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Summary. Phytophthora cinnamomi causes a highly destructive root rot that seriously affects oak trees in semi-
natural woodlands known as “dehesas”. Biofumigation with Brassica spp. is a promising tool for disease manage-
ment. We demonstrated that ground seeds from B. carinata and B. juncea can inhibit mycelial growth and decrease 
chlamydospore viability of P. cinnamomi in soil. In contrast, B. napus seedmeals were ineffective. Reduction of root 
necrosis in Lupinus plants was also achieved when soils were biofumigated with B. carinata or B. juncea seedmeals. 
Seedmeal effectiveness was strongly correlated with high sinigrin (2-propenyl glucosinolate) content. We conclude 
that biofumigation with seedmeals rich in sinigrin could be effective as part of integrated management of oak dis-
ease caused by P. cinnamomi in “dehesas”.
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Introduction
There is social rejection of chemical fumigation 

as a tool to control plant pathogens, mainly due to 
the associated environmental and human health side 
effects (Alabouvette, 2006). However, effective alter-
natives to chemical treatments are not readily avail-
able. Phytophthora cinnamomi Rands is a commonly-
occurring pathogen worldwide, and is responsible 
for the decimation of native flora in many regions 
(Brasier, 1996; Hardham, 2005). Currently, holm and 
cork oaks (Quercus ilex L. and Q. suber L.) are at risk 
because of emergence of P. cinnamomi in parts of 
Spain (Sánchez et al., 2006). In the Southern Iberian 
Peninsula, these evergreen oaks grow in agroforestry 
systems commonly known as “dehesa”. “Dehesas” are 

semi-natural production systems where chemical fu-
migation is not acceptable. Biofumigation possibly 
provides an acceptable and promising alternative to 
chemical fumigation.

Biofumigation is often based on the toxicity of iso-
thiocyanates (ITCs) released following the hydrolysis 
of glucosinolates (GSLs) (Kirkegaard et al., 1993). GSLs 
are secondary metabolites produced by plants of the 
order Capparales (Halkier and Gershenzon, 2006) 
when soils are amended with either fresh plant mate-
rial or seedmeals (Brown and Morra, 1997). There are 
more than 130 common GSLs found in Brassica spp. 
(Agerbirk and Olsen, 2012), each documented to have 
different noxious activity on specific target patho-
gens. GSL-containing plants have been demonstrated 
to reduce weeds (Rice et al., 2007; Fourie et al., 2015), 
pests (Elberson et al., 1997) and soilborne pathogens 
(Bomford et al., 2009; Mazzola et al., 2015). 

The mechanical incorporation of cover crops into 
soil is the most common way to perform biofumi-
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gation in agricultural lands. Rainfall or irrigation is 
needed at the time of plant incorporation in the soil, 
to ensure effective hydrolysis of GSLs (Morra and 
Kirkegaard, 2002), as well as efficient breakdown of 
plant tissues.

Biofumigation based on the incorporation of 
fresh plant residue in the soil represents a promising 
tool for the control of root rot caused by P. cinnamomi 
in oaks (Ríos et al., 2016a, 2016b). There are factors 
that may limit biofumigation effectiveness, however, 
including stoniness hindering effective incorpora-
tion of fresh biomass into soil, or lack of water where 
irrigation may not be feasible.

Cold crushing of seeds for oil removal is routine-
ly performed by the oil and biodiesel industry, and 
this results in seedmeal rich in GSLs (Morra, 2004). 
The use of seedmeals as biofumigants also requires 
wet soil, but the disruption of plant tissue has been 
previously maximized, and thus GSL hydrolysis 
may occur rapidly in seedmeals. Furthermore, seed-
meal can be applied when the soil is naturally wet, 
thus synchronizing treatment with the peak of path-
ogen activity, theoretically increasing the efficiency 
of disease control (Mazzola et al., 2015). While biofu-
migation using seedmeal represents a possible bio-
fumigation approach in water-limited semi-natural 
ecosystems, its true viability as a control approach 
will depend on its efficacy, on the dosage needed to 
reach efficacy, and on seedmeal availability when 
and where treatments need to be applied.

