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Abstract 

This research examines the association between co-authorship network centrality 

(degree, closeness, betweenness, eigenvector, Bonacich flow betweenness) and 

productivity of Information science researchers. The research population includes 

all those researchers who have published at least one record in one of the twenty 

journals of Information Science which has an impact factor of 0.635 as a minimum 

from the years 1996 to 2010. By using social network analyses, this study 

examines information science researchers’ outputs during 1996-2011 in ISI Web of 

Science database. In general co-authorship network of these researchers was 

analyzed by UCINET6 software. Results showed that there is a significant 

correlation between Journal Impact Factor (JIF) and all centrality measures except 

closeness centrality at P= 0.001. Results also showed that there is a significant 

correlation between productivity of authors and all centrality measures scores at P≥ 

0.001. Also, regression reports direct relationship of degree, closeness and flow 

betweenness and inverse relationship of betweenness as well as Eigen vector 

centrality on productivity of researchers. 

 

Keywords: Co-authorship; Network centrality; Scientific productivity; Social network 

analysis, Journal Impact Factor 

 

Introduction 

The increasing cooperation in science, which has led to larger co-authorship networks, 

requires the application of new methods of analysis of social networks in bibliographic co-

authorship networks as well as in networks visible on the Web (Kretschmer, 2004). Social 

network is a network of relationship which is made as a result of cooperation between 

scientists, organizations, countries, and others in common (similar) or different majors and 

their interrelationships. A social network is basically a set of actors and relationships that 

interweaves these actors together. Actors can be persons or aggregated parts such as groups, 
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organizations or their families. Actors form social networks by exchanging many sources with 

each other. Such resources can be information, goods, and services, social or financial 

support. This type of resource exchange is considered as social network relationship. 

Whenever individuals make relationship, it is believed that a node is created (Emirbayer, 

1997). Strength of nodes between individuals may vary from weak to strong and depends on 

the number and the types of sources, abundance and intimacy of exchanges (Marsden & 

Campbell, 1984). 

Networks which are formed according to cooperation are reviewed and analyzed on the 

basis of different measures, one of the most important of which is “centrality measure”. 

"Centrality is one of the oldest concepts in network analysis. Most social networks contain 

people or organizations that are central. Because of their position, they have better access to 

information, and better opportunity to spread information. This is known as the ego-centric 

approach to centrality. The network is centralized from socio-centric perspective. The notion 

of centrality refers to the positions of individual vertices within the network, while 

centralization is used to characterize an entire network. A network is highly centralized if 

there is a clear boundary between the center and the periphery. In a highly centralized 

network, information spreads easily, but the center is indispensable for the transmission of 

information  " (Said, et al, 2008). “The status of an actor is usually expressed in terms of its 

centrality, i.e., a measure of how central the actor is to the network graph. Central actors are 

well-connected to other actors and metrics of centrality will therefore attempt to measure an 

actor’s degree (number of in- and out-links), average distance to all other actors, or the degree 

to which geodesic paths between any pair of actors passes through the actor” (Liu et al, 

2005).The simplest measure of centrality is the number of links that a member of a network 

has with other network members. Indeed, person’s centrality represents his/her prestige and 

authority in the network. Those who are located in the center of network have more academic 

influence. 

In the subject of Social Network Analysis, ranking the individuals in social networks, 

namely the analysis of individuals’ importance or centrality is an important and core task 

(Chakrabarti & Faloutsos, 2006).Therefore, analyzing the central or important authors in the 

co-author networks should be associated with their importance and validity. In addition, 

analysis of important authors can help researchers assess the educational departments. “In 

academic research, it is exceedingly rare that a researcher produces outcomes with no 

connection to the context of the research community. New findings are usually derived from 

the context of research community, that is, from the accumulation of preceding research or 

cooperative relationships in the research domain. Therefore, when we analyze the activity of 

the researchers in some domain for the purpose of grasping the characteristics of that domain 

in producing knowledge, we are obliged to not only evaluate each researcher’s activity 

individually, but also take into consideration his/her position in the structure of some kind of 
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intellectual tie” (Yoshikane, Nozawa & Tsuji, 2006). In this study, therefore, authors of 

information science have been assessed by the centrality measure. We also try to examine 

these hypotheses A: there is a significant correlation between co-authors centrality scores and 

Journal impact factor. B: there is a significant correlation between centrality scores and 

authors productivity among information science researchers. 

