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Introduction

Esca is a complex disease. At least 2 or 3 fungi
(Phaeoacremonium chlamydosporum, P. aleo-
philum and Fomitiporia punctata), acting in suc-
cession or in combination, are involved. Each fun-
gus produces in the wood of the trunk different
symptoms and a multitude of interactions can oc-
cur due to various combinations of fungus or fun-
gi, host and environment. One of the results of
these interactions is the characteristic discontinu-
ity in symptom expression of esca.

Esca can increase rapidly in the vineyard so
that almost all the vines may be infected by the
time the vineyard reaches 25-30 years of age. The
mode of spread of the causal agents of the dis-
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ease differs. F.  punctata is not believed to be
transmitted from vine to vine (Cortesi et al.,
2000). On the other hand, it seems that Phaeo-
acremonium spp. may spread in the vineyard
from external or internal sources of inoculum
(Larignon, 1999).

Spatial studies of esca have been conducted pre-
viously to quantify the spatial aspects of the dis-
ease in regular lattices of host vines. Due to the
discontinuity in symptom expression the analysis
of patterns was in practice restricted to data cu-
mulated over several years of observations (Surico
et al., this issue). This meant that hypotheses con-
cerning the details of disease increase over time
could not be tested directly.

The quantitative analysis of symptom expres-
sion over time requires parametric statistical
models, especially if inferential statements are
needed besides descriptive summaries. A next-
year forecast of symptom incidence must be based
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on the point estimate of meaningful parameters,
here represented by transition probabilities from
the field state of one year to the field state of the
next (presence/absence of symptoms or death).
Moreover, model selection involves the identifi-
cation of risk factors and protective factors, i.e.
of sources of variation associated with a modifi-
cation of the baseline probability of displaying
esca symptoms.

In this paper we present a longitudinal model
of symptom expression in which the probability of
showing esca symptoms changes according to field
factors. Model selection was based on the Akaike
Information Criterion (AIC) (McCullagh and
Nelder, 1989), and statistical tests of hypotheses
were performed looking at differences of deviance
values. The results of the analysis suggested that
the presence of diseased plants in the close (col-
umn) neighborhood of a plant one year was associ-
ated with a change of the probability that that plant
would show esca symptoms the next year. The
model detailed in the next paragraphs refers to
disease symptoms, but further improvements, now
in progress, will deal with the latent variable  that
accounts for sickness-health-death besides symp-
tom expression.

Materials and methods

The proposed longitudinal model was applied
to a vineyard (GTFI) in the province of Florence.
During the summer of each year from 1993 to 1998
a block of vines, 10 columns x 51-62 rows, was sur-
veyed in the vineyard. The collection of data and
the characteristics of GTFI are described in Surico
et al. (this issue). A dataset was obtained by cod-
ing survey results in three classes, Y=0 for absence
of symptoms, Y=1 for presence of symptoms and
Y=2 for dead plants.

Plant symptoms for years 2 to 6, i.e. 5 yearly
transitions,  were included in the model as depend-
ent variables.

Model factors were coded using dummy varia-
bles (auxiliary variables). The neighborhood of a
plant consisted of one plant on either side along
the column. The variable DD (plant pairs) had val-
ue 1 if the plant preceding and/or following a giv-
en plant showed symptoms, 0 if it did not. Dead
plants were ignored and when this happens the
neighborhood of the living plants was extended to

include the next living plant. The variables YJ and
Y (state of the plant) have the same interpretation
but YJ refers to the value Y lagged back one year.
The variable CO (column) has the values 1,2, …,
10, according to the  column number in the field.
The variable TRA (transition) has values 1,2,…,5
respectively for the transitions first-to-second year,
second-to-third year, and so on.

Statistical analysis

We used a longitudinal model in which the prob-
ability that a plant would show esca symptoms in
a year t depended on the field state in year t-1
(t=2,3,…,6, transition models) (Diggle et al., 1994).
The field state was determined by the value of those
field factors described in the paragraph above, that
is by YJ, DD, TRA and CO.

In the simplest model, the probability P[Y=i]=pi

that a plant belongs to the class coded as Y= i – 1
in a given year does not depend on the value of the
field factors in the previous year. In this case the
vector of parameters (p1, p2 , p3) , with p1+p2+p3=1,
fully specifies the model.  The simplest model is
certainly wrong, because dead plants will remain
dead the next year, and therefore the vector above
does not suffice. Another, enlarged model has six
parameters, three that represent probability val-
ues if  YJ=0 (no symptoms in the previous year)
and three parameters if YJ=1 (symptoms in the
previous year). It is clear that YJ=2 implies Y=2,
that is, the last three probability values (param-
eters) are known to be 0, 0 and 1. In that case the
matrix of transition probabilities will be

where in the first row YJ=0, in the second YJ=1 and
in the third YJ=2. On columns (left to right), the
values are Y=0, Y=1 and Y=2. Note that probabili-
ty values on each row add up to one,

for i=1, 2. Moreover, a compact notation for the
matrix above does not contain the last row, because
it consists of numbers rather than unknown pa-
rameters.