The biocidal action of green tissues of some Bras-
sica biofumigants against P. cinnamomi has been re-
cently reported (Morales-Rodríguez et al., 2016; Ríos 
et al., 2016a, 2016b), but biofumigant potential of 
seeds remains unknown. The aim of the study re-
ported here was to test the effectiveness of ground 
seeds from three Brassica species, B. napus, B. carinata 
and B. juncea, for control of disease caused by P. cin-
namomi.

Materials and methods
Seedmeal material

Two genotypes of each of three Brassica species 
were tested for their effectiveness for reducing my-
celial growth of P. cinnamomi (Table 1). All plants 
were grown in Mediterranean climate conditions 
in an experimental field located at the Institute for 
Sustainable Agriculture (IAS) (37.8ºN, 4.8ºW). At the 
end of their life cycles, seeds were collected, washed, 

lyophilized, and ground to fine powders using a 
Janke and Kunkel blender (Model A10 mill, IKA 
Labortechnik). GSL composition for each species 
and genotype was determined by High Performance 
Liquid Chromatography (HPLC) according to Font 
et al. (2005), and also described by Ríos et al. (2016a).

Oomycete material and in vitro experiments

All the experiments were carried out with P. cin-
namomi strain PE90, isolated from Quercus ilex spp. 
ballota, and previously characterized as aggressive 
(Caetano et al., 2009). In vitro experiments were 
performed to test the ability of Brassica seedmeals 
to inhibit P. cinnamomi mycelial growth. Inoculum 
consisted of 6 mm diam. carrot agar (CA) plugs tak-
en from the edges of 4-d-old P. cinnamomi colonies 
growing at 24ºC in the dark. Plugs were transferred 
to the centres of Petri dishes (9 cm diam.) containing 
fresh CA medium. Inoculated dishes were immedi-
ately inverted and placed as lids on the open tops of 
plastic beakers (9 cm internal upper diam.; 120 mm 
height; 0.4 L capacity), each containing lyophilized 
seed material plus 10 mL of deionized water. Four 
seedmeal doses were tested: 0 (experimental con-
trol), 0.2, 0.5 or 1.0 g of seed powder. Beakers were 
sealed with Parafilm® to avoid loss of volatiles. Four 
beakers (replicates) were prepared for each biofu-
migant and dose, and placed in a completely ran-
domized experimental design. The experiment was 
repeated four times. The radial growth of colonies 
was measured daily for 4 d, which was the time it 
took for controls to completely colonize the dishes. 
At that time, dishes were removed from the beakers, 
covered with sterile Petri dish lids, and re-incubated 

Table 1. Provenance of Brassica spp. and genotypes used 
in this study.

Brassica sp. Genotype Provided by

B. napus
Bn-Lewis Dr. Delourne

INRA, Rennes, FranceBn-Salamander

B. carinata
Bc-IAS-C1

Dr. de-Haro
Plant Breeding Group
IAS, Córdoba, Spain
(Font et al., 2006)

Bc-IAS-119

B. juncea
Bj-Tezla

Bj-552
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for 1 week at 24º C in the dark to evaluate colony 
growth post-exposure to the volatiles.

Data of maximum radial growth were recorded 
after 3 d incubation. A two-way ANOVA was per-
formed for maximum radial growth, with biofumi-
gant genotype and dose as independent variables. 
Homoscedasticity was checked using Levene’s test. 
When significance was obtained for P < 0.05, mean 
values were compared by Tukey´s HSD test at α = 
0.05 (Statistix software 9.0).

Soil experiments

One genotype each of B. napus, B. carinata or B. 
juncea was selected to be tested for effects on viabil-
ity of resting spores (chlamydospores) of P. cinnam-
omi in soil. Natural soil was taken from an asympto-
matic dehesa located in the north of Córdoba prov-
ince (southern Spain). The soil was typical of dehesa 
systems in Córdoba: acidic with low fertility (Parras-
Alcántara et al., 2014). The absence of the pathogen in 
ten soil samples was assessed following the method 
reported by Romero et al. (2007). No pathogen colo-
nies were recovered from any sample.