 

Literature review 

In recent years, scientific outputs of scientists have been investigated from different 

aspects in several studies. Some studies survey growth rate, some of them scientific 

collaboration, or else citation and co-citation networks, others co- authorship networks and 

some mapping scientific structure, etc. Recently, the characteristics of co-author networks as 

social networks have been highlighted (Kretschmer, 2004). In this regard, various methods 

and the indexes, one of which is centrality, have been used for the co-authorship assessment. 

As for the individuals’ centrality in social networks, Freeman’s centrality measures of 

degree, closeness and betweenness are the most commonly used (Freeman, 1979). In the 

subject of social network, another classical measure of centrality is the eigenvector centrality, 

which is also based on the interdependence or the reinforcing effect (Bonacich, 1987). Many 

scholars have applied the above mentioned centrality measures to co-authorship networks. 

Newman studied a variety of properties of his networks, including scientists’ degree and 

betweenness (Newman, 2001). Some studies have directly applied the degree, closeness and 

betweenness to co-authorship networks of different domains (Otte & Rousseau, 2002; 

Mutschke, 2003; Liu et al, 2005, Acedo et al, 2006; Krichel & Bakkalbasi, 2006; Liu et al, 

2007; Hou et al, 2008; Gómez et al, 2008). Lu & Feng (2009) proposed centrality measurers 

based on the extensity of authors’ collaborative relationships in co-authorship networks, i.e., 

the extensity centrality.  

Barabasi et al (2002) analyzed the social structure of research collaborations in the 

context of other scientific disciplines such as physics and biology.  Racherla and Hu (2010) 

studied the field of tourism research community. Fatt, Ujum and Ratnavelu (2010) 

investigated the Journal of Finance. Hill (2008) tried to investigate the relationship between 

social network structures in co-authorship network and research productivity. Based on the 

review of prior literature in social network analysis, she chose the measures of eigenvector 

centrality (extent of being connected to influential members of the network), betweenness 

centrality (extent of importance in connecting other members of the network), as well as the 

E-I Index (measure of dominance of external over internal ties in organizational subunits) to 

describe potential structures in co-authorship network. She then used publication data from 

tenured faculty in a computer science department in a US university and statistically tested the 

association between each of the measures and research productivity. 

In addition to above-mentioned studies, many other articles used centrality measures for 
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analyzing co-author networks. Their researchers have claimed that the centrality measure is 

useful in assessing the co-authorship impact. Badar et al (2012) examines the association of 

co-authorship network centrality (degree, closeness and betweenness) and the academic 

research performance of chemistry researchers in Pakistan. Higher centrality in the co-

authorship network is hypothesized to be positively related to performance, in terms of 

academic publication, with gender having appositive moderating effect for female 

researchers. Results related to regression report positive impact of degree and closeness and 

negative impact of betweenness centrality on research performance. Temporal analysis using 

node-level regression confirms the direction of causality and demonstrates a positive 

association of degree and closeness centrality on research performance.  

 

Methodology 

This study is conducted on the basis of network analysis which examines various forms of 

relationship between documents, authors, words, citations and links between web pages, 

institutes and organizations forming altogether a network. This method examines the 

interaction between people, organizations, groups, and the like and identifies invisible 

patterns between these items in order to facilitate more effective cooperation between the 

items mentioned. 

In this study, social network analysis has been used to gain a good perception of the node 

(namely, identifying authors with central role) in information science researchers. The origins 

of contemporary network analysis are in the fields of sociology, anthropology, and graph 

theory. It is a relatively new area (late 50's  ( with much activity since the mid 70's (Holland & 

Leinhardt, 1979; Betts & Stouder, 2004). General principle in a network approach is that at 

the beginning the characteristics between and within departments should be examined not the 

properties of units. In social and communication science, this units can be individuals, groups, 

organizations or communities. Furthermore, relations can include people’s feeling about each 

other, information exchange, money and goods exchange (Burt, 1992; Haythornthwaite, 

1996).  

