using MEMS technology. Two of these architectures, both
resonant in nature, have been reported in the existing literature. The third, a non-resonant type, is new. The architectures
have been analyzed and compared within a common framework, based on sinusoidal driving signals and a common set of
normalization factors. A simple procedure for the design process of micro-generators was established. Within the
analytical framework, the non-resonant generator achieved the highest power density of the three architectures when
powered from large amplitude motion, making it the most suitable for powering implanted medical devices.
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I. INTRODUCTION

Generally Micro-generator does not present any
measure of how effectively they perform their
intended duty. The most important performance
metric for a micro generator is the fraction of the
maximum possible output power that is achieved by
the generator for the given device volume and
vibration source from which the device is powered.
In this work, this performance measure is introduced
in detail and referred to as the effectiveness of the
generator. Achieving the highest possible
effectiveness is important in order to enable as much
Functionality as possible for WSN motes within a
given volume.

A general and unified analytical framework
for micro-generator devices has not previously been
reported in the literature and consequently there is no
established method by which to calculate the
effectiveness of an inertial micro-generator. This
work develops such a unified framework for micro-
generator devices and allows the effectiveness to be
calculated by specifying distinct classes, or
architectures, of inertial generator for which general
rules have been established. The definition of these
architectures enables the optimality of a generator to
be determined over a range of operating parameters
and provides a methodology for designing optimized
generators for particular applications. Practical
constraints on MEMS implementations are also
considered and the sensitivity of the different
architectures of generator to changes in the operating
parameters is investigated.

II. GENERIC INERTIAL GENERATOR
MODEL

These definitions are central to the development of
the analysis which follows.

Any inertial generator consists of a proof
mass, m, moving within a volume constrained by a
frame. The operating principle is that the inertia of
the mass causes it to move relative to the frame when
the frame experiences acceleration. This relative
displacement can then be used to generate energy by
causing work to be done against a damping force, f
(ż), which can be realized by extracting energy via an
electric or magnetic field or by straining a
piezoelectric material. The mass is attached to the
frame by a suspension which may be designed solely
to constrain the motion of the mass or to also create a
resonant mass-spring system of resonant frequency
ωn.

Fig.1: Generic Model of Inertial Generator.

The displacement of the mass from its rest
position relative to the frame is denoted as z (t). The
absolute motion of the frame is y(t) and that of the
proof mass is x(t) = y(t)+z(t). In order to achieve
closed form solutions, the driving motion is
considered to be a simple harmonic motion, that is,
y(t) = Y0cosωt,where Y0is the source motion
amplitude. Similarly, Z0 is the amplitude of the mass-
to-frame displacement. In a particular operating case,
Z0 will be mechanically constrained by the
Construction of the device. Zl is defined as a
maximum possible Z0 for a particular device. A
generic model of a vibration-driven generator is
shown in Figure.1. This is a generalization of the
model first presented by Williams, in that the
damping force can be realized as any function of the
relative velocity between the mass and the frame. The
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damping energy per cycle is given by the integral of
the damper force with respect to the distance over
one cycle of damper movement during a cycle. The
actual amount of energy converted from a kinetic
form to an electrical form by the damper is less than
this and dependent upon the damper's efficiency. For
a given mechanical input to the system, this integral
is dependent upon the following parameters:

 The proof mass
 The value and characteristic of the damping force
 The displacement limit
 The suspension spring if any (normally expressed

in terms of the resonant frequency)

Possible variations in these parameters allow four
main classes, or architectures, of generator to be
defined based upon different types of damping force
and the differing suspension characteristics of the
device. There are also different operating modes for
the devices. The rest of this work considers three of
the four possible architectures in detail. The fourth
architecture is shown to be ineffective with current or
foreseeable technology and thus is not analyzed in
detail.

2.1 Methodology

There are two distinct topologies of an inertial
generator. In this thesis these are given the following
definitions:

 Resonant topology: the proof-mass is
suspended on a spring and resonant energy
exchange occurs between mass and spring. As
will be shown, to achieve the highest possible
power density, the resonant frequency of the
mass-spring system should be tuned to the
frequency of the driving motion.

 Parametric topology: the suspension does not
employ a spring, (or the spring is negligible)
and no resonant energy transfers occur.

Two resonant and two parametric generator
topologies are considered which leads to the four
main architectures of generator. Of the resonant type,
one is damped by a force which is proportional to
velocity, the velocity-damped resonant-generator
(VDRG), and the other is damped by a constant
force, the Coulomb-damped resonant-generator
(CDRG). One non-resonant and non-linear generator,
the Coulomb-force parametric-generator (CFPG) is
considered. Variations of VDRGs and CDRGs have
been reported previously in the literature. Broadly
speaking, the electromagnetic and piezoelectric
devices correspond to VDRGs, and the electrostatic
devices correspond to CDRGs, although there are
exceptions. The CFPG uses a different operating
scheme to the others and this will be described later.

Other than the work arising from this project, no
CFPGs have been reported in the literature. The final
architecture possible with these combinations of
damping force and generator topology is the velocity-
damped parametric generator (VDPG).This generator
is shown to be ineffective with current
implementation technology and is not investigated
further. During this work, the resonant generators
were considered to operate in modes in which the
proof-mass did not strike the end-stop limits, i.e.

-Zl<y(t) <Zl, and thus the only forces which act on the
mass are the inertial, spring and damping forces and
gravity. Operating modes in which the mass strikes
the end-stop limits were originally excluded because
it was thought that the energy dissipated in the
collision would reduce the efficiency of the device. It
is possible, however, that this operating mode should
be considered. It will be shown that for idealized
cases of the three architectures considered, the
optimal output power can always be derived as a
function of Zl/Y0and ω/ωn and can be normalized to
Y0

2ω3m.Expressions have been normalized using
these values so that the plots are general to all Also,
Operating conditions for the generators. By
normalizing to this common base, fair comparisons
between generators can be made, independent of
generator size and operating condition. The specific
normalization of Y0

2ω3mis used because it has
dimensions of power and because a fraction of the
maximum kinetic energy of the mass is dissipated in
the damper each cycle. The maximum kinetic energy
of the mass is proportional to Y0

2ω2m. When this
kinetic energy is multiplied by angular frequency (to
give a quantity proportional to power) it can be seen
that the generator power output is proportional to
Y0

2ω3m.

