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A SOIL MOISTURE-BASED YIELD MODEL OF WETLAND RAINFED RICE! 

ABSTRACT 

A water balance and crop simulation model (PADI­
WATER) was developed to predict the yields of the 
drought-prone second rainfed wetland rice crop in 
Iloilo Province, Philippines. The model was deve­
loped from data collected from 2 years of planting 
date trials in that province. The only data re­
quired to operate the completed model 'were those 
on daily rainfall. The model was. validated against 
farmers' crop yields for 6 years and against the 
yi~lds for 4 years from expe.rimental crops grown 
in the province. During the model verification, a 
term found to be essential was groundwater contri­
bution. Excluding the term resulted in a 30% un-

derestimation of actual yield at the 4 t/ha level 
and a 90% underestimation at the 1 t/ha yield le­
vel. It is in this yield range that decisions are 
made on whether a second rice crop should be grown. 
Sensitivity tests on the model showed that the 
model was most sensitive to changes in pan eva­
poration rate and to the rate of canopy develop­
ment, as determined by the transpiration-to­
evapotranspiration ,ratio. The model terms pan 
factor, spillway· height, and net seepage and per­
colation rate which receive considerable atten­
tion in water balance studies of irrigated rice, 
were found to be less sensitive. 
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Development Research Centre, 599 Iona Drive, University of British Columbia, Vancouver, Canada). Submitted 
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A SOIL MOISWRE-BASED YIELD MODEL OF WETLAND RAINFED RICE 

The advent of modern short-duration·rice varieties 
(less than 120 days) has encouraged double­
cropping in rainfed rice growing areas where the 
monsoon lasts more than 6 months (200 mm/month). 
Like the· traditional long-_dtiration single crop, 
the first crop in this pattern will not normally 
encounter severe drought stress because it matures 
before. the monsoon recedes. The second rice crop, 
however, matures as the monsoon recedes and 
therefore its yields are routinely reduced by 
drought. To determine whether a given rainf ed rice 
area can support a successful second rice crop it 
is necessary to have an estimate of the average 
expected yield and the variability of that yield. 
Because the late monsoon is noted for rainfall 
variability yield estimates would normally require 
long-term· field trials. An alternative method of 
delineating areas for double-cropping rice is to 
run" field trials over a few crop seasons J charac­
terize the crop response to a full range of envi­
ronments in these .trials, and build a crop model 
from the data base. Although this approach may 
be less accurate, it results in an earlier decision 
on when to double-crop rice. Modeling·rainfed rice 
is, however, confounded by two factors: 

• a dearth of literature on the unsaturated 
mode of the water balance for rainfed 
wetland rice; and 

• lack of well-equipped meteorological 
stations in rainfed rice areas. Commonly 
the only dependable data for these areas 
are those on rainfall. 

This restriction automatically precludes the use. 
of sophisticated, and largely exploratory, models 
such as those of Iwaki (1975) and Van Keulen 
(1976, 1978). On a simpler level, predictive equa­
tions based on the accumulation of stress days 
(days without standing water) have been success­
fully used for determining the benefits of irriga­
tion (Wickham 1971),· but have been of less value 
when applied to rainfed areas (Cablayan and Wick­
ham 1977). Estimates of low yields with these 
equations will not be accurate because the stress­
day concept does not take into account the inten­
sity and precise timing of the drought stress. 

The principle used in the PADIWATER model we de­
scribe is that crop transpiration decreases as 
soil moisture is depleted and the transpiration 
rate is known to closely parallel dry matter 
accumulation. The value of this relationship for 
modeling a rainfed crop is that it.holds true even 
for a drought stressed crop and does not change 
appreciably with varietal or fertility differen­
ces. 

