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REVIEW 

Rice blast forecasting models and their practical value: a review
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Summary. Rice, after wheat, is the second largest cereal crop, and is the most consumed major staple food for 
more people than any other crop. Rice blast (caused by Pyricularia oryzae, teleomorph Magnaporthe grisea) is the 
most destructive of all rice diseases, causing multi-million dollar losses every year. Chemical control of this disease 
remains the most effective rice blast management method. Many attempts have been made to develop models to 
forecast rice blast. A review of literature of the rice blast forecasting models revealed that 52 studies have been 
published, with the majority capable of predicting only leaf blast. The most frequent input variable has been air 
temperature, followed by relative humidity and rainfall. Critical factors for the pathogenesis, such as leaf wetness, 
nitrogen fertilization and variety resistance have had limited integration in the development of these models. This 
review reveals low rates of model application due to inaccuracies and uncertainties in the predictions. Five models 
are part of current operational forecasting systems in Japan, Korea and India. Development of in-field rice-specific 
weather stations, along with integration of leaf wetness and end-user interactive inputs should be considered. This 
review will be useful for modelers, users and stakeholders, to assist model development and selection of the most 
suitable models for the effective rice blast forecasting.
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Introduction
Rice (Oryza sativa L.), is one of the main world sta-

ple food crops. Although it is predominant in Asia, 
this crop has also been cultivated in Europe since 
the 15th century, mainly in Mediterranean coun-
tries including Italy, Spain, Portugal, Greece, and 
France (FAO, 2016). Rice blast, caused by the fungus 
Pyricularia oryzae Cavara [synonym P. grisea Sacc, 
teleomorph Magnaporthe grisea (Hebert) Barr], has 
been identified as one of the major rice cultivation 
constraints worldwide (Wang et al., 2015). The blast 
fungus is capable of infecting rice at any stage of the 
host life cycle. The disease appears early as white to 
grey/brown leaf spots or lesions, followed by nodal 
rot and as neck blast, which can cause necrosis and 

frequently breakage of the host panicles (Katsantonis 
et al., 2007). As rice production expanded through 
Asia, Latin America and Africa, the disease followed 
the expansion, and now occurs in more than 85 
countries (Wang and Valent, 2009; Bregaglio et. al., 
2016). Under favourable conditions, rice blast can 
be the most important rice disease in China, Japan 
and the USA, causing severe damage to rice yields 
(Groth, 2006; Noguchi et al., 2006; Zeng et al., 2009). 
Severe blast has expanded due to use of susceptible 
cultivars, irrigation, large amounts of nitrogen ferti-
lization, sandy light soils and rice fields surrounded 
by sheltering trees (Long et al., 2000; Greer and Web-
ster, 2001; Groth, 2006). Moderate field infections can 
cause approx. 50% grain yield reductions. It has been 
estimated that P. oryzae destroys rice grain each year 
that would feed 60 million people (Devi and Shar-
ma, 2010). Based on scientific/economic importance, 
the pathogen was characterized in 2012 as the most 
destructive fungus in the world. This was based on 
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the factors: the fungus affects rice crops supplying 
half of the world’s population, and the devastating 
nature of the infections. Furthermore, the pathogen 
is scientifically important because it has been devel-
oped as a model system for the study of the plant-
pathogen interactions (Dean et al., 2012).

To initiate rice blast, the P. oryzae has evolved a 
unique mechanism for conidium attachment to rice 
leaf surfaces. The disease can be severe during peri-
ods of cool temperatures and high moisture, while 
conidia do not germinate under direct sunlight (Ou, 
1985). Cloudy overcast weather and dew encourage 
blast spread. Conidia remain viable during winter 
even under snow. Infected host residue is the most 
important source of the primary inoculum causing 
epidemics initiation (Jeyanandarajah and Sevevi-
ratne, 1991). Harmon and Latin (2001) found that 
survival of the fungus was greatly reduced during 
winter, but during spring, sporulation of the fungus 
occurred on plant debris. Dissemination of the fun-
gus also involves a wide range of alternative host 
plants (Valent and Chumley, 1991). In temperate re-
gions, infested rice seed, straw, and residues have 
been implicated as the most important overwinter-
ing sources of primary inoculum, although their im-
pacts on initial disease development and distribution 
is not fully understood (Lamey, 1970; Kingsolver et 
al., 1984; Ou, 1985; Agarwal et al., 1989; Cloud and 
Lee, 1993; Lee, 1994; Manandhar et al., 1998).