The overall aim of the analysis in this work is
therefore two-fold:

 To plot a surface on the normalized axes shown
in Figure.2 to show, under different values of the
normalized operating conditions of Zl/Y0and ω/ωn

how much power can be generated by each
generator architecture and to compare the power
output from each of the architectures.

 To define a quantity referred to as generator
effectiveness and compare the effectiveness
values of reported generators. There are two
reasons why an inertial-generator may not
generate as much useful electrical energy as is
possible within a given volume. The energy
dissipated in the damper (which is the energy
converted into an electrical form) may not be as
large as possible because, as an example, the
resonant frequency of the generator may not be
tuned to the source vibration. This missed
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opportunity in energy dissipation in the damper
is not related to an electrical energy loss (as heat,
for example) and it is therefore not appropriate to
discuss efficiency for the damper. The energy
converted in the generator's damper as a fraction
of the maximum energy that could be converted
in the damper is therefore referred to as the
generator coupling effectiveness. The second
possible reason for a lower output than that
which can theoretically be achieved is that some
electrical energy may be dissipated as heat in the
power processing, or used to control the
generator itself. The fraction of the energy
dissipated in the damper that is available as
useful energy output is referred to as the
generator efficiency. The generator effectiveness
is the product of these two terms and is discussed
in more detail in Subsection 8.For the cases
where the required information was available,
table.1,2, and 3(presented at the end) show the
effectiveness values for generators reported.

Fig.2 Desired normalized axes to show generator
power output.

III. VELOCITY-DAMPED RESONANT
GENERATORS

3.1 Ideal Case

A simple mechanical model of a velocity-damped
resonant generator (VDRG) is shown in Figure.3,
where energy is extracted by a damper whose force is
proportional to ż(t) with a constant of proportionality
D. As a starting point, an idealized mass-spring
system will be analyzed in which the damper
represents the energy extraction mechanism. A
VDRG can be implemented with an electromagnetic
transducer, driving a resistive load, because the
damping force in that transducer is proportional to
the generated current, which for a resistive load is
proportional to the generated EMF. This EMF is in
turn proportional to the relative velocity between the
mass and frame, and thus the damping force is
proportional to the relative velocity

between the mass and the frame. A possible MEMS
implementation of a VDRG as shown in Figure.4 and
consists of two bonded silicon wafers. The lower
wafer has a deposited coil and an etched well in

which the mass can move. The upper wafer has a
deposited membrane layer and an electroplated
magnetic mass. The silicon is etched through to the
membrane forming a spring.

The differential equation for the motion of the mass,
m, relative to the frame is given by:̈ (t)=-kz(t)-D ̇(t)-m ̈(t)                      (1)

Where k is the spring constant. Taking the Laplace
transform of (eq.1) and substituting in expressions for
the normalized damping factor, ζ = D/2mωn, and the

resonant frequency, ωn= k/m, the transfer function
from frame motion, Y(s), to the relative mass-to-
frame motion, Z(S) is obtained:( )( )= (2)

Fig.3 Model of velocity-damped resonant
generator.

Fig.4 Possible MEMS implementation of VDRG .

The magnitude of the relative motion versus
frequency is thus:= ( ) ( ) (3)

Where = .

The energy dissipated per cycle is simply the distance
integral of the damping force, Dż, over afull cycle:

Energy per cycle= 2D∫ ̇ (4)

Calculating this integral for the magnitude of givenz
by (2.3), and multiplying by frequency, gives an
expression for the dissipated power.

P=( ) ( ) (5)
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This suggests that for = 1, the power extracted can
be increased without limit by decreasing .

This occurs because:

 The source motion has been assumed
unconstrained, i.e. it is capable of supplying
infinite power.

 There is no limit on , so at = 1, → ∞for →
0.

 There is no parasitic damping present in the
system.

All three of these factors will be addressed in section
eq.7 to show what can be achieved from practical
generators operating at the resonant frequency.
Building on the previous analysis, it is possible to
find the maximum power obtainable by first finding
the optimal damping factor, .

This is given by the stationary point on , i.e.:= − 2 + 1 (6)

(Giving = 0 for = 1)
The maximum power, Pmax, which can be dissipated
in the damper, and thus converted into electrical
energy, is then obtained by substituting (eq.6) into
(eq.5):

Pmax = (7)

The optimal value of could violate constraints
imposed by the system of which the most
fundamental of these is the displacement limit, Zl.
The largest value of Zl for currently reported MEMS
micro-generators is 0.9mm. For given values of ,

and , the unconstrained mass-to-frame amplitude,
Z0, is given by a rearrangement of (eq.3)

Z0 =
2

0

2 2(1 ) (2 )
c

c c

Y 

  
(8)

If the optimal value of means that the Zl

limits is exceeded, a larger should be chosen so that
theamplitude is reduced to just below the limit and an
unclipped resonant cycle is achieved. Power as
function of damping factor monotonically decreases
each side of opt(for opt>0). Therefore the maximum
(constrained optimal) power is achieved by operating
as close to as possible while observing the
displacement constraint. The constrained optimal
damping factor, cz, is then given by a
rearrangement of (eq.3):

 24 201
1

2
CZ c copt

c l

Y

Z
  


 
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 

(9)

The power generated in this displacement on strained
condition, PmaxCZ, is obtained by substituting(eq.9)
into (eq.5):

 
2 2

22 3 4 20
0 2max

0

1
1

2
CZ

t
c c

c t

Z Y
P Y m

Y Z
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
   

     
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(10)

Note that at resonance, the device is always
displacement limited, because both the power, (given
By (eq.5)), and the displacement, Z0, tends to infinity
for tending to zero. Thus the power, Pres, That can
be generated at resonance is obtained by setting = 1
in (eq.10):

2 3
0

0

1

2
t

res

Z
P Y m

Y
 (11)

The surface plot for optimal power generation by
an ideal VDRG is shown in Figure eq.5(a). As stated
in the introduction, the power axis is normalized
toY0