MODEL DESCRIPTION 

A flow chart of the PADIWATER yield simulation 
model is in Figure 1. Modeling was from data from 
2 years of planting date trials in Tigbauan Ilo­
ilo Province, Philippines. The trials were' on two 
farmers' fields -- one higher-lying with low fer­
tility and prone to drought, the other low-lying 
with more fertile soil and less prone to drought. 
Depending on· moisture availability, rice was 
planted up to eight times on alternate weeks in 
the late wet season at four fertilizer rates. 

During the field trials, rainfall and Class A pan 
evaporation were measured daily at each site. When 
standing water was present the water depth was 
measured on a sloping gauge (1 cm on the gauge re­
presents 1 mm depth of· water). When less than 50% 
of the field was covered with standing water, soil 
cores were taken to 30 cm depth from parts of the 
field without standing water and volumetric mois­
ture content was estimated. The average water 
depth in parts of the field with standing water at 
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50% coverage was about 30 mm. Groundwater depth 
was recorded in perforated ·dip-wells. Evapotrans­
piration rates were recorded from plants growing 
in tanks (120 cm in diameter and 40 cm deep), bu­
ried in the paddy with at least 10 m uniform crop 
border. Evaporation was also measured with small 
pans (20 x 20 cm and 10 cm deep) placed between 
hills of transplanted rice. Within -canopy evapo­
ration was assumed to be equal to evaporation.loss 
from these pans. 

Grain yield and total dry matter were recorded·:a t 
harvest. 

Soil water balance 

The basic water balance equation for a -rice crop 
in standing water may be 'summarized: 

WD = WD l + RF ~ ET S P + 
--t: --t: - --t: --t: -t -t 

IF - OF 
-J:_ ~ 

where: WD is water depth, 
RFis rainfall, 
ET is evapotranspiration, 
S is lateral seepage through the dikes, 
P is percolation, 
IF is inflow from higher fields over the 

spillways, 
OF is outflow or .surface drainage from the 

paddy over the spil·lway, and 
t is the time interval between measurements• 

The spillway height in the field trials was 13? mm 
for low-lying fields and 100 mm for the high-lying 
fields. For a paddy without standing water the wa­
ter balance is similar to that for dryland fields 

\ and may be expressed as: 

SMt = SMt-1 + RFt - ETt + CPt 
- -

where: SM is soil moisture in the root zone, and 

CP is capillary rise from a shallow water 
table into the root zone. 

Because paddies are not completely level there are 
times when the field is only partially covered 
with water. Field measurements of soil moisture in 
the parts of partially flooded fields without 
standing water indicate that soil moisture does 
not decline significantly below saturation until 
virtually all standing water is lost. Therefore, 
in the model it is assumed that the unsaturated 
water balance model (second equation) does not 
start until all standing water is lost. The satu­
rated water balance model (first equation) may 
again be ~sed if rainfall for a given day is 
greater thah that required to return the soil to 
saturation. It is common for the intermittent 
late-season rains to cause the water balance to 
pass through several such cycles of wetting and 
drying. A further assumption in the model was that 
at·· times when no standing water was present there 
was no percolation. However, when the field was 
partially flooded percolation continued, implying 
that the drained portion of the fields continued 
to lose water through percolation. This assump-

~-------------- - ------------- ---------

tio.n, although appropri9-te for this soil type and 
for the wet-to-dry season transition, may not be 
correct for lighter soils and for. the dry-to-wet 
season transition in deeply cracked soils (see 
Zandstra et al 1980). The veracity of the approach 
could not be determined because the model is rela­
tively insensitive to seepage and percolation 
rates below 2 mm/day, as we indi~ate later. 

. ·.. : . . .. -
Most moisture extraction by wetland rice grown ·in. 
puddled soil takes place within 30· cm of the sqii 
surface (Hasegawa et al 1979). In our field trials. 
90% of the root axes _counted, .even at 20 days af-, · 
ter transplanting, were in the top 20 cm.of a;30-cm 
core, which is consistent with previous field : 
measurements for wetland. rice (IRR! 1977) •. This .is 
the justification for using a 30-cm root. zone in. 
the model. In the trials soil was. satu~ated by 150. 
mm water in the top 30 cm of -the soil for the high 
fields and 175 mm in 30-cm soil for the low. 
fields. 

