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RESEARCH PAPERS

Species of Diaporthe on Camellia and Citrus in the Azores Islands
Vladimiro GUARNACCIA1,2 and Pedro W. CROUS2

1 Department of Plant Pathology, University of Stellenbosch, Matieland 7602, South Africa
2 Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT, Utrecht, the Netherlands

Summary. Species of Diaporthe are important plant pathogens, saprobes, and endophytes on a wide range of plant 
hosts. Species such as D. citri are well-known on Citrus, as agents of pre- or post-harvest infections, causing die-
back, melanose and stem-end rot on fruit. In this study we explored the occurrence and diversity of Diaporthe as-
sociated with tropical and sub-tropical plants. In particular, species of Camellia and Citrus were sampled. Surveys 
were carried out during 2017 in the Azores Islands, Portugal. Ten Diaporthe strains were isolated from symptomatic 
twigs and leaves. Five representative isolates were subjected to morphological characterization and multi-locus 
phylogeny based on five genomic loci (ITS, tef1, cal, his3 and tub2). Diaporthe citri was found associated with shoot 
blight on Citrus reticulata, which represents a new record for Europe. A new species, Diaporthe portugallica sp. nov. 
was isolated and described from leaf spots on Camellia sinensis.

Key words: Phomopsis, tea, mandarin, leaf spot, multi-locus sequence typing, shoot blight.

Introduction
Species of Diaporthe are present worldwide as 

plant pathogens, endophytes in healthy plant tissues, 
or as saprobes of a wide range of hosts (Muralli et al., 
2006; Udayanga et al., 2011). They are well-known as 
the causal agents of many important plant diseases, 
including fruit and root rots, dieback, stem cankers, 
leaf spots, leaf and pod blights, and seed decay (Mos-
tert et al., 2001a, 2001b; Van Rensburg et al., 2006; San-
tos et al., 2011; Udayanga et al., 2011; Guarnaccia et al., 
2018). Species of the genus have also been used in sec-
ondary metabolite research due to their production of 
a large number of polyketides and unique low- and 
high- molecular-weight metabolites with different ac-
tivities (Gomes et al., 2013), and for biological control 
of fungal pathogens (Santos et al., 2016).

The generic names Diaporthe and Phomopsis are no 
longer used to distinguish different morphs of this 
genus, and a recent study (Rossman et al., 2015) rec-

ommended that the genus name Diaporthe be retained 
over Phomopsis, because it is the older name.

Several studies revisited the taxonomy of Diaporthe 
(Thompson et al., 2011; Gomes et al., 2013; Udayanga 
et al., 2014a, 2014b, 2015). Almost 2,000 species names 
are available for both Diaporthe and Phomopsis (Index 
Fungorum; http://www.indexfungorum.org). Re-
cently, Marin-Felix et al. (2019) accepted 213 species 
based on their DNA barcodes. Some species of Dia-
porthe occur on diverse hosts while others occur only 
on one host genus, often as different morphs (Mostert 
et al., 2001a; Guarnaccia et al. 2016). As a consequence, 
identification of species based only on host associa-
tion is no longer tenable within Diaporthe (Gomes et 
al., 2013; Udayanga et al., 2014a, 2014b). Previously, 
morphological characters were the basis on which to 
study the taxonomy of Diaporthe/Phomopsis (Uday-
anga et al., 2011). However, recent studies have dem-
onstrated that these characters are not always reliable 
for species level identification due to their variability 
under changing environmental conditions (Gomes et 
al., 2013).

Following the adoption of DNA sequence-based 
methods, the polyphasic protocols for studying the 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Firenze University Press: E-Journals

https://core.ac.uk/display/228523943?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by/4.0/


Phytopathologia Mediterranea308

V. Guarnaccia and P.W. Crous

genus significantly changed the classification and 
species concepts, resulting in rapid proliferation of 
new species descriptions. Therefore, genealogical 
concordance methods, based on multi-gene DNA 
sequence data, provide clearer resolution of the Dia-
porthe taxonomy (Gomes et al., 2013).

Recent plant pathology studies have revealed sev-
eral Diaporthe species to be associated with diseases 
on a wide range of economically important agricul-
tural crops, such as Camellia, Citrus, Glycine, Helian-
thus, Persea, Vaccinium, Vitis, vegetables, fruit crops 
and forest plants (Van Rensburg et al., 2006; Santos 
and Phillips, 2009; Santos et al., 2011; Thompson et al., 
2011; Huang et al., 2013; Lombard et al., 2014; Gao et 
al., 2016; Udayanga et al., 2015; Guarnaccia et al., 2016, 
2018; Guarnaccia and Crous, 2017).