2ω3m, and so is dimensionless. The height of the
plot indicates the normalized power and the shading
shows the damping factor, , used at each point. This
plot and equivalent plots for the VDRG assume that
the damping factor is re-optimized for each operating
point. This can be achieved by adjustment of the load
electronics, where as variation of would require
the spring constant to be varied. It was notedthat the
curves of power against driving frequency shown by
Williams, Yates et al. led them to an in accurate
conclusion over optimal damping factors because in
their plots, the driving frequency is swept as the
independent variable, instead of the generator's
resonant frequency. In Figure eq.5(a),and subsequent
such plots, the shape is not subjected to this term
because of the normalization, and thus the shape of
the plot along the axis is the shape obtained when
the resonant frequency,and not the drivingfrequency,
is swept. The operating chart of Figure eq.5(b) shows
which analytic expressions for power generation are
valid under which circumstances. The regions are:

1. Device would generate more power if Z0 could
be increased beyond Zl. Equation (eq.10) applies.

2. Device operating optimally for the value of .
Equation (eq.7) applies.

3.2 Hysteretic Damping: In hysteretic damping, also
called rate-independent or structural damping, energy
is dissipated in a structure as it is loaded and
unloaded, with the energy dissipated being equal to
the loop integral of the area enclosed by the stress-
strain curve . Glynne-Jones et al. have suggested
hysteretic damping as an approximation for the type
of damping provided by a piezoelectric generator,
with a piezoelectric generator inherently working
with the bending of a structure. Accurate modeling of
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piezoelectric generator results in a much more
complex form than can be modeled by simple
damper. Hysteretic damping is often modeled with an
equivalent viscous damper.  If this approach is taken
optimal forms of hysteretic damping produce the
same normalized output power as for the VDRG as
shown in Figure5(a).

3.3 Electromagnetic Implementation:

The damper in a VDRG will typically be formed of a
moving magnet which produces a flux that links with
a stationary coil of inductance, L, and resistance. The
operating principle is that a voltage is induced in the
coil due to the varying flux linkage caused by the
movement of the magnet. The resultant currents
causing forces which oppose the relative motion
between the magnet and coil. In this analysis, the coil
resistance has been lumped with the load resistance
as R. The magnetic arrangement of Figure 6a is the
most likely choice for an electromagnetic generator
and has been used by Amirtharajah and Yates. The
coil moves normally to the diverging field of a
permanent magnet. For the arrangement of Figure

6a,Assuming the gradient of magnetic field, = ′,
is constant across the plane of the coil ofarea A, the
force on the coil can be worked out using the
principle of virtual work as follows:

The rate of mechanical work being done in moving
the coil, given by the product of the force on the coil
multiplied by the velocity, is equal to the electrical
power generated by the EMF, i.e. f(t). ̇(t) = i(t).e(t).
The induced EMF is given by Faraday's law of
induction and is e(t)= ̇(t)NB′A. Consequently, the
force on the coil is f(t) = i(t)NB′A where N, A and B′
arenumber of turns on the coil, coil area and gradient
of flux density respectively. In the Laplace domain, it
means F(s) = I(s)B′A. If I(s) is given by E(s)/(R+sL),
and E(s) = sZ(s)NB′A then the force on the coil in the

Laplace domain is given by ( ) = ( ′) ( ).( )

(a) Normalized power    (b) Operating chart.
Figure5: VDRG idealized operation (no

implementation limit).

Figure 6b shows a second possible linearized model,
which is capable of providing a larger damping force
than Figure6a because it contains a sharp transition
from a uniform field region to a field-free region.
This second arrangement is a popular model for

analysis, but corresponds less well with realizations
which have been reported. In this case, the damping
force is given simply by the BIL force, i.e. ( ) =( ) ( ).( )

Figure6: Linearized magnetic models.

The differential equation of motion for these
implementations is as equation.1, with the force on
the moving magnet f (t) taking the place of D ̇(t).
The displacement transfer function for the magnetic
generator of Figure7, for the arrangement of Figure
6a, is obtained by taking the Laplace transform of
this equation of motion and substituting in the
expression for F(s):

2

2
2

( )
( )( )

Z s s m

s NABY s
s m k

R sL





 



(12)

If the L product is small relative to R, then the
system can be mapped exactly onto a velocity
damped system with a damping coefficient

= c(NB′A)2/2 mR. Amirtharajah makes this
assumption by stating that the electrical pole is faster
than the mechanical pole. However, for an optimized
generator under certain conditions, this may not be
the case. To achieve the large damping required at
low ratios, the coil should have many turns and

thus will have a large self-inductance. The resistance
of the coil will increase if the conductor cross
sectional area is not also increased, but the load
resistance should be kept larger than the coil
resistance to ensure high efficiency. The optimal
damping factor may also require that the load
impedance, R, is low. If L is not neglected then the
modulus of the displacement transfer function is
found by taking the magnitude of (eq.12):

Figure7: Model of resonant electromagnetic
generator.
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Thus, the maximum velocity V0 of the relative motion
is given by:

 

3 2 2 2
0

0 22 2 2 2 2 2 2 2( ) ( ) ( )n n

Y m R L
V

m R NAB mL

 
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


   

(14)

The expression for the average power generated (i.e.
dissipated in R)can then be found from1/2 (peak
voltage)2/R, where the peak voltage is given by NA B
V0:

2 2 2 2 2
0

22

2 2 2 2 2 2

( )

2 (1 ) 2 (1 )

c

c c
c

m Y NAB R
P

NAB
R m mL

 


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




  
        

(15)

It should be noted that at resonance, (eq.15) reduces
to that of a perfect velocity damper, because the
inductor term is eliminated from the equation.
However, at resonance, is still dependent on L, as

can be found by substituting = ninto (eq.13),
giving

2 2 2 2
0

2
0 ( )

Z m R L

Y NAB

 



(16)

Reducing the inductance of the coil reduces the
relative displacement of the mass at resonance. This
is helpful in two respects. In the displacement
constrained case (Z0= Zl), for maximum realizable
values ofB′, N, A and minimum realizable R, reducing
L reduces the minimum forwhich the device can

operate. In the unconstrained case, the parasitic
damping, which is amplitudedependent, will be
reduced by reducing the displacement amplitude.
Consequently, an optimal electro-magnetic design
operating around resonance should have a minimum
inductance, but still have the required flux linkage to
obtain the required damping factor. This can be
achieved either by tuning out the inductance with a
capacitor, or by using a unity power-factor power
converter connected to the coil.