Population of this study was all researchers who have at least one article in each of the 20 

top journals in information science indexed in Thomson Reuter's database, in a 15-year 

period. These 20 journals are selected from 67 Journals in the field of information science 

with Impact Factor (IF) higher than 0.6 and 15 years’ experience in information science in 

publishing indexed in SCI database. The names of journals were selected from the 2011 

version of JCR. At first we searched for all articles published in the given journals and then 

have calculated the SNA metrics first for the journals (to check their correlation with IF) and 

then for the authors (to check their correlation with productivity). The UCINET, version 6 and 

its supplementary package NetDraw were employed for data analysis. Coauth.exe was also 

used for preparing co-author matrix. Statistical analysis was performed using the SPSS 
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software version 16; variables were analyzed using Pearson correlation and multiple 

regressions to address any relationship between centrality scores with IF and productivity. 

In second phase, after identifying authors who had high centrality role in this research, the 

questionnaires with 3 open-ended questions were distributed to them. For selecting the sample 

of the study, we selected the top 10 authors with centrality role in the studied journals. Totally 

356 authors received high centrality scores. Based on Cochran formula, we selected 154 

authors.  

 

Results 

In this section, we analyze the data related to research hypotheses. The data extracted 

from the journals were 21822 records, written by 47848 authors. Various centrality measures 

(Degree, Closeness, Betweenness, Flow betweenness and Eigenvector) for 20 examined 

journals are shown in Table 1.  

One of the network measures and useful indexes for analyzing social network and 

situation of individuals is degree centrality. Degree centrality refers to the number of links in 

or out of a node in the network (Freeman, 1979). 

This measure deals with the position of individuals in a network. One person who can 

make skills and experiences for others is regarded as center (i.e., with higher degree centrality 

scores). 

As it can be seen in Table 1, the Journal of American Medical Informatics Association 

ranked the first with average degree centrality of 20.74, Scientometrics with average degree 

centrality of 8.13 ranked the second and the Journal of the American Society for Information 

Science and Technology with average degree centrality of 4.77 ranked the third, while Library 

Quarterly ranked the last with an average degree of 0.66. 

 

Table 1 

Ranking of Information Science journal according to the centrality scores 

Journal name Degree Closeness Betweenness 
Flow 

betweenness Eigenvector 

J AM MED INFORM ASSN 29.74 12.95 42.82 2.004 0.051 

Scientometrics 8.13 1.21 62.69 1.32 0.022 

J AM SOC INF SCI TEC 4.77 1.18 6.9 1.55 0.028 

INFORM PROCESS MANAG 4.37 0.693 23.32 1.6 0.014 

LIBR INFORM SCI RES 3.42 0.77 3.93 0.086 0.015 

MIS Quarterly 3.35 0.85 113.18 1.21 0.025 

MIS QUART 2.98 0.693 8.83 1.076 0.015 

J INF SCI 2.51 0.55 5.13 0.811 0.013 

GOV INFORM Q 2.21 0.71 2.68 0.759 -0.02 

INFORM SYST J 2.02 0.41 16.08 0.938 -0.007 
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Journal name Degree Closeness Betweenness 
Flow 

betweenness Eigenvector 

J DOC 1.91 0.44 2.2 0.555 0.01 

LEARN PUBL 1.78 0.692 0.56 0.644 -0.017 

TELECOMMUN POLICY 1.47 0.46 3.5 0.776 -0.007 

INFORM SYST RES 1.45 0.4 6.54 0.755 -0.011 

COLL RES LIBR 1.41 0.45 0.37 0.409 -0.006 

SOC SCI COMPUT REV 1.41 0.67 0.001 0.413 -0.015 

J ACAD LIBR 0.75 0.65 0.42 0.809 -0.016 

INT J INFORM MANAGE 0.69 0.393 0.2 0.226 -0.01 

J INF TECHNOL 0.67 0.395 0.0005 0.252 -0.01 

Library Quarterly 0.66 0.619 0.12 0.392 0.013 

 

Closeness centrality is the distance of one individual to all other people in the network. 