Guarnaccia and Crous (2017) revealed a large 
diversity of Diaporthe spanning several clades, re-
covered from Citrus in European countries such as 
Greece, Italy, Malta, Portugal and Spain. These in-
clude two newly described species D. limonicola and 
D. melitensis associated with severe cankers. In to-
tal, 22 species of Diaporthe are now known to be as-
sociated with Citrus. Diaporthe citri is known as an 
important pathogen of Citrus, causing stem-end rot 
and melanose of fruits, young leaf and shoot gum-
mosis, and blight of perennial branches and trunks 
(Kucharek et al., 1983; Timmer and Kucharek, 2001; 
Mondal et al., 2007; Udayanga et al., 2014b). This spe-
cies occurs in many Citrus growing regions of the 
world (Timmer et al., 2000). Udayanga et al. (2014b) 
re-assessed D. citri based on molecular phylogenetic 
analysis of conserved ex-type and additional strains, 
collected exclusively from symptomatic Citrus tissues 
in different geographic locations worldwide. They 
showed that D. citri is unknown from Europe. This 
was confirmed following a broad survey by Guarnac-
cia and Crous (2017).

Recently, Gao et al. (2016; 2017) investigated the 
taxonomic and phylogenetic diversity of Diaporthe as-
sociated with Camellia spp. in China, based on mor-
phological characteristics and sequence data. They 
demonstrated high diversity of Diaporthe species with 
the identification of 17 species on Camellia.

In 2017, shoot blight on Citrus reticulata trees and 
a leaf spot disease on Camellia sinensis were observed 
in two orchards in San Miguel Island (Azores, Portu-
gal), so a study was conducted to identify the causa-
tive agents. This aimed to identify the strains of Dia-
porthe associated with disease symptoms on Citrus 

and Camellia using morphological characterization 
and multi-locus DNA sequence data, and to compare 
the results with data from other phylogenetic studies 
of the genus.

Materials and methods
Sampling and isolation

Diseased twig and leaf samples were collected 
from of tropical plants during collecting trips in the 
Azores Islands, Portugal in July 2017. Shoot blight 
and leaf spot symptoms were observed and sampled, 
respectively, in a 40-year old Citrus reticulata orchard 
and a 20-year old Camellia sinensis plantation. Both 
sites are located in Ponta Delgada Province (Portugal). 
Fragments (5 × 5 mm) of symptomatic tissues were 
cut from the margins of lesions, surface-sterilised in a 
sodium hypochlorite solution (10%) for 20 s, followed 
by 70% ethanol for 30 s, and rinsed three times in ster-
ilised water. Tissue fragments were dried on sterilised 
filter paper, placed on 2% potato dextrose agar (PDA) 
amended with 100 μg mL-1 penicillin and 100 μg mL-1 
streptomycin (PDA-PS), and then incubated at 25°C 
until characteristic diaporthe-like colonies were ob-
served. Pure cultures were obtained by transferring 
germinating single conidia to fresh PDA dishes with 
the aid of a stereomicroscope (Nikon SMZ1000). Iso-
lates used in this study are maintained in the culture 
collection of the Westerdijk Fungal Biodiversity In-
stitute (CBS), Utrecht, The Netherlands, and in the 
working collection of Pedro Crous (CPC), housed at 
the Westerdijk Institute (Table 1).

DNA extraction, PCR amplification and sequencing

Genomic DNA was extracted using a Wizard® 
Genomic DNA Purification Kit (Promega) following 
the manufacturer’s instructions. Partial regions of 
five loci were amplified. The primers EF1-728F and 
EF1-986R (Carbone and Kohn, 1999) or EF2 as reverse 
(O’Donnell et al., 1998) were used to amplify part of 
the translation elongation factor 1-α gene (tef1). The 
primers CAL-228F and CAL-737R (Carbone and 
Kohn, 1999) or CL1/CL2A (O’Donnell et al., 2000) 
were used to amplify part of the calmodulin (cal) 
gene. The partial histone H3 (his3) region was ampli-
fied using the CYLH3F and H3-1b primer set (Glass 
and Donaldson, 1995; Crous et al., 2004a), and the be-
ta-tubulin (tub2) region was amplified using the Bt2a 
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and Bt2b primer set (Glass and Donaldson, 1995) or 
2Fd/4Rd (Woudenberg et al., 2009). The PCR products 
were sequenced in both directions using the BigDye® 
Terminator v. 3.1 Cycle Sequencing Kit (Applied Bio-
systems Life Technologies), after which amplicons 
were purified through Sephadex G-50 Fine columns 
(GE Healthcare) in MultiScreen HV plates (Millipore). 
Purified sequence reactions were analyzed on an Ap-
plied Biosystems 3730xl DNA Analyser (Life Technol-
ogies). The DNA sequences generated were analysed 
and consensus sequences were computed using the 
program SeqMan Pro (DNASTAR). 