The probability transition matrix of the en-
larged model does not depend on years (transitions,
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TRA) or on the state of the plant neighborhood
(DD); therefore the same matrix is assumed to hold
in different years, and in general, for different val-
ues of field factors. If this assumption is wrong the
matrix must be enlarged adding more rows to al-
low for different transition probabilities under dif-
ferent field conditions (combinations of factors YJ,
DD, TRA). In other words, a model must be formu-
lated to define the features of the probability tran-
sition matrix (number and features of each row).

Generalized linear models are linear models on
a transformed scale (Mc Cullagh and Nelder, 1989).
We simplify the notation by always using p1, p2, p3

to denote the probability that a plant will belong
to class 0, 1 or 2, and by explicitly stating in each
case the value of the conditioning variables (DD,
TRA, etc.), that is, the row of the probability tran-
sition matrix involved in a formula.

In the logistic multinomial model, the proba-
bility P[Y=i]=pi that a plant belongs to the class
coded as Y=i–1 is transformed in the product of p1

times exp(h), that is pi = p1·exp(h). Here, p1 is the
probability associated with the class Y=0 that is
taken as reference (baseline probability). Bounda-
ries in the range of probability values are removed
from the logarithmic scale because log (pi/p1) = h
has rank (– ∞, ∞).

The linear predictors h may be specified as con-
stants (e.g. h1=0, h2 and h3 for Y=0, Y=1 and Y=2
respectively), or as the sum of several parameters.
In the latter case, h contains a linear combination
of effects associated with field factors and may also
include interaction terms. For example, let aj be
the effect for TRA and gm the effect for DD, then
the saturated linear model for these two factors is
aj + gm +agjm, where aj is the effect for the year tran-
sition labelled as j, gm the neighborhood factor with
level m, and agjm the interaction term.

Note that the probability values pi, i=1,2,3 add
to one, that is p1+p2+p3=1. From this last equation
p1 can be defined as a function of linear predictors,

that is,                             .

 Therefore, the probability associated with the
factor level i-1 of Y is also defined by:

Model parameters may be interpreted on the
multiplicative scale, and their values are obtained
by exponentiation, e.g.:

Under the introduced “treatment” parameteri-
zation exp(a2) is the amount of change due to a shift
from the base-line class with TRA=1, to the class
TRA=2. This choice of parameterization implies
a1=0 (parameter constraint), and it also holds for
the first level of the other model factors (and inter-
actions).

Model fitting was performed using a stepwise
search in the model space to minimize the value of
the Akaike’s Information Criterion -2*log-likeli-
hood + 2*npar. The AIC value of model M was small
if the log-likelihood value of M was large and if the
number of parameters contained in M (npar) was
small, so the higher the number of parameters, the
larger the penalization term. Plots of deviance and
Pearson residuals were inspected to find patterns
indicating violation of the model assumptions.

Results and discussion

The stepwise model selection procedure ended
in the model Y ~ TRA + YJ+ DD + YJ:DD (Wilkin-
son and Rogers notation in McCullagh and Nelder,
1989), where YJ:DD indicates the interaction of the
two specified model terms: M1, with interaction;
M2 without interaction.

The analysis of deviance for these two models is
shown in Table 1. The null hypothesis “parameter
equal to zero” was rejected for all but the last model
term with significance level 5%. The AIC values for
the best model were 96.8982, and it included the
interaction YJ:DD. Nevertheless, the model with-
out the interaction term had an AIC value of
98.7862. As expected, the value of residual deviance
is close to the value of its degree of freedom, with or
without inclusion of the interaction term.

We prefer the simpler model without interac-
tion for several reasons. The interaction term is
not significantly different from zero (a = 0.05), al-
though the critical value is defined using asymp-
totic distributions. The AIC values are very simi-
lar, thus the decision to remove the interaction term
from the model is sound. Moreover, the model in-
terpretation is simpler without interaction terms,
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and in this case there did not seem to be any rea-
sonable explanation for the interaction between YJ
and DD from the standpoint of plant pathology. The
estimated values of the interaction terms are both
negative (result not shown): this is as if plants with
symptoms in the neighborhood of a given plant
prevent it from showing symptoms or death the
following year if the plant already showed symp-
toms in the current year. Of course this does not
make any sense from the point of view of phytopa-
thology. In any case, another explanation might be
looked for in the presence of diversity among plants
(a latent variable). All in all, the exclusion of inter-
action terms is reasonable, but further research
on this issue is needed.