The 2. 5-year record of pan evaporation from the· 
field site was ui;;ed to. calculate the. monthly .evap­
oration rate. These rates may be used. ciirectly in 
the model. To capture. year-to-year variations, 
however., it was found more accurate to predict pan 
evap.oration rate using its relationship with cur­
rent and the past month's rainfall that was de­
rived frbm the available record. This relationship 
also allows determination of evaporation rates for 
nearby sites where only rainfed records exist. The 
relationship, however, is probably site specific 
and would have to be reevaluated for rainfed areas 
in different rainfall regimes .. To obtain poten­
tial evapotranspiration rates, a 0.93 pan factor 
was used. This was the rate measured in the 
tank lysimeter wl;ien standing water was present. 
When no stand~ng water was present .evapotranspira­
tion rate was 'determined from.the soil moisture 
content of the 30-cm effective; root zone (Fig. 2). 
Although it is recognized that this relationship 
is demand sensitive, particularly for heavier 
soils with lower conductivities, there were too 
few data points to form a functional relationship. 
The value's for actual evapotranspiration rate 
(ETA) were determined in the field according to 
the following equation: 

Capillary rise is computed from measured ground­
water depths and the.corresponding rates of upward 

a ter movement computed for various soil textures 
by Doorenbos and Pruitt (1975). 

Net seepage. and percolation was determined by the 
Giron and Wickham (1976) subsidence technique, 
which may be summarized as follows: 

SPt = WDt - WDt-1 - ETt + RFt - - - -
Net seepage and percol~tiori rates.used in the mo­
del were determined in the field trials as 0.5 mm/ 
day for the low-lying paddies and O. 7 - mm/day for 
the higher-lying fields. In the Philippines, Wick­
ham and Singh (1977) reported that.net seepage and 



. . ~ ~,._ 

percolation. rates generally lie between 0 and 3 
mm/day in the wet season, the rate increasing with 
the relative. 'elevation of· the paddy within the 
landscape (Wickham and Singh 1977). 

Surf ace drainage is one of the most visible compo­
nents of the water balance in rice ·culture. The 
gain to fields low in the landscape bottomlands 
and waterways . is. considerable in raiilfed rice 
areas with sharp relief. The net gain to m_ost 
fields in the landscape, however, is not as great 
as it would first appear; before inflow occurs 
the reference field will already be about full to 
spillway height. The reason for this is: assuming 
rainfall and evapotranspiration rates are equal 
across the landscape and -allowing for lower rates 
of seepage and percolation in low-lying fields, 
these fields will overflow into bottomlands and 
Waterways before there is inflow from the fields 
above. The limited net gain is largely the result 
of the time lag between cessation of rainfall and 
inflow; after rainfall, inflow continues and may 
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compensate for evapotranspiration, seepage, and 
percolation losses in subsequent days. Therefore, 
in a simulation it is necessary to know how many 
days inflow compensates for field water require­
ment. For this purpose all spillways in and out of 
the study fields were equipped with wooden gates. 
Each day the increase in water depth behind the 
gates was measured before rel.ease. Inflows and 
outflows over spillways were thus recorded for two 
crop seasons in the field trials. During this time 
five discrete inflow events were recorded. On all 
these occasions it was observed that inflow ceased 
the same day as rainfall in the higher-lying 
fields but continued for about 2 days after the 
last heavy rainfall (greater than 10 mm) in the 
low fields. 