Phylogenetic analyses

Novel sequences generated in this study were 
blasted against the NCBIs GenBank nucleotide data-
base, to determine the closest relatives for a taxonom-
ic framework of the studied isolates. Alignments of 
different gene regions, including sequences obtained 
from this study and those downloaded from Gen-
Bank, were initially performed by using the MAFFT 
v. 7 online server (http://mafft.cbrc.jp/alignment/
server/index.html) (Katoh and Standley, 2013), and 
then manually adjusted in MEGA v. 7 (Kumar et al., 
2016).

To establish the identity of the isolates at species 
level, phylogenetic analyses were conducted, first in-
dividually for each locus (data not shown) and then 
as combined analyses of five loci. Additional refer-
ence sequences were selected based on recent stud-
ies of Diaporthe species (Gomes et al., 2013; Udayanga 
et al., 2014a, 2014b; Gao et al., 2016, 2017; Guarnaccia 
and Crous, 2017). Phylogenetic analyses were based 
on Maximum Parsimony (MP) for all the individual 
loci and on MP and Bayesian Inference (BI) for the 
multi-locus analyses. For BI, the best evolutionary 
model for each partition was determined using Mr-
Modeltest v. 2.3 (Nylander, 2004) and incorporated 
into the analyses. MrBayes v. 3.2.5 (Ronquist et al., 
2012) was used to generate phylogenetic trees un-
der optimal criteria per partition. The Markov Chain 
Monte Carlo (MCMC) analysis used four chains and 
started from a random tree topology. The heating pa-
rameter was set to 0.2, and trees were sampled every 
1,000 generations. Analyses stopped once the aver-
age standard deviation of split frequencies was below 
0.01. The MP analyses were performed using PAUP 
(Phylogenetic Analysis Using Parsimony, v. 4.0b10; 
Swofford, 2003). Phylogenetic relationships were es-

timated by heuristic searches with 100 random addi-
tion sequences. Tree bisection-reconnection was used, 
with the branch swapping option set on ‘best trees’ 
only with all characters weighted equally and align-
ment gaps treated as fifth state. Tree length (TL), con-
sistency index (CI), retention index (RI) and rescaled 
consistence index (RC) were calculated for parsimony 
and bootstrap analyses (Hillis and Bull, 1993), which 
were based on 1,000 replications. Sequences gener-
ated in this study are deposited in GenBank (Table 1).

Taxonomy

Agar plugs (6 mm diam.) were taken from the 
margins of actively growing cultures on malt extract 
agar (MEA) and transferred onto the centre of 9 cm 
diam. Petri dishes containing 2% tap water agar sup-
plemented with sterile pine needles (PNA; Smith et 
al., 1996), potato dextrose agar (PDA), oatmeal agar 
(OA) or MEA (Crous et al., 2009), and incubated at 21–
22°C under a 12 h near-ultraviolet light /12 h dark cy-
cle to induce sporulation, as described by Lombard et 
al. (2014). Colony characters and pigment production 
on MEA, OA or PDA were noted after 15 d. Colony 
colours were described according to Rayner (1970). 
Cultures were examined periodically for the develop-
ment of ascomata and conidiomata. Colony diameters 
were measured after 7 and 10 d. The morphological 
characteristics were examined by mounting fungal 
structures in clear lactic acid and 30 measurements at 
×1,000 magnification were determined for each iso-
late using a light microscope (Zeiss Axioscope 2) with 
interference contrast (DIC) optics. Descriptions, no-
menclature and illustrations of taxonomic novelties 
were deposited in MycoBank (www.MycoBank.org; 
Crous et al., 2004b). 