The first rice blast forecasting model was devel-
oped 67 years ago. Because of the continuing impor-
tance of the disease, the aims of the present review 
are: 1) to examine all the published rice blast forecast-
ing models; 2) to investigate the operation and us-
ability of each model; 3) to analyze the variables used 
in each model, to prioritize the most common input 
complexes as the reportedly most favourable; and 4) 
to conclude model success from usability records.

The rice blast pathosystem
The rice blast pathosystem consists of two inter-

related subsystems: the leaf blast pathosystem and 
the neck blast pathosystem (Teng et al., 1991; Teng, 
1994; Sirithunya et al., 2002; Savary et al., 2006). With-
in each subsystem, vertical and horizontal host re-
sistance operates. Thus, alloinfection from non-rice 
hosts and rice hosts that initiate epidemics is im-
portant for rice blast forecasting and disease man-
agement. Many leaf blast and neck blast simulation 

models have been reported, although their valida-
tion in diverse environments is still not definitive. 
Many empirical damage functions for blast losses 
are known, but their validation and use in disease 
management requires further analyses.

While the leaf blast and neck blast have common 
features, they have usually been treated separately, 
because of time discontinuity and because their rela-
tionship is not clearly defined. Separate models and 
forecast systems have therefore been developed for 
each pathosystem, since leaf blast predictions do not 
always cover neck blast. Alloinfection in each sub-
system is thought to occur with inoculum from rice 
plants in the immediate vicinity, which have been 
successfully infected, or from non-rice hosts of the 
pathogen. Once alloinfection has occurred with an 
initial amount of disease, then disease severity in-
creases via autoinfection (Van der Plank, 1963).

Relationships between leaf and neck blast have 
been partially documented, while many questions 
still remain unanswered since conclusions are con-
troversial (Ou, 1985; Hwang et al., 1987; Bonman, 
1992; Zhu et al. 2005; Puri et al., 2009; Ghatak et al., 
2013). One reason for contradictions in the correla-
tion between leaf and neck blast is that very severe 
leaf blast, which causes plant senescence and pani-
cle death, reduces the chances of developing neck 
blast. Although quantitative resistance against leaf 
blast is positively correlated with quantitative resist-
ance to neck blast, some cultivars may be resistant to 
the disease on leaves, and relatively susceptible on 
panicles. Pyricularia oryzae conidia depositing onto 
panicle spikelets are the blast epidemic event con-
sidered to be more stochastic, driven by chance, than 
deterministic (Ishiguro and Hashimoto, 1991; Koizu-
mi and Kato, 1991). Ishiguro and Hashimoto (1988) 
reported that although large numbers of conidia are 
released from lesions on leaves, they may or may not 
produce panicle blast infections even under favour-
able environmental conditions.

Environmental conditions and 
meteorological variables

Rice blast, is favoured by particular air and soil 
temperatures, relative humidity (RH), hours of con-
tinuous leaf wetness (LW), degree of light intensity 
and duration and timing of dark periods, all of which 
have been considered as very important for disease 
development. Many studies have reported ranges 
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and optimum conditions for the development of the 
disease. An overview of these conditions outlined in 
different studies is presented in Table 1.