Below resonance (i.e., c < 1) every term on the
denominator of (eq.15) is positive and so in order to
maximize power generation, the value of L should be
as small as possible or tuned out. In order to gain
some insight into why tuning out the inductance is
often helpful to the operation of an electromagnetic
generator (and to understand why in the
unconstrained displacement case at resonance, the
power generated is independent upon the presence of
coil inductance) it is useful to consider the electrical
equivalent circuit of the generator. Mappings from
the mechanical to the electrical domain are given and

a derivation of the equivalent circuit is also
presented. The circuit is also shown here in Figure.8.

Figure.8: Equivalent circuit for an
electromagnetic generator.

In Figure.8, the left hand side models the mechanical
system and the right hand side the electrical system.
The turn’s ratio of the ideal transformer that links
them is chosen as 1: 1/KB because his allows the
actual (un referred) load circuit elements to be
attached directly to the mechanical system. KB is the
relation between the current in the coil and the
damping force exerted on the mass, i.e. f (t) =
KBXi2(t) and is dependent upon the specific
implementation of the generator. In this figure, I1(s)
represents the force on the transducer, and V1(s) is the
velocity of the transducer, mass and spring. These
components are mechanically in parallel and
consequently share velocity, which in this circuit is
mapped to voltage. It can be seen from Figure.8 that
at resonance, the power dissipated in the load
resistance is independent of the load inductance
because the series coil inductance and load resistance
is fed directly from the current source (through the
ideal transformer). V1(s) represents the velocity of the
damper and thus it can be seen that reducing the coil
reactance will, for a given value of the driving
current source, reduce this maximum velocity and
thus for sinusoidal motion will reduce the required
mass-frame displacement.

3.4 Practical Constraints

There are practical limits on the realization of the
velocity damper which will now be considered.
These are:

 Maximum gradient and absolute value of magnetic
field.

 Maximum coil area.
 Maximum number of coil turns achievable with an

integrated inductor.
 Minimum combined impedance of the coil and

power converter input stage.

If the inductor is tuned out of the circuit, or the value
of L is negligible compared to R, then the system is
a perfect velocity damper. Using the model of

Figure6b, the damping factor is given by
( )

. The

four items listed above then place a limit on the
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maximum realizable damping factor, max. An
operating chart and optimal performance plot with
constraints can now be plotted. These are shown in
figures.9(a) and 9(b). As an example a flat, plated
coil (Cu or Au) and a maximum coil area of 1 cm2,
for which a 10 turn coil of 1Ω resistance is
reasonable, is assumed. Flux densities for permanent
magnets do not generally exceed 1 T. Example values
for mass and frequency of 0.5 g and 1.6 Hz
respectively have been chosen.

The operating regions are as follows:

1. The device is unable to operate because the
required to meet the displacement constraint
would be greater than the system can achieve.

2. The device operates at the displacement limit and
(eq.10) applies.

3. The device operates optimally for the given
value of c and (eq.7) applies.

4. More power could be generated if the damping
factor could be increased above the value of

max and (2.5) applies with = max.

(a) Maximum normalized power. (b) Operating
chart.

Figure.9: VDRG operation with max limit.

Figure.10: Model of CDRG.          Figure.11:
Possible MEMS

IMPLEMENTATION OF CDRG

IV. Coulomb-Damped Resonant Generators:

4.1 Ideal Case:

According to this analysis, the transfer function from
frame motion to relative mass-to-frame motion is
given by:

 
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(17)

Where U =
( )( ) and F is the Coulomb force.

The energy dissipated is given by the force-distance
product, and thus the power is:
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(18)

This analysis can now be extended in the same way
as for the VDRG. The Coulomb force which

optimizes the power output, Fopt, is given by = 0:
 

2
0

22 1
c

opt

c

Y m
F

U

 






(19)

The power, Pmax, dissipated in the Coulomb damper
with the optimal force applied is then obtained by
substituting (eq.19) into (eq.18):

 

1
3 2

2 3
max 0 2 2 22

2 1

(1 ) (1 )1
c

c cc

U
P Y m

U




  

 
     

(20)

An important characteristic of the mass-frame
displacement waveform is that a Coulomb-force can
cause the relative motion between the proof-mass and
the frame to reduce to zero for a period of time in
which case the mass `sticks'. During this phase, no
energy is generated.

The values taken by the Coulomb-force require some
explanation. Sticking occurs when the mass has
stopped relative to the frame and the absolute value
of the Coulomb-force is larger than the absolute
value of the sum of spring force and inertial force at
that time. As soon as the mass starts to move in either
relative direction, the Coulomb-force acts to oppose
the motion and, during a sticking period, reverses the
direction of the resulting relative acceleration. In a
simulation this causes the mass to rapidly oscillate
around a point which is stationary relative to the
generator frame. As the simulation time-step is
decreased the amplitude and period of this oscillation

Approach zero. This mode of operation is undesirable
for a micro-generator as it makes the control and thus
synchronization of the generator significantly more
difficult. The requirement for nonstop motion is that
the derivative of position is never zero within each
half cycle. This is true if:
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  

2 2
0

22 2 21 1

c

c c

Y m
F

U

 

 


 
(21)

Note that this condition is only valid for ωc > 0:5. A
method for calculating this limit is presented. It is
possible for the value of optimal force calculated by
(eq.19) to be greater than that allowed by (eq.21).
This applies for ωc < 0:72. Under these conditions
the optimal force is given by the limit of the
inequality of (eq.21) and the power generated is
obtained by substituting (eq.21) into (eq.18):

  
2 3 4

0
max 2 2 2 2 2 22 2 2

2 1

(1 ) (1 )(1 )1 1

c c

c c cc c

Y U
P

UU

  
    

 
  

     

(22)

As for the VDRG, if the optimal force causes the
displacement constraint to be exceeded, the force
should be increased to preserve resonant motion. The
optimal force that satisfies the displacement
constraint, FoptCZ , is obtained by rearranging
(eq.17):

22
0

2 2 4
0

1 1

(1 )
CZ

c t
opt

c c

Y m Z
F

U Y

 
 

 
     

(23)

and thus the maximum power under a displacement
constraint, PmaxCZ , is now obtained by substituting
(eq.23) into (eq.18):

22 3
0

2 2 4max
0 0

2 1 1

(1 )
CZ

c t t

c c

Y m Z Z
P

U Y Y

 
  

   
       

(24)

It can be shown that at resonance (eq.24) reduces to
(eq.11), i.e. optimal forms of the VDRG and the
CDRG generate the same power at resonance. Figure
12(a) shows a surface plot of the power of the ideal
Coulomb damper under optimized conditions. The
power has been normalized using the same factor as
for the VDRG. The Coulomb force can be
normalized to Y0ω2m; this has been done for figures
12(a), 13(a) and 14(a). An operating chart is shown
for the CDRG in Figure 12(b). The regions are as
follows:

1. The device is not able to operate without stops in
the motion because the force required to meet the
displacement constraint (eq.23) is greater than that
for which smooth motion is valid( eq.21).