Because of the dearth of literature on the sub­
ject, the initial logic was. that groundwater con­
tribution would be a minor component in the water 
balance for wetland rice. However, on the first 
runs of the simulation it became apparent that on 
the basis of the functional relationships prepared 
by Doorenbos an<l Pruitt (1975), in some yea,rs the 
capillary rise could represent up to a third of 
the input to water balance. It was also found that 
ignoring groundwater contribution led to a signif­
icant underestimation of observed yield. Such a 
situation could be created by light but frequent 
rains that maintained the soil near saturation and 
the groundwater within a meter of the surface • 

Groundwater level beneath the root zone is re­
quired for use in the Doorenbos and Pruitt curves. 
In the simulation, therefore, groundwater depth is 
increased 2 cm/day for each rainless day in the 
low fields, a·nd 4. 3 cm/day for the higher fields. 
These values were based on those recorded in the 
field, but with the former figure changed from the 
measured value of· 3.1 cm/day during tuning. The 
estimated value for groundwater depth is reduced 
on rainy days by a height proportional. to the 
amount of rainfall received, again a relationship 
derived from field data. There was no attempt to 
link deep percolation rates to groundwater re­
charge in the equations for the water balance be­
cause this relationship is more a fun ct ion ·of 
catchment hydrol·ogy and, therefore, too complex to 
incorporate in a simple water balance model of a 
paddy. Groundwater contribution is then computed 
from these simulated groundwater levels according 
to the graph of Doorenbos and Pruitt (1975); 

Crop growth and yield 

Transpiration rate closely parallels the rate of 
dry matter accumulation (De Wit 1958; Arkley 1963; 
Sugimoto 19 71, 1973). Sugimoto reported that the 
relationship breaks down for rice at low tempera­
tures but remains stable for the tropical environ­
ment. In the Philippines, based on data .from Wu 
(1966), this relationship was confirmed over a 
range of solar radiation levels and soil moisture 
tensions down to 10 bars (1 M Pascal). Because of 
this close correspondence under a wide. range of 
environments, and because drought stress is by far 
the major determinant of second rice crop yield, 
this relationship was selected to link the water 
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balance and crop growth simulations. This rela­
tionship also has a low information requirement 
when compared to other processes. 

Previous attempts to relate solar radiation to 
the transpiration coefficient have proved inade­
quate when applied to humid and arid sites in 
similar radiation regimes. Some form of humidity· 
index has often been· included to improve the re­
lationship. Bierhuizen and .Slatyer (1965) dem­
onstrated a close relationship between vapor 
pressure deficits, radiation level, and the 
transpiration coefficient. Sugimoto reported that 
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Fig. 3. The relationship.between estimated 
transpiration-to-evapotranspiration ratios and 
c;:rop age. 

dry season transpiration coefficients for 5 Asian 
countries averaged 419 when midday vapor pressure 
deficits can be up to 25 mbars, but only 332 in · 
the wet season when deficits are about 50% lower. 
Because daily estimates of vapor pressure deficit 
are not available for most rainfed areas, pan . 
evaporation above _the wet season minimum of 5.3 
mm/day .was used in ·the s'imulation as a substitute 
for vapor pressure deficit in modifying the. 
transpiration coefficient. . Hignett (1973) demon­
strated a strong linear relationship between pan 
evaporation and the vapor pressure deficit for 
four contrasting sites in southern Australia. 
Doyle and Fischer (1979) reported a linear rela­
tionship between pan evaporation and the transpi-­
ration coefficient. The coefficient at wet season 
minimum was estimated in the field·to be 250. The 
dry season maximum was set· in the model close to 
that reported by Sugimoto (1971), generally· about 
570, but because it is linked to pan evaporation 
rate this value varies from year to year. Natural­
ly, dry sea·son field determination of the transpi-. 
ration coefficient is. not possible in a rainf ed 
rice area. 

In the.simulation model, transpiration is accumu­
lated and translated daily into terms of dry matter 

BO 

by this modified transpiration coefficient. To 
determine the proportion of evapotranspiration 
allocated to transpiration, curves similar to those 
in Figure 3 are used; these treat transpiration as 
a residual of evapotranspiration and free-water 
evaporation from beneath the canopy (after Sugimoto 
1971, IRRI 1971). The coefficients for the curve 
depend on variety, field duration of that variety, 
and nutrition level. For·example,·the slope of the 
curve will be shallowe'r for longer-duration varie­
ties; the peak value· for the ratio of transpiration 
to evapotranspiration will be greater for leafy 
varieties and smaller for nutrient-deficient crops. 