More insights on the two models are obtained
by inspecting differences between expected and
observed cell frequencies with and without inter-
action terms (Fig. 1). Generally, the differences are
quite small, but for cells with small counts the dif-
ference is larger: only for a few of them the model
with interaction is certainly better. The interac-
tion term seems to be mostly related to an adjust-
ment of small counts and of one atypical cell, so
that its role could be due merely to sampling vari-
ability (noise), as indeed the statistical test sug-
gests.

Note that we removed from the dataset those
cells containing sampling zeros and those that are
known in advance because of forbidden transitions
(constrained parameters), e.g. dead plants which
will not become alive in a following year.

The estimate of parameters under the model
without interaction (M2) and their standard errors
are shown in Table 2. The probability of showing
disease symptoms changes with the year, the pres-
ence of symptoms a year earlier, and the state of
the plants in the neighborhood. The magnitude of
the change is maximal for the model factor YJ, as
expected from the standpoint of plant pathology.

The graphical analysis of residuals (McCullagh
and Nelder, 1989) showed moderate evidence for
possible departures from the model assumptions
(Fig. 2). Only one residual was quite large with
the model without the interaction term.

We also investigated the field column as a mod-
el factor, but the best model we obtained had an
AIC value equal to 509 (data not shown), that is,
about 5 times as much as the best model without
such factor. Moreover, 20 parameters were not es-
timated due to the presence of singularities. In oth-

Table 1. Analysis of deviance. Terms are added sequentially (first to last). The Table shows, from left to right: name
of the model term, its degree of freedom (DF), its deviance (Dev.), the degree of freedom (DF) of the residual devi-
ance, its value (Res. Dev.), and the probability associated to the observed test statistic. Finally, the AIC value for the
two models used is also shown.

Model
term

DF Dev. DF Res. Dev. Prob. AIC

TRA 8 20.04 26 270.680 0.0102
YJ 2 233.50 24 37.180 0.0000
DD 2 6.39 22 30.78 0.0409 98.7862

YJ:DD 2 5.89 20 24.900 0.0526 96.8982

Table 2. Values of the estimated parameters. The pa-
rameter name, the estimated value and the standard
error (SE) are shown from left to right for the model
without interaction.

Parameters Value SE

Y1 -2.0178 0.1312
Y2 -5.0189 0.4143
TRA2:Y1 -0.4504 0.1876
TRA3:Y1 0.2372 0.1701
TRA4:Y1 -0.0118 0.1755
TRA5:Y1 0.0007 0.1761
TRA2:Y2 0.1924 0.4367
TRA3:Y2 0.1268 0.5281
TRA4:Y2 0.8561 0.4023
TRA5:Y2 -0.2159 0.4989
YJY1 1.4078 0.1318
YJY2 3.4273 0.3196
DD:Y1 0.2361 0.1238
DD:Y2 -0.4494 0.3227
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Differences

-5 0 5

Fig. 1. Differences between models. Differences between expected and observed cell frequencies for model with (M1)
and without (M2) interaction are shown in the plot. Straight lines connect values referred to the same cell under the
two models.
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Fig. 2. Analysis of residuals. From top left to bottom right, several types of residuals are plotted: difference of
deviance values specific for each cell against fitted values, a transformation of them (square root of the absolute
value) vs. predicted values, observed against fitted frequencies, quantile-quantile plot of Pearson residuals.
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er words, the number of cells in this model seemed
too high for the available data. Moreover, many
cell counts were smaller than 3 and were even zero.
We did not investigate this model any further. The
model output includes the evaluation of the condi-
tional probability of observing the value y of  Y giv-
en the current field state (Table 3). This Table is to
be explained as a probability transition matrix. In
the first four rows from the top the value of the
field state during the first year (TRA=1) is shown:
the plant has already shown symptoms before
(YJ=1) or not (YJ=0), and the neighboring plant or
plants carry (DD=1) or do not carry (DD=0) symp-
toms. On columns, the probabilities are: symptom
expression (Y=1), death (Y=2) or no symptoms
(Y=0). For example, the probability that in the sec-
ond year a plant that did not show symptoms be-
fore (YJ=0) will show symptoms (Y=1) is 11,67% if
DD=0 and 14.41% if DD=1. Thus, symptoms are
more likely in a plant in which neighboring plants
have shown symptoms. Similar considerations hold
if the plant under consideration has already shown
symptoms (YJ=1). Again, the probability that in
the second year a symptomatic plant (YJ=1) will
die (Y=2) is 11.65% if DD=0, and 7.14% if DD=1.
This finding is somewhat in contrast with the pre-
ceding. In any case, as the results of Table 3 show,
the probability that a symptomless plant (YJ=0)
will not show any symptoms the following year
(Y=0) is very high for all transitions (about 85-91%
for DD=0, and about 82-89% for DD=1), and the
probability is likewise high, though not as high as
the first, that a symptomatic plant (YJ=1) will not
show symptoms the following year (about 49-62%
for DD=0 and about 50-62% for DD=1). Much low-
er on the other hand is the probability that a plant,
whether symptomatic or not in one year, will show
symptoms the following year: this occurs an aver-
age of 29% for DD=0 and 37% for DD=1 if the plant
was symptomatic the year before, and about 11%
for DD=0 and 14% for DD=1 if the plant had not
been symptomatic. It is therefore much more prob-
able that an asymptomatic plant in one year will
also be asymptomatic a year later, than that a
plant, symptomatic or not in one year, will be symp-
tomatic the following year. Moreover, probability
values were generally higher for DD=1. Lastly, the
probability that an asymptomatic plant will die in
a following year varies from 0.47% to 1.36% for
DD=0 and from 0.46% to 0.84% (only 2 cases not-