The closer a person is to others, the more famous he/she would be. Individuals with higher 

closeness centrality scores probably get information very faster than other people because 

there are fewer intermediaries between them. 

Closeness centrality measure is computed on the basis of the
 geodesic distance

. This measure 

calculates the distance one node has from other nodes. This measure indicates accessibility, 

appropriateness and security of actors (Frank, 2002).  

As can be  seen in Table 1, the Journal of American Medical Informatics Association 

ranked the first with the average closeness centrality of 12.95 and Scientometrics with 

average closeness centrality of 1.21 ranked the second and the Journal of the American 

Society for Information Science and Technology ranked the third with average closeness 

centrality of 1.18.  

Betweenness centrality views an actor as being in a favored position to the extent that 

the actor falls on the geodesic paths between other pairs of actors in the network. That is, the 

more people depend on me to make connections with other people, the more power I have 

(Hanneman & Riddle, 2005). 

Average of betweenness centrality related to information science journals are shown in 

Table 1. MIS Quarterly with average betweenness centrality of 113.18 has the highest average 

of betweenness centrality and Scientometrics and the Journal of the American Medical 

Informatics Association with 62.69 and 42.82 ranked the second and the third respectively.  

Phillip Bonacich proposed a modification of the degree centrality approach that has been 

widely accepted as superior to the original measure. The original degree centrality approach 

argues that actors who have more connections are more likely to be powerful because they 

can directly affect more other actors. This makes sense, but having the same degree does not 

necessarily make actors equally important (Hanneman & Riddle, 2005). 

The flow approach to centrality expands the notion of betweenness centrality. It assumes 
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that actors will use all pathways that connect them, proportionally to the length of the 

pathways. Flow betweenness is measured by the proportion of the entire flow between two 

actors (that is, through all of the pathways connecting them) that occurs on paths of which a 

given actor is a part. For each actor, then, the measure adds up how involved that actor is in 

all of the flows between all other pairs of actors (the amount of computation with more than a 

couple actors can be pretty intimidating!).Since the magnitude of this index number would be 

expected to increase with sheer size of the network and with network density, it is useful to 

standardize it by calculating the flow betweenness of each actor in ratio to the total flow 

betweenness that does not involve the actor” (Hanneman & Riddle, 2005). Flow centrality is 

similar to betweenness centrality except that, instead of considering only the shortest paths 

between pairs of nodes, we consider all paths. 

Table 1 also represents the average flow betweenness of information science journals. As 

can be seen, Journal of the American Medical Informatics Association with 932.2 ranked the 

first and the Scientometrics with 322.34 and MIS Quarterly with 231.31 follow it 

respectively.  

Eigenvector centrality is a measure of the importance of a node in a network. It assigns 

relative scores to all nodes in the network based on the principle that connections to high-

scoring nodes contribute more to the scores of the node in question than equal connections to 

low-scoring nodes )Bonacich, 1972). Formulas for these measures are mentioned in appendix. 

 Journal of the American Medical Informatics Association with 0.051 ranked the first and 

the Journal of the American Society for Information Science and Technology with 0.028 

ranked the second and MI Quarterly with 0.025 ranked the third.  

Correlation between centrality scores and impact factor (IF) of information science 

journals are showed in Table2. As it is displayed in Table2, all predictor variables except 

closeness centrality have significant correlation with Journal impact factor. Correlation 

between journal impact factor (JIF) and degree centrality with r=0.632, JIF and betweenness 

centrality with r=0.639, JIF and eigenvector centrality with R=0.686, JIF and flow 

betweenness with r=0.685 are totally significant at level p=0.001. Therefore, all parts of 

hypotheses of this section are confirmed. However, there is not a significant correlation 

between journal impact factor and closeness centrality at r=0.415 level.  
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Table 2 

Correlations between centrality scores and Journal impact factor  

Independent 

Variables  
impact 

factor Eigenvector 
flow 

betweenness betweenness closeness degree 

impact factor 

Pearson 

Correlation --- .686
**

 .685
**

 .639
**

 .425 .631
**

 

Sig. (2-tailed)  .001 .001 .002 .062 .003 

Eigenvector 

Pearson 

Correlation  ---- .709
**

 .372 .624
**

 .755
**

 