The soil was air dried immediately after collec-
tion, sieved (2 mm mesh size), and artificially in-
fested with a water suspension of P. cinnamomi chla-
mydospores prepared as described in Romero et al. 
(2007). Isolate PE90 of P. cinnamomi was plated in 
Petri dishes (9 cm diam.) containing 20 mL of carrot 
broth (20%) and incubated at 24ºC in the dark. After 4 
weeks of incubation, the liquid medium was asepti-
cally filtered and the collected mycelium was washed 
with sterile deionized water. Washed mycelium was 
suspended in sterile water at a rate of three Petri 
dishes per 100 mL and placed in a blender (Pulse-
matic 16, OsterTM) for 3 min at maximum speed (liq-
uefy), to break up the mycelial aggregates and ob-
tain free chlamydospores. Aliquots were taken from 
the homogenized suspension, and chlamydospores 
counted in a Neubauer counting chamber (0.1 μL). 
Chlamydospore concentration was adjusted to 1.5 × 
104 mL-1. The inoculum was carefully mixed with the 
soil to obtain a final concentration of 650 chlamydo-
spores g-1 of dry soil. Lyophilized seed meal material 
(0.1, 0.5, or 1.0 g) was then placed at the bottom of 
250 mL capacity plastic beakers. Beakers containing 
biofumigant-free soil were included as experimental 
controls. Infested soil (225 mL; 292.5 g) was poured 
into each beaker and the beaker was immediately 

covered, hand shaken, and mixed before adding wa-
ter at field capacity (20% w/w water content). All 
beakers were incubated in a growth chamber in the 
dark, with the temperature at a 24ºC (12 h) and 16ºC 
(12 h) cycle. Incubation times were 1, 4 and 8 d. Four 
replicate beakers were prepared for each biofumi-
gant species, dose and incubation time treatments, 
tested in a completely randomized experimental 
design. After each incubation period, soils were air 
dried for 4 d at room temperature. Ten grams of ho-
mogenized dry soil per beaker were suspended in 
100 mL of 0.2% sterilized water-agar (Roko Indus-
tries), shaken and analysed following the method of 
Romero et al. (2007): 1 mL aliquots were taken from 
each soil-water-agar mix, and plated onto Phytophtho- 
ra selective NARPH medium (Hüberli et al., 2000), 
using a sterile glass spreader to distribute the ma-
terial over the agar surface. For each soil sample, a 
total of 20 Petri dishes were prepared. Dishes were 
incubated at 24ºC for 24 h in the dark before wash-
ing the agar surface of each dish with sterile water 
to remove the soil-water-agar mix. Dishes were in-
cubated again at 24ºC for an additional 48 h in the 
dark. Growing colonies were identified as P. cinnam-
omi based on hyphal morphology observed under an 
inverted microscope (presence of rounded hyphal 
swellings in clusters together with chlamydospores), 
and were counted (Romero et al., 2007). Inoculum 
concentrations were expressed as colony forming 
units per g of dry soil (CFU g-1). Data were trans-
formed [(CFU g-1) + 0.5]1/2, and a three-way ANOVA 
was performed considering biofumigant, dose and 
incubation period as independent variables. Homo-
scedasticity was checked by Levene’s test. When 
significance was obtained at P < 0.05, mean values 
were compared by the Tukey´s HSD test at α = 0.05 
(Statistix software 9.0).

Plant experiments

After sampling for chlamydospore viability, 
dried soils biofumigated with different doseages of 
the same seedmeals were mixed, and the same pro-
cess was followed for unfumigated control soils. Ho-
mogenised soils (three soils treated with the three 
biofumigant species plus the untreated control soil) 
were distributed into 40 plastic pots per biofumigant 
(replicates, 75 mL of soil per pot).