Results
Isolates

Several Diaporthe spp. were associated with symp-
toms of tropical and subtropical plants during the 
survey. We focussed on Citrus reticulata shoot blight 
and Camellia sinensis leaf spot diseases. The Citrus 
plants presented twigs with dieback and wither-tip, 
and occasionally gummosis. In contrast, necrotic le-
sions with reddish to purple margins were detected 
on Camellia leaves (Figure 1). Pycnidium formation 
on dead tissue was observed in both cases. Ten mono- 

http://mafft.cbrc.jp/alignment/server/index.html
http://mafft.cbrc.jp/alignment/server/index.html
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sporic isolates resembling those of the genus Dia-
porthe were collected and, based on preliminary ITS 
sequencing, five representative strains were selected 
for phylogenetic analyses and further taxonomic 
study (Table 1).

Phylogenetic analyses

Six alignments were analysed representing single 
gene analyses of ITS, tub2, his3, tef1, cal and a com-
bined alignment of the five genomic loci. The align-
ments produced topologically similar trees. The 
combined species phylogeny of the Diaporthe isolates 
consisted of 67 sequences, including the outgroup se-
quences of Diaporthella corylina (culture CBS 121124). 
A total of 2,797 characters (ITS: 1–581, tub2: 588–1,198, 
his3: 1,205–1,741, tef1: 1,748–2,221, cal: 2,228–2,797) 
were included in the phylogenetic analysis; 1,137 
characters were parsimony-informative, 489 were 
variable and parsimony-uninformative, and 1,147 
were constant. A maximum of 1,000 equally most par-
simonious trees were saved (Tree length = 5,017, CI = 
0.561, RI = 0.834 and RC = 0.468). Bootstrap support 
values from the parsimony analysis are plotted on the 
Bayesian phylogenies in Figure 2. For the Bayesian 
analyses, MrModeltest suggested that all partitions 
should be analysed with dirichlet state frequency dis-

tributions. The following models were recommended 
by MrModeltest and used: GTR+I+G for ITS, his3, tef1 
and cal, HKY+I+G for tub2. In the Bayesian analysis, 
the ITS partition had 188 unique site patterns, the tub2 
partition had 346, the his3 partition had 239, the tef1 
partition had 369, and the cal partition had 340 unique 
site patterns. The analysis ran for 516,000 generations, 
resulting in 1,042 trees of which 782 were used to cal-
culate the posterior probabilities.

In the combined analysis, three representative iso-
lates from Citrus clustered with nine reference strains 
and the ex-type of D. citri. Two isolates from Camellia 
sinensis, identified as the novel taxon D. portugallica, 
formed a highly supported subclade (1.00/100) close 
to D. anacardii.

The individual alignments and trees of the five 
single loci used in the analyses were compared with 
respect to their performance in species recognition. 
Diaporthe portugallica and D. citri could be differenti-
ated based on each gene used.

Taxonomy

Descriptions and illustrations of the species re-
solved in this study, based on multi-gene phylogenet-
ic analyses and morphological characters, are provid-
ed below. Diaporthe citri occurred only on Citrus while 

Figure 1. Symptoms on plant tissues with associated Diaporthe spp. (a) Shoot blight on Citrus reticulata with conidiomata of 
D. citri. (b–c) Leaf spot of Camellia sinensis with visible D. portugallica conidiomata.
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Figure 2. Consensus phylogram of 1,042 trees resulting from a Bayesian analysis of the combined ITS, tub2, his3, tef1 and 
cal sequences. Bootstrap support values and Bayesian posterior probability values are indicated at the nodes. Substrate 
and country of origin are listed next to the strain numbers. T indicates ex-type strains. The tree was rooted to Diaporthella 
corylina (CBS 121124).
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D. portugallica occurred on Camellia sinensis. Diaporthe 
portugallica is described based on specimens, and ex-
type and other cultures linked to specimens.