90 

Transpiration rates when there is no standing water 
may be estimated by the method described by 
Ritchie (1972). 

Grain yield is computed from the estimated total 
dry matter production at harvest using a harvest 
index estimated according to the relationship 
given in Figure 4. The close relationship of dry 
matter and harvest index, with data from two seasons 
and a number of planting dates within each season, 
is probably due to increase in drought stress as 
the dry season approaches. 

Tuning, validation, and sensitivity tests 

Each component i~ the model was tuned separately, 
from the best understood parameters to the least 
understood. For instance, the hierarchy of tuning 
of the water balance was seepage and percolation 
first, then evapotranspiration, then groundwater 
contribution. Tuning of the water balance simula­
tion made negligible difference to the predicted 
water balance values for both seasons and both 
sites, suggesting that the processes in the simu­
lation are satisfactory. Figure.5 illustrates one 
of the four verification runs comparing the tuned 
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Fig. 5. The tuned (dashed.line) and urituned (dotted line) simulated water balance, 
compared with the observed water balance (solid line). Plateau, crop year 1978. 

and untuned model. When untuned the crop growth 
rou.tlne overestimated_ low yields. It was necessary 
to cease dry matter accumulation below a given 
soil moisture value -- 115 mm for the low field 
and 90 mm for the high -- low yields were. over­
estimated. The difference in -values is probably a 
function of soil texture. In .terms of moisture 
tensions these· values are equivalent to 5 and 10 
bars, which are tensions associated with very low 
rates of evapotranspiration, photosynthesis, and 
dry matter accumulation (Kamoto et al 1974). 

Sensitivity tests were conducted on the. model 
using rainfall data from a typical year-, 1978, 
with simulated plantirigs on alternate weeks ·for a 
low-lying field. The plantings were started from 
the middle of the wet season (September) and con­
tinued until no standing water remained (mid..:.· 
December). That resulted in estimated yields. rang­
ing from 7 t/ha to complete- failure• ·The most sen.:.. 
sitive parameter was evaporation; an alter·ation of 
10% in mean monthly rates resulted in a· 20%. change. 
in yield (Table 1). In· the rainfed area of. the 
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field trials the dry season pan evaporation rates 
were 20% higher than for irrigated areas 20 km 
distant.' This model sensitivity to evaporative de­
mand highlights the need for accurate estimation 
of evaporation rates at the wet-to-dry season 
transition, as was mentioned in the section on the 
soil water balance. Selection of different· trans­
piration - evapotranspiration curves within the 
envelope defined by the 95% confidence intervals 
on coefficients for the regression equation in 
Figure 3 also resulted in a 20% change in yield 
estimate (Table 2). 

Table 1. Effects of pan evapor.ation sensitivity 
tests on estimated grain yield (t/ha), using 1978 
Iloilo rainfall data. 

Planting 
date 

1 Sep 
15 Sep 
30 Sep 
15 Oct 
30 Oct 
i4 Nov 
29 Nov 
14 Dec 

Mean yield 
% change 

% change in mean monthly pan evaporation 
-20 -10 0 +10 

8.5 7.0 6.2 5.5 
8.1 6.6 5.7 5.1 
7.6 6.2 5.4 4.7 
5.7 4.6 3.8 3.0 
5.0 4.0 2.9 2.1 
4.1 2.9 1.9 1. 3 
2.5 1.5 1.0 0.4 
1.2 0.4 0.1 o.o 

~.3 4.1 3.4 2.8 
+56 +21 -18 

Table 2. Effects on estimated grain yield (t/ha) 
of sensitivity tests on transpiration-to-evapo­
transpiration curves according to stage of crop 
development, using .1978 Iloilo rainfall data. 