Sig. (2-tailed)   .000 .106 .003 .000 

flow 

betweenness 

Pearson 

Correlation   ---- .247 .835
**

 .968
**

 

Sig. (2-tailed)    .295 .000 .000 

Betweenness 

Pearson 

Correlation    ---- -.100 .129 

Sig. (2-tailed)     .674 .589 

Closeness 

Pearson 

Correlation     ---- .817
**

 

Sig. (2-tailed)      .000 

Degree 

Pearson 

Correlation      ----- 

Sig. (2-tailed)       

**. Correlation is significant at the 0.01 level (2-tailed).     

 

Results about analysis of centrality measures of authors in all examined journals showed 

that “GLANZEL” in Scientometrics with degree centrality scores 94 ranked the first, 

“BATES” in Journal of the American Medical Informatics Association with degree centrality 

scores 70 and “HERNON” in Library & Information Science Research with degree centrality 

Scores 77 ranked the second and the third. In general, actors such as “GLANZEL”, 

“BATES”, “HERNON” and the rest who have high centrality scores have more opportunity 

because have a more choice. They have access to most of sources in the network. Also, the 

top 3 authors based on other centrality measures are presented in Table 3. 
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Table 3 

 Top three authors according centrality scores 

Scores  Journal Name Row 

Degree centrality 

94 Scientometrics GLANZEL 1 

79 Journal of the American Medical Informatics Association BATES 2 

77 Library & Information Science Research HERNON 3 

Betweenes centrality 

2372 Scientometrics GLANZEL 1 

1246 MIS Quarterly BENBASAT 2 

610 Information Systems Journal  KLEIN 3 

Closeness centrality 

14.93 Journal of the American Medical Informatics Association MILLER 1 

14.65 Journal of the American Medical Informatics Association BATES 2 

14.65 Journal of the American Medical Informatics Association SAFRAN 3 

Eigenvector centrality 

0.692 Library & Information Science Research SCHWARTZ 1 

0.690 Library & Information Science Research HERNON 2 

0.624 Scientometrics GLANZEL 3 

Beta centrality 

94 Scientometrics GLANZEL 1 

79 Journal of the American Medical Informatics Association BATES 2 

77 Library & Information Science Research HERNON 3 

Flow betweenness centrality 

5787 Scientometrics ROUSSEAU 1 

5340 Scientometrics GLANZEL 2 

5062 Journal of the American Medical Informatics Association MILLER 3 

 

Table 4 shows the correlation between centrality scores and the number of publications 

produced by researchers. As it is shown in Table 4, all predictor variables have significant 

correlation with total number of researchers’ outputs in the field of information science.   
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Table 4 

 Correlations between authors productivity and centrality scores 

  productivity Degree Eigenvector Beta Closeness Betweenes 
Flow 

Betweenes 

productivity 

Pearson 

Correlation 
------- .657

**
 .110

**
 .657

**
 .504

**
 .200

**
 .478

**
 

Sig. (2-

tailed) 
 .000 .000 .000 .000 .000 .000 

Degree 

Pearson 

Correlation 
 

----------

- .254
**

 1.000
**

 .528
**

 .295
**

 .576
**

 

Sig. (2-

tailed) 
  .000 .000 .000 .000 .000 

Eigenvector 

Pearson 

Correlation 
  ----------- .254

**
 .119

**
 .176

**
 .189

**
 

Sig. (2-

tailed) 
   .000 .000 .000 .000 

Beta 

Pearson 

Correlation 
   ------- .528

**
 .295

**
 .576

**
 

Sig. (2-

tailed) 
    .000 .000 .000 

Closeness 

Pearson 

Correlation 
    -------- .117

**
 .476

**
 

Sig. (2-

tailed) 
     .000 .000 

Betweenes 

Pearson 

Correlation 
     ------- .780

**
 

Sig. (2-

tailed) 
      .000 

Flow 

Betweenes 

Pearson 

Correlation 
      -------- 

Sig. (2-

tailed) 
       

**. Correlation is significant at the 0.01 level (2-

tailed). 