ed) for DD=1. For a symptomatic plant on the oth-
er hand such a probability increases to 23.77%
(TRA=4) for DD=0 (average 14.51% for all transi-
tions), and to 15.4% (TRA=4) for DD=1 (9.56% for
all transitions). Interesting is further the fact that
at the transition from year 2 to year 3 in all situa-
tions (DD=0; YJ=0, DD=1; YJ=1, DD=0; YJ=1,
DD=1) the probability values were lower than the
general averages. In fact, esca incidence was
15.96% in 1993, 16.82% in 1994 and only 11.11%
in 1995 (see Table 3 in Surico et al,. this issue).
Therefore the pattern of the probability values at
different TRA values corresponded to variations in
disease incidence over the years. This finding thus
tallies with the survey results on esca incidence
found in the vineyard, but others, discussed above,
suggest for example that variations in the occur-
rence of symptoms are very probably dependent
upon factors external to the plant: this is because
an asymptomatic plant tends strongly (generally

Table 3. Conditional probability of symptom expression.
The first 3 columns on the right show the field-state of
a plant in a given year and the last 3 the probability of
observing the value y of Y in the next year. The symbol
NA is used to indicate cells that showed sampling zeros.
Transitions from YJ = 2 to Y were removed from the
Table because no transition is possible for dead plants.

TRA YJ DD Y=0 Y=1 Y=2

1 0 0 0.8775 0.1167 0.0058
1 0 1 0.8559 0.1441 NA
1 1 0 0.5724 0.3110 0.1165
1 1 1 0.5501 0.3784 0.0714
2 0 0 0.9151 0.0775 0.0073
2 0 1 0.8989 0.0964 0.0046
2 1 0 0.6277 0.2174 0.1549
2 1 1 0.6266 0.2747 0.0987
3 0 0 0.8503 0.1433 0.0064
3 0 1 0.8241 0.1759 NA
3 1 0 0.5209 0.3587 0.1204
3 1 1 0.5341 0.4658 NA
4 0 0 0.8719 0.1145 0.0136
4 0 1 0.8501 0.1414 0.0084
4 1 0 0.4960 0.2663 0.2377
4 1 1 0.5036 0.3424 0.1540
5 0 0 0.8784 0.1169 0.0047
5 0 1 0.8558 0.1442 NA
5 1 0 0.5856 0.3184 0.0961
5 1 1 0.5577 0.3839 0.0584
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with more than 85% probability) to remain asymp-
tomatic also the year following, while a symptomatic
plant is much less likely (probability generally not
more than 46%) to remain symptomatic a year lat-
er. Nevertheless, other inferences that can be based
on the results shown in Table 3, such as that the
health status of a plant (with or without symptoms)
varies depending on whether neighboring plants are
with or without symptoms, are not easy to explain
from a plant pathological point of view.

Two more comments are required here. First,
the statistical tests we used are based on asymp-
totic results and the number of plants is small in
some cells: it was not possible to estimate the pa-
rameter in some cases. Thus further investiga-
tions are required to clarify the role of the inter-
action term after collecting more data. Second, it
was not possible to include the field factor column
(CO), thus some departures from the described
probability transition matrix are expected after
being able to handle an enlarged model that in-
cludes CO.

The model we have presented might be im-
proved by introducing the latent variable “state of
the plant” whose values should be “dead”, “sick” or
“healthy”, not considered here, and weather param-
eters. Moreover, other definitions of neighborhood

might be studied to test other hypotheses about
the dynamics of symptom expression. Longer ob-
servation times should allow the study of field col-
umns as a model factor. Random differences in soil
features or differences induced by diversity of
plants located in different columns might also be
investigated.
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