Diaporthe citri (H.S. Fawc.) F.A. Wolf, J. Agric. Res. 
33: 625. 1926. – Figure 3

Decaying twigs showing abundant conidiomatal 
production. Conidiomata pycnidial, solitary or aggre-
gated under moist conditions, developing on twigs 
and on PNA, OA and MEA, deeply embedded in OA, 
erumpent, dark brown to black, up to 400 μm diam., 
yellowish translucent to cream spiral conidial cirrus 
or drops exuding from ostioles. Conidiophores hya-
line, smooth, 1-septate, densely aggregated, cylindri-
cal to ampuliform, straight to sinuous, 10–14 × 1.5–2 
μm. Conidiogenous cells phialidic, hyaline, terminal, 

cylindrical, 5–10 × 1–1.5 μm, tapered towards apex. 
Paraphyses abundant among conidiophores, 20–30 × 
1.5–1 μm. Alpha conidia aseptate, ovoid to ellipsoid, 
hyaline, smooth, mono- to biguttulate and acute at 
both ends, 7.5–10 × 2.5–3.5 μm, mean ± SD = 8.5 ± 0.8 
× 2.9 ± 0.3 μm, L/B ratio = 2.9. Beta or gamma conidia 
not observed.

Culture characteristics: Colonies covering me-
dium after 15 d at 21°C, surface mycelium flattened, 
dense and felt-like. Colonies on MEA and OA white, 
flat, with dense and felted mycelium, reverse cream 
to yellowish with age, with visible solitary or aggre-
gated sporulating conidiomata at maturity. On PDA 
cream to brown with greenish sectors, reverse pale 
brown.

Materials examined: Portugal, Azores Islands, 
Sao Miguel, from shoot blight of Citrus reticulata, 17 

Figure 3. Diaporthe citri (CBS 144227). (a–c) Colonies after 7 d at 21°C on MEA, OA and PDA. (d) Conidiomata sporulating 
on PNA. (e) Conidiogenous cells. (f) Alpha conidia. Scale bars = 10 μm.
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July 2017, V. Guarnaccia (CBS 144227 = CPC 34235); 
additional cultures from the same host and origin 
(cultures: CPC 34227, CPC 34229).

Notes: Perithecial ascomata and conidiomata of 
D. citri are commonly found on dead twigs, stems 
and fruits of Citrus affected by melanose and stem 
end rot (Fawcett, 1922). The fungus generally propa-
gates on dead twigs. Fungal structures such as co-
nidiomata or perithecia are never visible in these 
melanose lesions, and therefore the fungus cannot 
be observed in the infected leaves or fruit. In this 
study, several decayed twigs with conidiomata were 
observed during the sampling. Diaporthe citri is con-
sidered a key pathogen of Citrus species and has 
been confirmed from Brazil, China, Korea, New Zea-
land, and USA and is also reported widely through-
out Asia, Australasia, and South America (Timmer et 

al., 2000; Mondal et al., 2007; Udayanga et al., 2014b). 
However, D. citri was never been reported from Eu-
rope before this study.

Diaporthe portugallica Guarnaccia, sp. nov. 
MycoBank MB827265 – Figure 4

Etymology: Named after the country where it was 
collected, Portugal (ancient Latin name, Portugallia).

 
Lesions on leaves small, circular or irregular, 

brownish to purple, initially appearing on fully de-
veloped leaves, gradually enlarging, coalescing and 
becoming dark purple. Conidiomata pycnidial ob-
served developing on lesions under moist conditions. 
Conidiomata solitary or aggregated in cultures on 
PNA, PDA, OA and MEA, deeply embedded in PDA, 

Figure 4. Diaporthe portugallica (CBS 144228). (a–c) Colonies after 7 d at 21°C on MEA, OA and PDA. (d) Conidiomata sporu-
lating on PNA. (e) Conidiogenous cells. (f) Alpha conidia. Scale bars = 10 μm.
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erumpent, dark brown to black, 250–700 μm diam., 
yellowish translucent to cream conidial drops exuded 
from the ostioles.

Conidiophores hyaline, smooth, 1-septate, dense-
ly aggregated, cylindrical to ampulliform, straight or 
slightly curved, 5–22 × 1.5–4 μm. Conidiogenous cells 
phialidic, hyaline, terminal, cylindrical, 5–14 × 1–2 
μm, tapered towards apex. Paraphyses not observed. 
Alpha conidia aseptate, fusoid, hyaline, mono- to bi-
guttulate and acute at both ends, 5.5–8.5 × 1.5–3 μm, 
mean ± SD = 6.6 ± 0.8 × 2.2 ± 0.3 μm, L/B ratio = 3. 
Beta or and gamma conidia not observed.

Culture characteristics: Colonies covering me-
dium after 10 d at 21°C, surface mycelium flattened, 
dense and felt-like. Colonies on MEA or OA at first 
white, becoming cream to yellowish, flat, with dense 
and felted mycelium, reverse pale brown with brown-
ish dots with age, with visible solitary or aggregated 
sporulating conidiomata at maturity. On PDA cream 
to yellowish, reverse pale brown.