2. For the given c, more power would be generated
if Zl could be increased. (eq.24) applies.

3. The device operates optimally and (eq.20) and
(eq.22) apply for c > 0.72 and c <
0.72respectively.

4.2 Practical Constraints:

For a CDRG operated at constant charge, the voltage
across the capacitor plates increases linearly with
separation. If the voltage reaches the limit for the
load electronics the holding force must be increased
(by increasing the charge) to reduce the range of
travel sufficiently to keep the voltage within the limit.
The optimal output power for the constant charge
mode is shown in Figure 13(a). The corresponding
operating regions are as follows (Figure 13(b)):

1. The device is unable to operate without stops in the
motion.

2. The power is limited by Zl and equation (.23)
applies.

3. The device operates optimally and equations (.20)
and (.22) apply for c > 0.72 and c < 0.72
respectively.

(a) Maximum normalised power. (b) Operating
chart.

Figure .12: Idealised CDRG operation (no
implementation constraint).

4. The power is constrained by maximum operating
voltage. As an example a plate area of 1cm2, proof
mass of 1g, ω =20π and Y0 = .1mm has been
assumed. 400V has been chosen as a reasonable
limit for integrating power semiconductors for
which low power CMOS can be integrated on the
same wafer. It is possible that a device could be
limited by electric field strength but, in the constant
charge mode, the maximum voltage occurs at the
largest gap (the field strength is constant) and so
the electric field strength is unlikely to be the
limiting factor. However, higher field strengths can
be supported in air over small distances, as
described by Paschen's curve [206] and so it is
possible that if pre-charged to too high voltage,
breakdown of the dielectric between the plates
could occur.

The optimal output power for constant voltage mode
is shown in Figure.14 (a), and the corresponding
operating regions in Figure (14(b)). This plot shows
how the voltage constraint limits operation when the
maximum available normalised force is, as an
example, 0.68. This value has been chosen in order to
clearly illustrate the effect of this limit:

1. The device is unable to operate without stops in the
motion.

2. The power is limited by Zl . Equation (.23) applies.
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3. The device operates optimally. Equation (.20)
applies for c > 0.72 and (.22) for c <0.72.

4. More power would be generated if a greater
Coulomb force could be realised.

5. The device is unable to operate: to meet the
displacement constraint, the Coulomb force would
have to be greater than that which can be provided
by the system.

V. COULOMB-FORCE PARAMETRIC
GENERATORS

5.1 Ideal Case:

The Coulomb-force parametric generator
(CFPG), shown in Figure.15, is inherently non-linear
in nature. The suspension is provided to guide the
motion of the mass in a particular direction but is not
designed to be resonant. If a spring is used at all it
has a very small spring constant giving a resonant
frequency very far below the normal operating
frequency. The CFPG is controlled to only convert
mechanical to electrical energy only when the
generator frame is at maximum acceleration. For the

case in which is small, this corresponds to the mass

snapping back and forth between the end-stops at the

peak of the frame acceleration cycle. If is large, the

mass must be controlled to break away from the
frame at an optimal acceleration and the energy must
be extracted at the point of maximum separation. The
snapping motion is illustrated in Figure .17. The
proof mass is restrained by a holding force and work
is only done when the acceleration is great enough to
overcome this force. As the mass has to move some
distance to do the work, the breakaway force cannot
be the value of Fmax in the input motion but must be
some fraction, β, of it. Figure.16 shows a possible
MEMS implementation. A variable-gap parallel-plate
capacitor is formed between the BSOI device layer
and a counter-electrode on the glass base plate, with
the minimum gap being defined by a dielectric
overlay on the counter-electrode. The suspension is

Designed to present very low resistance out of plane
but be very stiff in the in-plane directions.

(a) Maximum normalised power. (b) Operating
chart.

Figure.13: CDRG operation - perpendicular
motion, constant Q.

(a) Maximum normalised power. (b) Operating
chart.

Figure.14: CDRG operation-sliding motion,
constant V.

Figure.15. Figure.16:
Figure.15: Model of Coulomb-force parametric

generator.
Figure.16: Possible MEMS implementation of

CFPG

The energy generated by the parametric generator is
given by the force-distance integral, which, if energy
is extracted for both directions of motion, is:

2 3
0 0

0

2
Z Y m

P
Y





 

  
 

(25)

Again, optimising this generator requires the
force-distance integral to be maximised. A possible
method is to write the equations of motion and find
the time at which the separation is maximum, at
which point the maximum work will have been done.
From this, the work done and its maximum with
respect to the break-away force can be found. The
acceleration of the moving mass during fight is
constant in the inertial frame and so we obtain:

1 1 1 2
0 0 0 0

1
( ) cos(sin )[ sin ] [ sin ] sin

2tZ t Z Y t Y t Y Y t               

(26)

Figure.17: Optimal parametric motion
for = .

The derivative of (eq.26) is similar to Kepler's
equation and so has no closed form solution.
However, we can observe that the value of t for
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which z(t) is maximum depends only on b and , and

in fact can be written as tmax = f (b).

Taking 2 Z0 as the total displacement:

1 1 1 2
0 0 0 0 0

1
2 cos(sin )[ ( ) sin ] [ ( ) sin ] sin ( )

2
Z Y f Y f Y Y f              

(27)

Thus, β is solely a function of the ratio for

sinusoidal input motion.