Seeds of Lupinus luteus L., a species highly sus-
ceptible to P. cinnamomi (Serrano et al., 2010), were 
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germinated in damp chambers and when the radicles 
were approximately 3 cm long, seedlings were plant-
ed individually in the pots, making a total of 40 seed-
lings (replicates) per biofumigated or control soil. 
All pots were incubated at 24ºC (day) /16ºC (night) 
with constant irrigation, keeping the soil moisture 
close to 100% water holding capacity. After 1 month, 
symptoms of P. cinnamomi root disease were evalu-
ated based on the percentage of root necrosis using 
a 0-4 scale; where 0 = 0% necrotic root, 1 = 1–33%, 2 
= 34–66%,  3 = more than 67% necrotic root, and 4 = 
dead root (Serrano et al., 2010). Root symptom data 
were submitted to a one-way ANOVA with biofumi-
gant as independent variable. Homoscedasticity was 
checked by Levene’s test and mean values compared 
using the Tukey´s HSD test at α = 0.05.

Ten plants were chosen at random from each bi-
ofumigant and control treatment, and six root seg-
ments per plant were plated on NARPH medium for 
re-isolation of the pathogen.

Results 
GLS profiles

GSL profiles of the biofumigant seeds tested are 
shown in Table 2. Significant amounts of ten GSLs 
were identified and quantified: seven were aliphatic 
compounds (progoitrin, epiprogoitrin, sinigrin, glu-
conapoleiferin, glucoalyssin, gluconapin, and gluco-
brassicanapin), two were indolic compounds (glu-
cobrassicin and 4-hydroxyglucobrassicin), and one 

was an aromatic compound (gluconasturtin) (Table 
2). The GSL content of Bn-Lewis and Bn-Salamander 
seeds confirmed them, respectively, as double low 
and single low (high GSL) varieties. The content of 
all the aliphatic GSLs (especially progoitrin, R-2-hy-
droxy-3-butenyl glucosinolate) was less in Bn-Lewis 
compared with Bn-Salamander, with no major dif-
ferences between the two genotypes in their con-
tents of indolic or aromatic GSLs. All genotypes of 
B. carinata and B. juncea had high GSL contents with 
aliphatic GSLs accounting for >90% of the total; sini-
grin (2-propenyl glucosinolate) was the most abun-
dant GSL.

Inhibition of mycelial growth

Average values ± SE of maximum radial growth 
reached by P. cinnamomi colonies exposed to volatiles 
from biofumigants tested are presented in Table 3. 
ANOVA showed statistically significant differences 
among biofumigant dosages (DF = 3, F = 1169.23, 
P<0.0001), genotype (DF = 5, F = 898.66, P<0.0001) 
and the interaction dosage × genotype (DF = 15, F = 
106.70, P<0.0001). At every dosage tested, genotypes 
of B. carinata and B. juncea reduced the mycelial 
growth of P. cinnamomi when compared with dose 
0. The genotypes Bc-IAS-C1, Bc-IAS-119 and Bj-552 
each gave total inhibition of P. cinnamomi mycelial 
growth, even at the lowest dosage tested. In contrast, 
colonies exposed to both genotypes of B. napus did 
not differ from control colony growth, even at the 
highest dosage tested (Table 3).

Table 2. Glucosinolate profiles and concentrations (μmol g-1 dry weight) in seeds of the selected Brassica napus, B. carinata 
and B. juncea genotypes.

Brassica 
spp. Genotype Total 

GSLs

Aliphatic Indolic Aromatic
Others

PROa E-PROa SINa GNLa GALa GNAa GBNa GBSa 4-OHGBSa GSTa

B. napus
Bn-Lewis 15.94 7.29 0.10 0.00 0.21 0.00 3.39 0.93 0.12 3.29 0.37 0.25

Bn-Salamander 87.84 59.46 1.43 0.00 6.84 0.74 7.23 5.11 0.07 3.98 1.80 1.18

B. carinata
Bc-IAS-C1 86.01 1.47 0.00 79.36 0.00 0.00 0.66 0.00 0.45 2.86 0.46 0.75

Bc-IAS-119 103.55 3.68 0.00 90.70 0.00 0.14 2.67 0.00 0.29 5.33 0.41 0.33

B. juncea
Bj-Tezla 87.33 0.53 0.00 79.16 0.00 0.00 4.16 0.00 0.05 2.14 0.53 0.86

Bj-552 105.10 0.00 0.00 99.88 0.00 0.03 0.65 0.07 0.01 3.36 0.17 0.95
a	 Abbreviation of GSL trivial names: PRO, progoitrin; E-PRO, epiprogoitrin; SIN, sinigrin; GNL, gluconapoleiferin; GAL, glucoalyssin; 