 

     

 

Correlation between total number of publications and degree centrality equals r=0.675, 

betweenness centrality equals r=0.200, eigenvector centrality equals r=0.110, flow 

betweenness equals r= 0.468, beta centrality equals r=0.657 and closeness centrality equals r= 

0.504, all of which are significant at level of p≥ 0.001.  

 To investigate the multiple relationships between predictor and criterion variables, 

multiple regression analysis is used. For this purpose, a multiple regression analysis was 

calculated using two methods of Enter and Stepwise. 
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Based on the results of multiple regression analysis with Enter method, coefficient of 

multiple correlation for the linear combination of predictor variables and productivity of 

researchers is equal to 0.649 (MR=0.694) and coefficient of determination is equal to 0.482 

(RS=0.482) which is significant at the level of P<0.001. 

Thus, hypothesis B is supported. The coefficient of determination obtained indicates that 

about 48% of the variance in research productivity variable is explained by the predictor 

variables. To determine the contribution of each variable, Stepwise method was used and the 

results showed in Table 5. 

 

Table 5 

 Multiple correlation coefficients for degree centrality, closeness, flow betweenness, betweenness and 

Eigenvector with productivity by Stepwise 

(a) 

() (B) & 

 RS MR 

Predictors 

variable 5 4 3 2 1 

2.504     

0.657= 

0.715 B= 

51.42 =t 

P=0.001 

F=2.644 

P<0.001 
0.432 0.657 Degree 

2.351    

0218= 

0.757 B= 

14.97 =t 

P=0.001 

0.542= 

0.59 B= 

37.1 t= 

P=0.001 

F=1.519 

P<0.001 
0.466 0.683 Closeness 

2.38   

0.098= 

0.002 B= 

T=6.28 

P=0.001 

0.195= 

0.677 B= 

T=13.032 

P=0.001 

0.498= 

0.542 B= 

29.52 =t 

P=0.001 

F=1. 037 

P<0.001 
0.472 0.687 

Flow 

Betweenness 

2.49  

-0.152= 

-0.007 B= 

T=-6.79 

P=0.001 

0.248= 

0.005 B= 

T=9.193 

P=0.001 

0.151= 

0.524 B= 

T=9.31 

P=0.001 

0.479= 

0.522 B= 

T=29.52 

P=0.001 

F=799.38 

P<0.001 
0.479 0.692 Betweenness 

2.47 

-.054= 

-4.57 B= 

T=-4.23 

P=0.001 

-0. 142= 

-0.007 B= 

T=-6.33 

P=0.001 

0.242= 

0. 005 B= 

T=8.98 

P=0.001 

0.152= 

0.527 B= 

T=9.38 

P=0.001 

0.493= 

0.537 B= 

T=29.85 

P=0.001 

F=646.26 

P<0.001 
0.482 0.694 Eigen vector 

  

Also, according to Table 5, it can be seen that all five variables including degree 

centrality, closeness, flow betweenness, betweenness and Eigenvector are predictor of 

researchers’ productivity. But given the values of the regression coefficients in term of the 

predictive power, are respectively, degree centrality  = 0.657 (p=0.001), closeness centrality 

 = 0.218 (p=0.001), betweenness centrality  = -0.152 (p=0.001), flow betweenness  = 
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0.098 (p=0.001) and eigenvector  =-0.054 (p=0.001) have more predictive power. Beta 

centrality has no role in prediction and has been removed from the regression equation.         

The following equation shows the communication model in which the productivity of 

researchers is based on five variables to predict. 

Y= α + (    ) +(    ) +(    ) + (    ) +  (B5X5) 

Y= 2.47 [0.537   ] + [0.527   ] +[0.005   ] +[-0.007   ] + [-4.57*X5] 

Variables (degree centrality, closeness, flow betweenness, betweenness and Eigenvector) 

in the equation simultaneously have significant predictive power. As we can see, in the 

equation, there are five predictor variables and one criterion variable. 

X1, X2, X3, X4 and X5 as the five variables are respectively degree centrality, closeness, 

flow betweenness, betweenness and Eigenvector. The value of α based on regression analysis 

is 2.47. Coefficients B1, B2, B3, B4 and B5 respectively are 0.493, 0.152, 0.242,-0.142, -0.054. 