The life cycle of P. oryzae begins with the depo-
sition of conidia on rice plants. The conidia become 
tightly attached to the hydrophobic rice leaf surfaces 
in LW conditions (El Refaei, 1977). Mature lesions can 
produce conidia when RH is greater than 89%. High 
sporulation potential is possible at 20°C (Kato et al., 
1970; Kato, 1974; Kato and Kozaka, 1974; El Refaei, 
1977). Sporulation is also favoured by cultivation of 
rice in aerobic soils or wetlands by long duration of 
LW due to drizzle or dew disposition, by little or no 
wind at night and by night temperatures between 17 
and 23°C (Webster and Gunnell, 1992). Suzuki (1969c) 
observed that water is necessary for conidium dis-

charge; the more water droplets retained on infected 
leaves, the more conidia are released. Manandhar et 
al. (1998) concluded that seedlings grown under low 
temperature conditions (15 to 20°C) did not develop 
blast lesions, but when the same plants were trans-
ferred into warmer temperatures (25 to 30°C), blast 
lesions were detected. Numbers of conidia produced 
varied from 80,000 per spikelet lesion to 280,000 per 
neck node lesion, and sporulation potential is also re-
lated to the level of partial resistance in the host (Yeh 
and Bonman, 1986; Castaño et al., 1989). Released co-
nidia float under the rice plant canopy and then es-
cape into the air above the canopy. After successful 
host invasion, the fungus colonizes host tissue, and 
visible symptoms appear in 5 d under favourable 
conditions (Ou, 1985).

Table 1. Range and optimum environmental conditions which favour rice blast development, as reported in the literature.

Condition Stage Range Optimum

Leaf wetness All stages Always required

Air Temperature Appressorium germination 10–33 oC 25–28 oC

Appressorium formation 21–30 oC 28 oC

Lesion formation (wet leaves) 4–5 d at 25–28 oC

Mycelium growth 8–37 oC 28 oC

Mycelium survival for 18 
months

-20– -30 oC -30 oC

Sporulation 9–35 oC 25–28 oC

Dispersal of conidia 20.5–21.8 oC

All stages at night 17–22 oC 20 oC

Host blast susceptibility 10–30 oC 25–28 oC

Soil temperatures Rice seedlings 20–30 oC

Adult plants 18–24 oC

RH (air) Mycelium growth 93 %

Conidium germination 89–96 % 93 %

Dispersal of conidia  90 %

Disease development 93-95 %

Rainfall All stages (direct effect) Unclear Unclear

Sunlight Lesion formation Night hours

Near-UV light Germtube length 366–340 nm 366 nm

Carbon dioxide Ambient +200–300 μmol mol-1
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Rice blast management
Modern rice cropping practices in Europe include 

application of highly active nitrogen (N) fertilizers, 
such as urea (46% N). However, in conventional rice 
cropping, such highly active fertilizers are not rec-
ommended due to their breakdown effects on field 
resistance to blast (Ou, 1985; Freitas et al., 2010). Man-
agement of blast has been extensively investigated, 
where different disease management strategies have 
been examined. These include: applying antagonis-
tic Pseudomonas, Bacillus and Streptomyces spp. for 
biological control, (Prabavathy et al., 2006; Tendulkar 
et al., 2007; Karthikeyan and Gnanamanickam, 2008; 
Goud and Muralikrishnan, 2009; Filippi, et al. 2011; 
Khalil et al., 2014; Meng et al., 2015); using disease-
resistant cultivars (Tokunaga, 1965; Villareal et al., 
1981; Koizumi and Kato, 1987); reducing N fertiliz-
ers (Ou, 1985; Long et al., 2000); treating seed grains 
with chemicals (Yokoyama, 1981; Teng, 1994); using 
organic manure (Obilo et al., 2012); applying triter-
penoid glycosides derived from alfalfa (Abbruscato 
et al., 2014); using neem seed extracts (Sireesha and 
Venkateswarlu, 2013), and using essential oils or ex-
tracts with antifungal properties (Sun et al., 2014). 
Furthermore, other disease management methods 
have been reported, even when some exceptional 
techniques were introduced. For example, fan-forced 
wind into rice crop canopies to favour leaf dryness 
(Taguchi et al., 2014), and intercropping with wild 
species (Wang et al., 2007) have been tested. How-
ever, rice blast has never been eliminated from a 
region where rice is grown. A single change in crop 
management or in the way host resistance genes 
are deployed can result in significant disease losses, 
even after many years of successful disease control 
(TeBeest et al., 2007).