GNA: gluconapin; GBN, glucobrassicanapin; GBS, glucobrassicin; 4-OHGBS, 4- hydroxyglucobrassicin; GST, gluconasturtin.
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When Petri dishes were re-incubated after ex-
posure to the volatiles, colonies in those previously 
exposed to B. carinata or B. juncea remained unable 
to grow. In contrast, all cultures exposed to volatiles 
released by B. napus genotypes resumed growth and 
filled the plates after 1 week of incubation at 24ºC.

Chlamydospore viability

Bn-Salamander was the genotype of B. napus 
selected to test ability to inhibit chlamydospore vi-

ability in soil, as it was the genotype with the great-
est GSL content. Genotypes Bc-IAS-119 and Bj-552 
were selected since they gave 100% inhibition of 
mycelial growth in vitro, even at the lowest dosage 
tested. In addition, they were the genotypes with 
the highest GSL contents for, respectively, B. cari-
nata and B. juncea.

Results obtained are presented in Table 4. ANO-
VA showed statistically significant differences in the 
viability of chlamydospores in soil, depending on 
the biofumigant seedmeal employed (DF = 2, F = 

Table 3. Maximum radial growth (± SE) of Phytophthora cinnamomi colonies on CA medium after 3 d exposure to volatiles 
released by different Brassica spp. biofumigant seedmeals. Values accompanied by different letters differ significantly ac-
cording with Tukey´s HSD test (P<0.05).

Brassica 
spp. Genotype

Dose (g)

0.0 (control) 0.2 0.5 1.0

B. napus Bn-Lewis 28.8 ± 0.6 a 28.3 ± 0.8 a 27.8 ± 1.0 a 28.3 ± 0.6 a

Bn-Salamander 29.8 ± 0.3 a 27.0 ± 0.4 a 27.8 ± 0.5 a 27.5 ± 0.3 a

B. carinata Bc-IAS-C1 29.5 ± 0.5 a 0.0 ± 0.0 c 0.0 ± 0.0 c 0.0 ± 0.0 c

Bc-IAS-119 29.8 ± 0.6 a 0.0 ± 0.0 c 0.0 ± 0.0 c 0.0 ± 0.0 c

B. juncea Bj-Tezla 29.3 ± 0.8 a 9.3 ± 3.1 b 0.0 ± 0.0 c 0.0 ± 0.0 c

Bj-552 28.8 ± 0.3 a 0.0 ± 0.0 c 0.0 ± 0.0 c 0.0 ± 0.0 c

Table 4. Average numbers (± SE) of viable Phytophthora cinnamomi chlamydospores (CFU g-1 of dry soil) after soil exposure 
to volatiles released by different Brassica biofumigants seeds at different doses and exposure times. Values with different 
letters in each column differ significantly according with Tukey´s HSD test (P<0.05).

Brassica 
spp. Genotype Dose (g)

Exposure time (d)