The positive values indicate a direct relationship between the predictors and the criterion 

variables and negative values of some variables which indicate an inverse relationship 

between predictor and the criterion variables. In this way we can calculate the amount of 

productivity variable based on five variables. The higher rate of degree centrality reflects 

higher importance of this variable to predict criterion variable. 

 

The reasons for success of a researcher with high centrality score 

After identifying authors who had high centrality role in this research, the questionnaires 

with 3 open-ended questions were distributed to them and 137 questionnaires were returned. 

In this part the responses to questionnaires are analyzed.  

Question 1: What are the main reasons of your success in this research which placed you 

in the center of co-author network?  

After combining similar and eliminating duplicate answers, all responses to the first 

question follow: 

Personal ability: hard work, perseverance and high spirit, strong motivation, start 

working in youth, curiosity to find new rules, skills of good writing, trying to be open-minded 

in work and areas of interest, 

Collaboration or team working: Collaborate with different people, forming research 

team, international collaborations; communication and collaboration with colleagues, good 

colleague and co-author, generous colleagues, working with a team,  the environment of work 

should be stimulating and exciting with young colleagues who are willing to learn and get 

help and experienced colleagues who can support them and prevent their despair, Identifying 

colleagues who one can have a good work relationship with them, this factor encourages 

discussing the ideas and makes it easier for establishing future research projects, team spirit, 

having too many people around,  respecting to others’ opinions, rights and thoughts of others, 

Work schedule: Having a timeline for doing research, working in productive good ideas 



Faramarz Soheili / Rohallah Khademi / Ali Mansoori  

 

IJISM, Vol. 13, No. 1                                                                                                         January/June 2015 

33 

for studies of interest to the community, continued focus on high quality research and 

ensuring that researchers have research outputs, having a clear focus of research is important 

to start with a strong base and gradually develop research projects that are feasible, approach-

centered process 

Interest: having an interest in this field, believing in the importance of the subject, 

believing in this idea that one person is getting promotion, 

Access to data and financial support: access to a huge collection of data, take charge 

and work on research projects, the way that institute has been funded in the past, 

Opportunity: luck, having good mentors, work on hot topics, spends a lot of time, one 

need to think outside the desired range and discover how seemingly unrelated disciplines help 

to your thought.     

Question 2: In your opinion, in order to have a successful research team, in Library and 

Information Science, how many researchers should be included? 

Answers to this question were almost similar and mostly agreed. The number of people 

participating in a research team is believed to be related to other factors such as skills that 

each person brings to the team. There should be people with whom you have good personal 

relationships. Number of people in a research team also depends on various other factors such 

as scope, research subject and nature as well as size of project. In general, some believed that 

two or three people are needed for small-scale projects while 4 to 5 people for large and 

interdisciplinary projects.  

Some believed that, depending on the project, at least 5 people at different academic 

levels (professor, associate professor, assistant professor, administrator and planer) are 

needed; some others believed that about seven people, while most respondents believed that 

the team with three to five people includes an adequate number of people.  

Question 3: What are those criteria that can be helpful in selecting members and 

organizing an active and productive research team in Information Science discipline?  

Research team members should be motivated to do the work. They should have unique 

skills (writing, methodological, thematic expertise, etc.), and should complement each other. 

Each member of the team should bring their own skills inside the group. Teammates should 

be smart, hard-working, reliable and noble and their skills should be complementary. They 

should love each other and work together. Creativity and dedication, ability to work well with 

others (good interpersonal skills, flexibility), high work ethics, vibrancy, and ability to deliver 

timely work, loyalty and hard work as well as group membership are all among those 

characteristics needed. As they have different abilities, team members should be open to each 

other and support the team using complementary strengths and compatible work styles. They 

should also possess an appropriate range of experience to be able to cover the subject while 

they are interacting with the group members.  It is expected that they be keen enough to listen 

to their teammates and participate in group’s discussion and share ideas as the whole is 
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stronger than any single part.  

 

Discussion 

Information Science journals indexed in Thomson Reuter’s database were examined in 

this study. Results showed that 22161 records were produced by 43739 authors. Findings 

from analysis of centrality of social network of co-authors revealed that these journals have 

relatively low average centrality, also the network had low density and there were little 

relationships between authors. It was also found that many of authors were not connected with 

each other. 