Time-domain simulations were run in Mat lab for the
CFPG, varying β. These show that for small relative
displacement limits, the optimal value of b for
maximum power generation is that which allows the
mass to just move the full distance, 2Zl . For values of

above 0.566, b must be lowered more quickly than

what is optimal for maximum power generation per
stroke (where a stroke is defined as the movement of
the mass in one direction to generate energy) because
if power is extracted in both directions there is a need

to change direction within half a cycle. For above

1.335, the need to allow for a change of direction
causes the energy per stroke to be less than half that
for single-sided operation (in which power is
extracted in one direction only), and so single-sided
operation gives greater total power. In the single-
sided case the power generation stroke can last longer
than half a cycle but the mass must return to its
starting point within a full cycle to ensure periodic
operation. This requirement limits the maximum

value of b to 0.34 for > 1.16. Sub-harmonic motion

(i.e. only one power stroke every two or more cycles)
has not been investigated, but would require a large

value of . It will be shown in Subsection 7.1 that

the CFPG is a poor choice of generator under these
circumstances.

The absolute limit of possible double-sided operation
occurs when the proof mass is unable to run from
side to side symmetrically, i.e. it reaches the other
side of the device at the point at which it must break
away again to return. This limit is found from (eq.26)

by setting β = 0 and t = , giving ≤ .

A plot of the optimal β values plotted against is

shown in Figure.18. Figure.18 (a) shows optimal
values for single-sided and double-sided operation,
whilst 18(b) shows the optimal value and operating
mode to use, assuming that the device can change
between operating in double-sided or single-sided
mode.

The maximum output power for the ideal parametric
generator is shown in Figure.19(a). Although c has
no significance because there is no resonant
frequency, graphs are still plotted against c to ease
comparison with the other generators. The
corresponding operating chart is shown in
Figure19(b). The regions are:

1. Optimal double-sided operation
2. β has to be reduced to allow double-sided operation

but double-sided operation is still better than
optimal single-sided operation.

3. Suboptimal single-sided operation (to allow
periodic operation.)

(a) Optimal β for single and double (b) β for
optimal energy generation. Sided motion.

Figure.18: Optimal β values.

a. Practical Constraints:

As with the CDRG, the CFPG can use either
sliding motion and constant voltage, or perpendicular
motion and constant charge. For each case, the break-
away force, and thus b, can be controlled by setting
the initial voltage. For constant charge mode, the
main constraint on optimal operation is likely to be
the voltage capability of the output side power-
processing circuitry. In this mode, the voltage
increases from the start to the end of the cycle by the
ratio of initial to final capacitance. For a comb style
device, the limit on the applied voltage may restrict
the Coulomb force to less than that needed for
optimal operation. The power output for a constant
charge mode CFPG is shown in Figure.20(a), and the
corresponding operating chart is shown in
figure.20(b). The operating regions are:

1. Optimal double-sided mode.
2. β reduced to enable double-sided operation.
3. This region is only present because of the voltage

constraint. Double-sided operation with β reduced
to stay within the voltage limit. The plot is for m=1
g, Y0=0.5 mm, f=1 Hz, Plate Area = 1 cm2, Vlimit =
120 V. Although the output side power electronics
could be designed to block more than 120V, this
limit has been chosen to illustrate the effect more
clearly.

4. This region is a constrained version of region 3 in
the ideal case of Figure.19(b). Device in voltage
limit for output-side electronics. Operation single-
sided.
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(a) Maximum normalised power. (b) Operating
chart.

Figure.19: Idealised CFPG operation (no
implementation constraint).

The power output for a constant voltage mode CFPG
is shown in Figure.21 (a). The graph is plotted for the
example of a maximum achievable β of 0.8. The
corresponding operating chart is shown in Figure.21
(b).  The operating regions are:

1. Device in voltage limit. β at the limit of 0.8.
2. Optimal double-sided operation - the device is

operating optimally on each stroke.
3. β reduced to enable double-sided operation.

Suboptimal double sided operation is still superior
to optimal single sided operation in this region.

4. Suboptimal single-sided operation (to allow
periodic operation).

VI. VELOCITY-DAMPED PARAMETRIC
GENERATORS:

The velocity-damped parametric generator (VDPG)
operates in a similar manner to the CFPG but with an
energy extraction mechanism where the force
characteristic of the damper is proportional to
velocity rather than being a constant force opposing
the motion (a Coulomb force). The operating mode is
that the moving mass breaks away from the frame as
soon as frame stops accelerating and starts
decelerating and as a relative velocity occurs between
the mass and the frame, energy is extracted through
the damper. It will be shown in Subsection eq.7.1 that
resonant generators are superior to non-resonant

generators when the value of > 0.1, and therefore

if a VDPG is superior in any mode of operation to
any of the other types presented so far it will

probably be when the ratio of is small. Velocity

damping is most easily achieved using an
electromagnetic transducer. However, it was shown
in Figure.9 that an electromagnetic implementation of

a micro-generator is not practical for values of <

0.5 (at low frequency) because the required damping
force is not achievable.

The VDPG has therefore not been investigated
further at this time, however if there was a means to
make an effective velocity damper at a sufficiently

small scale then this architecture may become
attractive.

(a) Maximum normalised power. (b) Operating
chart.

Figure.20: CFPG operation - perpendicular
motion, constant Q (voltage limit).

(a) Maximum normalised power. (b) Operating
chart.

Figure.21: CFPG operation - perpendicular
motion, constant V (force limit).

VII.DISCUSSION:

7.1 Comparison of Idealised Generator Types

Figure.22 compares the operation of the three
generator architectures for a sinusoidal input. The
dashed lines show the velocity, damping and
displacement for a VDRG with values of m=1 g,k=80
N/m and D=0.475 Ns/m. The solid lines show the
behaviour of the CDRG. An important characteristic
of the mass-frame displacement waveform of the
CDRG is that a Coulomb-force can cause the relative
motion between the proof-mass and the frame to
reduce to zero for a period of time, in which case the
mass `sticks'. During this phase, no energy is
generated. This is shown for two stops per half-cycle,
with the solid line in Figure.22, where m=1 g, k=80
N/m, and F=0.95 mN. Sticking occurs when the mass
has stopped relative to the frame and the absolute
value of the Coulomb-force is larger than the
absolute value of the sum of the spring force and the
inertial force at that time. As soon as the mass starts
to move, the Coulomb-force acts to oppose the
motion and, during a sticking period, reverses the
direction of the resulting relative acceleration. In
simulation this causes the mass to oscillate around a
stationary point relative to the generator frame. As
the simulation time-step is decreased the amplitude
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and period of this oscillation approach zero.
Figure.22 shows the average force for the stationary
periods in the cycle, as the results have been filtered
to remove high frequency oscillation. In a practical
CDRG, the capacitor being repeatedly charged and
discharged would be lossy and consequently the
device requires hysteresis around ̇(t) =0 in order to
reduce the frequency of charging. Thus in a practical
implementation, the mass would oscillate at reduced
frequency but non-zero amplitude. The dotted line
shows the operation of the CFPG for values of m=1 g
and F=0.81 mN. Whilst it is useful to see the
different modes of operation of the three generator
architectures, the most important comparison
between the generators is their achievable power
density for given operating conditions. The graph of
Figure.23 shows which optimised generator
architecture can produce the most power as a
function of operating condition. As can be seen, the