1 4 8

Control - 0.0 104.7 ± 14.2 a 126.5 ± 13.0 a 106.6 ± 5.8 a

B. napus Bn-Salamander

0.1 100.7 ± 8.1 a 94.7 ± 17.0 a 90.1 ± 3.2 a

0.5 103.1 ± 4.2 a 94.7 ± 16.5 a 99.5 ± 10.1 a

1.0 102.1 ± 4.5 a 88.1 ± 6.3 a 86.9 ± 31.5 a

B. carinata Bc- IAS-119

0.1 11.8 ± 1.9 b 7.9 ± 2.1 b 7.7 ± 0.5 b

0.5 13.2 ± 1.8 b 20.5 ± 4.8 b 6.4 ± 1.0 b

1.0 14.6 ± 2.8 b 15.8 ± 5.4 b 5.0 ± 1.6 b

B. juncea Bj-552

0.1 12.1 ± 1.9 b 8.0 ± 1.4 b 8.5 ± 2.3 b

0.5 13.4 ± 2.3 b 5.7 ± 1.5 b 6.0 ± 1.4 b

1.0 7.2 ± 1.8 b 20.7 ± 5.9 b 2.9 ± 0.7 b
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289.55, P<0.0001), but independent of dosage (DF = 
2, F = 0.06, P=0.9386) or exposure time (DF = 2, F = 
0.71, P=0.4958).

Chlamydospore viability in soils treated with 
seedmeal of Bn-Salamander did not differ from in-
fested and unfumigated control soils. In contrast, 
genotypes Bc-IAS-119 and Bj-552 decreased chla-
mydospore viability, since the first day of exposure. 
No statically significant differences were observed 
between genotypes Bc-IAS-119 and Bj-552.

Effects on disease symptom development

After 1 month of incubation, Lupinus seedlings 
growing in control soils (infested and not biofumi-
gated) developed foliar and root symptoms typical 
of the root rot caused by P. cinnamomi. Foliar symp-
toms included yellowing, foliar wilting, and defolia-
tion. Root symptoms mostly included root necrosis. 
Figure 1 shows mean values recorded for root rot 
symptoms. ANOVA revealed statistically significant 
differences in root symptoms, depending on the 
biofumigant applied to the soil (DF = 3, F = 43.87, 
P<0.0001). As expected, root symptoms did not dif-
fer for Lupinus plants growing in soils treated with 
Bn-Salamander or growing in untreated control soil. 
However, roots symptoms were less when plants 
grew in soils biofumigated with Bc-IAS-119 or Bj-
552 in comparison with plants in control soils. Bj-552 
had the largest effect on decreasing root necrosis by 
P. cinnamomi. Phytophthora cinnamomi was always 
re-isolated from necrotic root segments from plants 
growing in every soil inoculated with this pathogen.

Discussion
Brassica species contain GSLs in all their organs, 

but GSL concentration in seeds is especially high 
(Halkier and Gershenzon, 2006). However, breed-
ing programmes have drastically reduced GSL levels 
in order to make Brassica genotypes more edible for 
livestock and humans (Tripathi and Mishra, 2007). 
Ríos et al. (2016a; 2016b) showed that sinigrin (2-pro-
penyl glucosinolate) present in the green parts of 
some Brassicaceae genotypes had a high biofumigant 
potential against the oomycete P. cinnamomi. Green 
biofumigation using plants rich in sinigrin reduced 
the germination percentage of P. cinnamomi resting 
spores in soil. However, it should be noted that this 
green matter did not significantly reduce disease 

symptoms in highly susceptible “dehesa” hosts (Ríos 
et al. 2016a; 2016b). Even though commercial pellets 
based on B. carinata dry green matter have been re-
ported to reduce P. cinnamomi inoculum density in 
experimental conditions, efficacy on live host roots 
was only demonstrated for seedlings of Quercus cer-
ris, a host that is only very moderately susceptible to 
the pathogen (Morales-Rodríguez et al., 2016).