Results from centrality analysis showed that Journal of the American Medical Informatics 

Association with average degree of centrality of 20.74 and MIS Quarterly with average of 

betweenness centrality of 113.18 had the highest betweenness centrality scores. Journal of the 

American Society for Information Science and Technology ranked first, both from the 

perspective of closeness centrality average of 12.95, and the average flow betweenness of 

932.2. One of the noticeable journals in this area is Scientometrics that ranked second in all 

centrality measures. This fact shows that co-author social network of this journal has more 

cohesion than other journals in the scope of Information Science. 

Results from this study also showed that the average of degree centrality scores related to 

the betweenness centrality in the journals of Information Science is more than the average of 

degree centrality scores in the journals of Organization and Management (Acedo et al, 2006) 

that equals to 2.68 in the degree centrality scores which is. 017.  

Results of Otte and Rousseau (2002) showed that the degree of centrality in entire of 

network was 11% and betweenness was 47% in Sociological abstracts, Medline and Psyc 

INFO databases, so results of this study, in comparison with Otte and Rousseau (2002), show 

that the former is at a higher level but it is lower than the results of GOSSART & ÖZMAN 

(2009) study. They studied co-author network of social science in Turkey in SSCI and 

ULAKBIM databases and betweenness centrality for these databases was 0.0006 and 0.00013 

respectively. 

Result of this study is also higher than the results of Gómez et al. (2008) about co-author 

networks in three areas of study in Madrid whose betweenness centrality was higher than 0.5, 

the average of closeness scores equaled 2.32 and the average of  degree was 6. 

On the other hand, results showed that co-author networks are widely composed of 

separate groups in most of Information Science journals. Besides, there was little interface 

between these authors. This provides very little opportunity for dissemination of knowledge. 

To solve this problem, it is suggested that authors of Information Science journals make their 

research groups to make the co-author social networks between themselves denser and 

increase the flow of knowledge dissemination. 

The results also showed there was significant correlation between journal’s Impact Factor 

mailto:carlos.olmeda@uc3m.es
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(IF) and the average of centrality scores which express that journals with higher IF have more 

collaboration in writing articles, in addition there are more relationships between journal’s 

authors.  

So, we can conclude that the journals which have more collaboration in their articles get 

more citations. We should also point out that whatever these collaborations are regional or 

international or whatever the authors of the articles are from various geographical regions, 

they get more citations. For the most part, the works of important and illustrious authors get 

more citations due to their reliability and influence on colleagues and students in similar 

subject areas. Besides, printing the works of these authors in journals will lead to more 

citations and finally more Impact Factor (IF) for these journals.  

The results also showed that there was significant correlation between centrality of factors 

and productivity. It means that the more a person is involved in centrality of factors and more 

centrality scores, the more influence he/she has and this leads to more productivity and 

scientific outputs. Moreover, regression reports direct relationship of degree, closeness and 

flow betweenness and inverse relationship of betweenness and Eigen vector centrality on 

productivity of researchers. 

In general, we can say “Glanzel” is the most influential author between authors of 

Information Science journals because he has the highest centrality scores. The results about 

studied journals showed that Journal of American Medical Informatics and   scientometrics 

had the highest centrality scores in terms of centrality scores. This is perhaps for the reason 

that these journals are mainly specialized (scientometrics only prints in area of Scientometric 

and Journal of American Medical Informatics prints the articles in Medical Informatics).  

Finally, questionnaire’s results of those researchers who have high centrality scores 

indicate that forming a harmonious research team is one of the main reasons of researchers’ 

success. In fact, when forming a research team, several criteria such as research ethics, 

respects to teammates’ rights, solidarity with team members, loyalty and agreement between 

teammates, having an approach-centered process as well as punctuality should be fully taken 

into consideration. 
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Appendix: 

 formulas of centrality measures (Marsden, 2002) 

 

 

Degree centrality 

 

Closeness centrality 

 

Betweenness centrality 

 

Eigenvector centrality 

 
 

Flow betweenness 
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