Fungicide applications remain the dominant 
practice for controlling rice blast, sometimes using 
environmentally harmful chemicals or inducing fun-
gicide resistance among pathogen populations (To-
dorova and Kozhuharova, 2010). However, the num-
ber of the available fungicide active ingredients is 
limited (Prabhu et al., 2003; Kunova et al., 2014; Chen 
et al., 2015), since rice blast control does not attract 
appropriate interest of agrochemical companies. 
In a study in India, ten common active ingredients 
were tested for efficacy against rice blast, including 
dithane, carbendazim, propiconazole, mancozeb, 
wettable sulphur, thiophanate methyl, benomyl, edi-
phenphos, kitazine and tricyclazole. Only ediphen-

phos, kitazine and tricyclazole were effective for rice 
blast control, and only tricyclazole increased crop 
yield (Ganesh et al., 2012). This chemical is a melanin 
biosynthesis inhibitor (Chen et al., 2015), and was re-
leased in 1975 by Eli Lily/Dow for rice blast control, 
although initially suspected to have limited success 
because fungicide resistance in P. oryzae had been ob-
served in China and Italy (Zhang et al., 2006; Titone 
et al., 2015). Nevertheless, this chemical remains 
the most efficient and most widely used blasticide 
among European rice growers, although it had to be 
withdrawn from EU use in March 2009, with a grace 
period expiring in March 2010.

Several concerns and questions have been raised 
regarding the environmental and human health im-
pacts of tricyclazole along with the existing EU MRL. 
The fungicide is toxic (oral acute LD50 in mice = 245 
mg kg-1), and it has a long label-recommended re-
sidual period (54 d before harvesting; Froyd et al., 
1976; Tokousbalides and Sisler, 1978; Morton and 
Staub, 2008; EFSA, 2013; Gosetti et al., 2014; Arora et 
al., 2014; Fattahi et al., 2015). In the EU, tricyclazole 
is banned but remains in circulation through the is-
sue of 120 d short registrations at national levels, af-
ter demonstration of the effectiveness presented in 
the Commission. Currently, tricyclazole is banned 
from use in European rice cultivation. The EU MRL 
is 1.0 mg kg-1, while in USA tricyclazole is banned. 
However, the USA import tolerance for the chemi-
cal is 3.0 mg kg-1 (http://globalmlr.com, assessed in 
2016). Nevertheless, systemic fungicides are widely 
used to protect rice against leaf and neck blast when 
applied at the correct stage, to give optimum control 
with reduced environmental impact. The pesticide 
rate, and time and method of application depends 
on the information derived from accurate and timely 
forecasting of environmental conditions that are fa-
vourable for rice blast development.

Rice blast forecasting models
Disease forecasting allows prediction of probable 

outbreaks or increases in disease intensity, allowing 
if, when, and where a particular disease manage-
ment practice should be applied (Agrios, 2005). Dis-
ease forecasting systems are based on assumptions 
concerning the particular pathogen’s interactions 
with the host and the environment, the “disease tri-
angle” of “virulent pathogen”, “susceptible host” 
and “favourable environmental conditions”.
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There is no comprehensive way to classify all the 
disease models and modelling approaches used in 
agriculture. Researchers have initially indicated that 
most epidemic models are either analytic or simula-
tions (Teng, 1985; Berger, 1989). An analytic model is 
simple, often with one equation with few biological 
variables, which can frequently be mathematically 
solved. Simulation models usually each comprise 
a series of equations that describe the behaviour of 
subsystems, and explicitly account for the influence 
of the environment at the subsystem level. They 
cannot commonly be solved using analytical (math-
ematical) techniques and require numerical solution 
with computer algorithms. Berger (1989) observed 
that some researchers (e.g., Teng and Zadocks, 1980) 
blended these two approaches, starting with ana-
lytic models and gradually increasing the degree of 
realism and the representativeness of the real world 
until each model was no longer amenable to an ana-
lytical solution.