In the present study, we have demonstrated the 
ability of Brassica seedmeals rich in sinigrin to effec-
tively reduce the viability of P. cinnamomi chlamydo-
spore in soil. High efficacy was proven even at low 
dosages (0.1 g) and short exposure to volatiles (1 d), 
resulting in a 90% decrease in measured inoculum 
concentration in soil. This high efficacy may explain 
why increasing dosages or extending exposure time 
did not result in any additional effects on the viabil-
ity of chlamydospores. As a result of the treatment, 
inoculum viability in soil was too low to result in 
root infections of L. luteus plants. Ríos et al. (2016a) 
reported inoculum loads of 28–69 CFU g-1 and 23–83 
CFU g-1 were still detectable in soils after their biofu-
migation with green manures of, respectively, B. jun-
cea Bj-552 or B. carinata Bc-IAS-119. Those inoculum 
concentrations are sufficient to induce root necrosis 
in lupins. Inoculum loads in the soil after biofumiga-
tion with Brassica seedmeals were approx., ten-fold 
less than those reported by Rios et al. (2016a). Inocula 
were estimated at 2-13 CFU g-1 for Bj-552 seedmeal 
treatments, and 5–20 CFU g-1 for Bc-IAS-119.

Figure 1. Average root symptom severity scores (and SE) 
for Lupinus luteus plants growing in soils infested with 
P. cinnamomi chlamydospores and biofumigated. Values 
with different letters differ significantly according with the 
Tukey´s HSD test (P<0.05).
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Serrano et al. (2015) reported a minimum of 61 
chlamydospores g-1 is necessary to cause root disease 
on seedlings of the highly susceptible host Q. suber 
(Robin et al., 2001). Consequently, biofumigation 
with low doses of Bj-552 or Bc-IAS-119 seedmeals 
may protect cork oaks from root disease caused by P. 
cinnamomi infections.

This greater effectiveness of seedmeals in com-
parison with green matter appears to be directly 
related to their greater sinigrin concentration: four 
times for Bj-552 and six times for Bc-IAS-119 seed-
meal in comparison with green matter (Ríos et al., 
2016a). As previously reported (Ríos et al., 2016b), 
high sinigrin content is likely to be directly related to 
the biofumigant effectiveness of Brassicaceae plants 
against P. cinnamomi. Genotype Bj-552, with 100  
μmol g-1 dry weight of sinigrin, was the most effective 
seedmeal for decreasing root necrosis induced by P. 
cinnamomi infections in lupin plants, followed by 
Bc-IAS-119, which contained 91 μmol sinigrin g-1 dry 
weight. However, the greater effectiveness achieved 
by Bj-552 in comparison with Bc-IAS-119 in reducing 
lupin root necrosis was not fully explained based on 
their sinigrin contents, and other factors depending 
on the species or genotype may be also involved.

We have shown here that B. napus Bn-Salamander 
seedmeal, rich in GSLs other than sinigrin, was inef-
fective for controlling P. cinnamomi, both in soil and 
in planta. This supports results previously reported 
by Ríos et al. (2016b) on the importance of sinigrin as 
an active biofumigant ingredient.

Phytophthora cinnamomi was always re-isolated 
from necrotic roots from inoculated soils, even when 
low levels of root necrosis were recorded. As Serrano 
et al. (2015) previously reported, very low concentra-
tions of chlamydospores in soil can infect susceptible 
roots, even when the inoculum concentration is great 
not enough for disease development in the short 
term. Thus, although seedmeal biofumigation can 
effectively minimize levels of root disease caused by 
P. cinnamomi on highly susceptible hosts, it is not ex-
pected that it will eradicate inoculum. As stated by 
Dunstan et al. (2010), a site should be regarded “at 
risk” whenever the pathogen is detectable in the soil. 
Consequently, the risk for root disease development 
may remain in the long term if P. cinnamomi is still 
detectable in dehesa soils, even after biofumigation 
with effective seedmeals.

Our results indicate that the direct application to 
infested soil of sinigrin-rich B. juncea or B. carinata 

seedmeals is likely to be an effective way to control 
Phytophthora cinnamomi, and as such it should be in-
corporated in the integrated control of oak disease 
in dehesa systems. However, maximum production 
levels of Brassica spp. seed in dehesa were comput-
ed to be about 118 kg ha-1 (Fernández-Rebollo et al., 
unpublished data); this value is almost 20 times less 
than production levels recorded in different settings 
(Fereres et al., 1983). Hence, we infer that seedmeal to 
be used as a biofumigant in “dehesas” should not be 
locally produced, but should be supplied instead by 
production facilities in traditional agricultural lands.
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