Planting 
date 

1 Sep 
15 Sep 
30 Sep 
15 Oct 
30 Oct 
14 Nov 
29 Nov 
14 Dec 

Mean yield 
% change 

Coefficients of T/ET curvesa 
3.1/0.2 4.5/0.2 7.5/0.2 3.1/0.l 

6.8 6.2 4.7 5.3 
6.3 5.7 4.3 4.8 
6.0 5.4 4.0 4.6 
4.5 3.8 2.2 3.0 
3.7 2.9 1.5 2.2 
2.6 1.9 0.6 1.0 
1.6 1.0 0.1 0.5 
0.4 0.1 0.0 0.0 

4.0 3.4 2.2 2.7 
+18 -19 -21 

aThe standard curve in Figure 2 was 

y = 0.92/(1 + e 5 •3 - O.l5x), the 95% confidence 
limits on the coefficients being 5.3 ± 2.2 and 
0.15 ± 0.05, the values 4.5 and 0.2 
representing the· tuned coefficients. 

A term found. to be essential to the model was 
groundwater contribution. Excluding it results in 
a 30% underes.timation of yield at the 4 t/ha yield 
level and a 90% underestimation at the 1 t/ha 
yield level (T~ble 3). It is in this yield range 
that decisions are made on whether a second rice 

crop should be grown. Groundwater contribution 
is, therefore, an essential process in a model of 
rainfed rice, and yet no literature has been found · 
that includes it as a component of the paddy-water 
balance, let alone detailing its simulation. The 
terms pan factor, spillway height, and net seepage 
and percolation rate, which receive considerable 
attention in water balance studies of irrigated 
rice, were found to be less sensitive in this 
rainfed rice model. 

The model was validated against the actual yields 
of experimental cropping patterns for 4 seasons at 
the research site and' against 6 seasons' yields 
from farmers' fields in a pilot project area for 
double-cropped rainfed rice, 20 km from the re­
search site (Fig.6). ·Because of micro-relief and 
water management factors the actual yields for 
each site-year given in Figure 6 are variable; the 
95% confidence interval on these average yields 
was + O. 7 t/ha. This is the principal limit on 
interpreting model accuracy from Figure 6. 

Table 3. Effects of groundwater contribution on 
estimated grain yield (t/ha), using 1978 Iloilo 
rainfall data. 

Planting 
date 

1 Sep 
15 Sep 
30 Sep 
15 Oct 
30 Oct 
14 Nov· 
29 Nov 
14 Dec 

Av 
% change 

CONCLUSION 

Groundwater contribution 
· With Without 

6.2 6.1 
5.7 5.7 
5.4 5.2 
3.8 2.7 
2.9 1.6 
1.9 0.9 
1.0 0.1 
0.1 o.o 

3.4 2.8 
-18 

Difference 

-0.l 
0 

-0.2 
-1.1 
-1. 3 
-1.0 
-0.9 
-0.1 

-0.6 

The model we present may be used to determine whe­
ther to grow a second short-duration rainfed rice 
crop in a given rainfall regime. This is a consi­
derable improvement to the alternative of long­
term field trials in all sites where a second 
rainfed rice crop might be grown in a· normal year. 
Although rice modeiing does not remove· the need 
for confirmatory trials it does permit quick ini­
tial screening of prospective sites. The difficul­
ties encountered in building. this model indicate 
that unlike irrigated rice, wetland rainfed rice 
and its environment remain poorly understood, par­
ticularly in terms of the groundwater contribution 
to the water balance and the· crop response to 
drought stress. That suggests more attention 
should be paid to the edaphic factors determining 
yield. 

.. ........___ --- ------ ----~ ~ -~-- - ---- ------------ - -- - -- -~- ~- ---- --- - - - - -- ----- -------------- --------- -- __ J 
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Fig. 6. Comparison of the yields estimated by the 
PADIWATER model and actual yields obtained in Santa 
Barbara, Oton, and Tigbauan, Iloilo, Philippines. 
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