CFPG is superior at low ratios of , and for

frequencies well below the resonant frequency of the

resonant generators. The CDRG is superior below

resonance (except for low values) and the VDRG

is superior above resonance. The two give the same
performance at resonance. The chart of Figure.24
shows a top-down view of Figure.23 and therefore
reveals the best choice of generator (i.e. the
architecture which achieves the highest power
density) across the different normalised operating

regions of and c.

Taking the ratio of the maximum power output of the
VDRG given by (eq.11) and the CFPG given by
(eq.25), the following is obtained:

4 /CFPG

VDRG

P
P   (28)

Where PCFPG is the power output of a CFPG
and PVDRG is the power output of the VDRG.
This indicates that the CFPG can generate more
power than resonant generators where the optimal β
value is above /4; this corresponds to a

displacement limit of 0.107.

Applications for micro-power generators fall into two
main categories: devices powered by human body
motion and those powered by vibration of machinery.
Body motion (of limbs or the cardiovascular system)
is of low frequency and relatively high amplitude
compared to the dimensions of reported generators
whereas the vibrations of machinery are generally of
high frequency and low amplitude. Thus, the
parametric generator is suitable for generating power
from the human body, whilst resonant generators are

appropriate for generating power from machinery (at
least for a source of narrow frequency range).

Figure.22: Comparison of the operation of the
three generator architectures. Dashed line is the

VDRG, solid line the CDRG, and dotted the
CFPG. ±Zl is shown as dashed straight lines.

Fig.23                                       Fig.24
Figure.23: Generator architecture comparison.
Figure.24: Best architecture choice under the

different normalised operating conditions.

a. Parasitic Damping:

Parasitic damping effects, such as air resistance or
hysteresis loss in the suspension, are difficult to
estimate in general terms because they are dependent
upon materials, structure, and maximum
displacement. Consequently, the above analysis has
not included parasitic damping. However, the limits
on the absolute validity of the results will now be
discussed. Williams et al. state that for their
generator, the measured parasitic damping factor, ,
due to the air and spring hysteresis is of the order of
0.0037 and the measured value for their device
operated in vacuum is 0.0023. Optimal operation of
this device (a VDRG) requires an electrical damping

factor = (equation.3 with = 1.) For electrical

damping to dominate in the vacuum case (e.g. ≥
10 ) requires < 20. The range of reported values

of Zl and Y0 suggest that parasitic damping may be
significant in some situations if the value of the
parasitic damping reported by Williams et al. is
typical. Roundy et al. look in some detail at the effect
of parasitic damping of electrostatic generators. For
an optimised generator, the parasitic damping could
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be significantly reduced over the design. For
example, Nguyen states that air damping is the
dominant parasitic for micro-mechanical resonators
for Q of up to 50,000 and beyond this hysteretic
damping within the spring material is the dominant
factor. Elimination of air damping by e.g vacuum
packaging in this case would therefore yield a
residual damping factor of 2X10-5. The discrepancy
between the maximum Q values reported by Nguyen
and Williams are probably because of the differences
in materials used. Nguyen's resonators use silicon and
the micro-generator of Williams uses a polyimide
suspension, which is a much more lossy material.

The power generated by a resonant VDRG with
parasitic damping can be written, as:

 

3 2 3
0

2 221 2

e c

c t c

Y m
P
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  


   

(29)

Where = + . Should the parasitic damping
be significant, the electrical damping factor should be
re-optimised. For a velocity damper, this optimal

is again given by the stationary point on :

2 4 4 21
1 2 4

2e c c c p
c

    


    (30)

An equivalent optimal damping factor can be
obtained for the Coulomb damped case in the same
fashion. Levitan described an analytical solution to
the support excited system with combined Coulomb
and viscous damping. The analysis will not be
presented here, but could perhaps be used to find an
optimal operating condition where both damping
mechanisms are present.

7.3 Vibration Source Limitations:

Due to the small mass of a micro-generator, and the
relatively small amount of power that is harvested,
micro-generators are likely to have little effect on a
vibration source to which they are attached. This
effect can be quantified by considering the source to
have an internal damper analogous to the output
impedance of a voltage source. Modelling such a
system suggests that if the power extracted by the
micro-generator is more than 1% of the maximum
output of the source, the effect of the source
limitation on performance becomes significant.

VIII. GENERATOR EFFECTIVENESS:

It has not until now been possible to quantify the
success of the designs of micro-generators because an
adequate measure of performance had not been
identified. Such a quantity, which allows the
performance of micro-generator designs to be

quantified and compared, was developed in the
course of this work and is now described.

The most important performance metric for a micro-
generator is the proportion of the theoretical
maximum power density that is achieved by the
device, for the given device volume and vibration
source from which the device is powered. This
performance measure will be referred to as the
effectiveness of the generator.

In this work, generator effectiveness is defined as the
product of two terms:

out

opp

P
Effectiveness

P
 (31)

coupled out
mech

opp coupled

P P

P P
     (32)

where:
Pout is the useful output power after processing,
Pcoupled is the mechanical power coupled into the
generator,
Popp is the opportunity power, or the maximum power
that could have been coupled using a generator
operating optimally,

mech is the mechanical coupling effectiveness and
is the generator efficiency.