Materials examined: Portugal, Sao Miguel, 
Azores Islands, from leaf lesions of Camellia sinensis, 
17 July 2017, V. Guarnaccia (CBS H-23474 – holotype; 
CBS 144228 = CPC 34247 – culture ex-type); addition-
al culture from the same host and origin: (culture CPC 
34248).

Notes: Diaporthe portugallica is only known from 
Camellia sinensis in Portugal. This species clusters in 
a subclade with D. anacardii and D. velutina, and can 
be identified by its unique tub2, his3, tef1 and cal se-
quences. Morphologically, D. portugallica differs from 
D. anacardii and D. velutina in its shorter alpha conidia 
(5.5–8.5 vs. 6.5–9 μm for D. anacardii and 5.5–8.5 vs. 
5.5–10 μm for D. velutina) and the absence of beta co-
nidia, which are known in both D. anacardii and D. 
velutina (Gomes et al., 2013; Gao et al., 2017). Moreo-
ver, D. portugallica differs from the above described D. 
citri in its shorter alpha conidia (5.5–8.5 vs 7.5–10) and 
in its faster growing colonies on media.

Discussion
Diaporthe citri is a well-known pathogen causing 

serious melanose and stem-end rots of Citrus species 
(Timmer, 2000; Mondal et al., 2007). Several Diaporthe 
(or Phomopsis) species have been reported associated 

with Citrus and have previously been considered as 
synonyms of D. citri, such as D. citrincola and P. califor-
nica, P. caribaea and P. cytosporella, described from the 
Philippines, California, Cuba and Italy, respectively 
(Rehm, 1914; Fawcett, 1922). Using a polyphasic ap-
proach, several species have been determined to oc-
curring on Citrus. Huang et al. (2013) reported D. citri 
as the predominant species in China and described 
two new taxa: D. citriasiana and D. citrichinensis. In 
another study, Huang et al. (2015) identified various 
Diaporthe species known as Citrus endophytes, such 
as D. endophytica, D. eres, D. hongkongensis, D. sojae, 
and different taxa clustering in the D. arecae species 
complex. They also described D. biconispora, D. bigut-
tulata, D. discoidispora, D. multigutullata, D. ovalispora, 
D. subclavata, and D. unshiuensis as new species asso-
ciated with Citrus. Udayanga et al. (2014b) re-assessed 
strains from China, Korea, New Zealand, and the 
USA within the D. citri clade, but no European strains 
were found clustering with this group.

After a major screening of fungal diseases of Citrus 
in Europe (Guarnaccia et al., 2017a, 2107b), molecular 
phylogenetic and morphological analyses were used 
to evaluate the diversity of several fungal genera, in-
cluding Diaporthe. The results revealed a large diversi-
ty of species spanning several clades and species com-
plexes. These included D. baccae, D. infertilis, D. novem, 
and two newly described species, D. limonicola and D. 
melitensis, causing severe cankers on host plants.

Similarly, recent studies have revealed a high di-
versity of Diaporthe species associated with Camellia 
spp. (Gao et al., 2016, 2017), demonstrating that 17 
species occur on this host as endophytes and patho-
gens.

Considering these findings, the changes in species 
concepts and the poor investigation of Diaporthe spe-
cies in Europe, new surveys were required to study 
the diversity within this genus related to tropical and 
sub-tropical hosts.

According to recent studies supported by mo-
lecular approaches, D. citri appeared to be absent 
from Europe (Udayanga et al., 2014b; Guarnaccia and 
Crous, 2017). However, based on the new samples in-
vestigated in the present study, this key pathogen of 
Citrus is confirmed from the Azores Islands. Thus, the 
present study represents the first report of D. citri as-
sociated with Citrus disease in Europe. Furthermore, 
this fungal species might threaten Citrus production, 
and could become a major limiting factor for future 
production.
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This study has also identified two isolates from 
Camellia sinensis as belonging to a new species, de-
scribed as D. portugallica.

Despite the increasing European distribution and 
economical importance of tropical and subtropical 
crops such as citrus and tea, knowledge of the fungal 
species associated with these species is still incom-
plete. Further studies are required to fully elucidate 
the host ranges, specificity, distribution and patho-
genicity of these Diaporthe species.
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