The mechanical coupling effectiveness of a generator
is thus a measure of the proportion of the energy that
is dissipated in the damper in the mechanical
generator model, as a function of the total amount of
energy that could have been dissipated in the damper
if all the generator parameters had been optimally set
for the given vibration source from which the device
is powered. This is a measure of an opportunity
power and thus the term is referred to as effectiveness
rather than efficiency (a coupling effectiveness lower
than 1 does not occur because of energy wasted as a
dissipation of heat, for example). The efficiency of
the generator is a then the fraction of that coupled
energy which is converted in to a useful electrical
form for the load electronics, with losses occurring
due to inefficiencies in the power processing.

The work in this chapter has established the ultimate
performance limits for three different architectures of
micro-generator, under all operating conditions, and
this allows the effectiveness of the reported micro-
generators to be calculated.

8.1 The Effectiveness of Published Work:

Where the relevant information is available (i.e. Y0, ,
Zl , m and device volume), the performance of some
previously reported generators can now be discussed.
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 The vast majority of the reported devices perform
with very low effectiveness values, many being
less, and some being significantly less, than 1%.
This can be attributed in many cases to a mixture
of parasitic damping and a non-optimal choice of
damping force. As an example, the damping force
used by Meninger et al. was severely limited
because the associated generator electronics was
fabricated in low voltage CMOS.

 In all cases, the effectiveness of the generator for
the reported parameters is less than that for the
device built into a cube of the same volume. A
cube is actually a relatively poor shape of micro-
generator, because the axis in which a mass,
occupying half the volume, can move is shorter
than for any rectangular shape. This suggests that
the authors may have been limited in the geometry
of their generators due to practical constraints.

 The measured values tend to be lower than
predicted by the models.

 Roundy et al. present the generator with the highest
effectiveness of any of the measured values.

 Tom Sterken reports a power output figure which
gives effectiveness significantly greater than 100%
from one of his electrostatic models. This is
possibly because Sterken quotes power outputs
from a model of the generator linearised around the
equilibrium point. At resonance, the relative
displacement of the proof-mass is significant and it
is possible that the linearization is no longer valid.

 Yates et al. report effectiveness values greater than
100% for their electromagnetic generator model.
As they use the simple equation for power output
as for a VDRG operating at the resonant frequency,
it is likely that this is a numeral error on their part
and their effectiveness value for their parameters
should be 100%.

 There is no obvious trend as to which type of
generator implementation has proved most
successful in the literature, as all methods have
yielded some implementations with very low
effectiveness values and some higher. However, it
should be noted that whilst a fabricated
piezoelectric generator has been reported by
Roundy et al. with an effectiveness of 16.8% and
an electrostatic generator with a measured power
output reported by Miyazaki et al. achieves an
effectiveness of 12.4%, the highest effectiveness
figure achieved from a fabricated electromagnetic
generator is 1.1%, by El-Hami et al.

Figure.25: Mass constrained to move in a volume.

8.2 Expected Maximum Power Densities:

The ultimate limiting factor for an inertial micro-
generator is its size which limits both the mass and
the travel that can be used (Zl ). Since, for a resonant
generator operating at resonance, or a CFPG
operating when Z = Zl with constant β, the power is
linearly proportional to both m and to Zl, the power is
maximised for a mass taking up half the device
volume. This can be justified as follows with
reference to Figure.25.

In the direction of motion, the overall device
dimension, l, must be divided between the range of
internal travel, 2Zl , and the dimension of the mass in
that direction, Zm. Since the output power is
proportional to the product of mass and 2Zl (for a
given operating condition), power will be maximised
for Zl = Zm/2, i.e. for the mass taking up half the
space. Power will now be proportional to l2, and to
the other two spatial dimensions x and y. This
suggests that micro-generator power output (at
resonance or when Z = Zl for the CFPG) is
proportional to volume 4/3(assuming uniform scaling
in each spatial dimension).

The effectiveness figures discussed so far are the
limits of the power that can be coupled in to the
damper. However, the electrical power which can be
generated will be some proportion of that coupled
power because of various losses. These losses
include:

 Parasitic damping will reduce the maximum
electrical power as discussed above.

 Charge will leak from the plates of an
electrostatic generator during the generation
cycle because of the non-zero conductance
between them. This reduces the Coulomb-force,
and thus the power generated.

 Some power will be consumed by the control
electronics needed by the generator.

 There will be electrical conduction and switching
losses.

To estimate the maximum power available from a
MEMS generator, the following data are taken. The
highest density r of a MEMS material is that of gold,
which is the example taken here, a generator
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effectiveness of 100% is the target and a volume of 1
cm3 is realisable.

For a human powered application (with movements
at 1 Hz and 5 mm amplitude) a power density of
4µW/cm3, could be available using a parametric
generator. This will be sufficient for some
autonomous sensor applications.

For a machine powered application (with vibrations
of, for example, 2nm at 2500Hz), a resonant
generator could yield a power density close to
9.6mW/cm3.

IX. CONCLUSIONS

In this work, analysis of three micro-generator
architectures has been presented with a view to
understanding the relative merits of each, and in
order to find optimal architectures for maximal power
generation under the different operating constraints
of displacement and normalised frequency. Analysis
has been verified by time-domain simulation. It has
been shown that under operating conditions of known

and ratios, the expressions for the power

generated for all architectures can be normalised to
3m. For ideal implementations, the following

conclusions hold:

 The CFPG produces the most power where< 0.1
 The VDRG is superior above the resonant

frequency when > 0.1
 The CDRG is superior below but near the

resonant frequency when > 0.1
 Generators only benefit from operating at or

near resonance when Zl >Y0.

 It is not possible to operate a CDRG at low

ratios and maintain smooth motion of the proof
mass, making the generator control and
synchronisation difficult.

Additional conclusions can be drawn when practical
implementation issues are taken into account:

 It is not possible to operate the VDRG for small

ratios. At some value of, the required damping

factor will become unrealisable due to limits on
minimum coil and load impedance and
maximum achievable magnetic field strength.

 At the resonant frequency, the coil inductance of
the resonant electromagnetic generators has no
effect upon performance, because the system
simplifies exactly to a perfect VDRG.

Some basic design steps for the micro-generator
designer can now be formulated:

1. Make the volume of the device as large as possible
and make the axis in which the mass moves as long
as possible within the constraints of the
application. This establishes the value of Zl .

2. Choose the generator architecture which gives the

highest power density for the values of and

from Figure.24.
3. Choose a suitable implementation method for that

architecture taking into account practical
limitations of the technology.
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