In rice blast forecasting, Japanese research pri-
marily considered inoculum intensity as determined 
by spore traps and plant predisposition (Yamaguchi, 
1970). Predisposition to infection related to biologi-
cal and ecological characteristics of plants for disease 
progression and degree of occurrence. In Thailand, 
spore trapping was established in blast-prone sites 
using trap plants instead of spore samplers. Disease 
severity was assessed on susceptible cultivars used as 
trap plants and effects of environment on variations 
in severity were evaluated. However, in the Philip-
pines Pinnschmidt et al., (1993) reported variations 
in the conidium numbers trapped by trap plants, 
compared to electronic and conventional spore trap-
ping devices, due to weather effects. Similarly, vi-
ability of P. oryzae conidia from a spore trap differed 
from plant exposure because of environmental vari-
ations where spores were exposed prior to sampling 
(Bonman et al., 1987; Pinnschmidt et al., 1993).

Another approach was used for forecasting rice 
blast in India. Researchers had used information de-
rived from planting susceptible cultivars at different 
times for several years (Chaudhary and Vishwadhar, 
1988; Padhi and Chakrabarti, 1981). Similarly, Manib-
hushanrao et al. (1989) further studied effects of con-
tinuous planting of susceptible cultivars and weather 
on population structure of P. oryzae, to improve exist-
ing forecasting methodologies in that country.

The relationships of weather to above-canopy 
conidium numbers and plant predisposition to in-

fection has been explored with the aid of computer 
modeling. Several statistical techniques have been 
used to develop reliable predictions. Models de-
veloped in Japan (Chiba, 1988; Uehara et al., 1988; 
Ishiguro and Hashimoto, 1988, 1989; Ishiguro, 1991) 
were considered as extensive rice blast forecasting 
packages. Deterministic mathematical functions that 
relate weather conditions to leaf blast development 
via regression analysis, and stochastic probability 
models for panicle blast, were used to improve un-
derstanding of pathosystem dynamics. Regression 
analysis provided an excellent way of character-
izing the environment as a few meaningful factors 
(Campbell and Madden, 1990). In Korea, computer-
ized blast forecasting systems had also been imple-
mented based on the relationship between aerial 
numbers of conidia, leaf blast infection, and meteor-
ological variables as revealed by regression analysis 
(Kim, 1987; Kim et al., 1987; Kim et al., 1988; Lee et al., 
1989; Kim and Kim, 1991). Regression analysis had 
also been applied to derive forecasting models in 
Iran (Izadyar and Baradaran, 1990), the Philippines 
(El-Refaei, 1977), India (Manibhushanrao et al., 1989; 
Tilak, 1990), China (Zhejiang Research Group, 1986), 
and Taiwan (Tsai, 1986).

Path coefficient analysis is a technique in multi-
variate regression technique that is potentially use-
ful in choosing which weather variable is the best 
disease predictor. This approach could identify di-
rect and indirect effects of factors on disease without 
the confounding influences caused by multicollin-
earity. The analysis had two major components: the 
path diagram, and the decomposition of observed 
correlations into a sum of path coefficient terms rep-
resenting simple and compound paths (Johnson and 
Wichern, 1992). These features enabled measurement 
of the direct and indirect influences of one variable 
upon another. Mohanty et al. (1983), using path-coef-
ficient analysis, positively correlated leaf angle, leaf 
pubescence, epicuticular wax and quantity of depo-
sition of conidia with disease incidence. Torres and 
Teng (1993), similarly using path analysis, positively 
correlated leaf and neck blast with plant height and 
percentage of unfilled grains, while a significant ef-
fect of both symptoms was reported on plant yield 
reduction. Furthermore, they concluded that under 
field conditions, yield losses to rice blast could be 
estimated with more than 70% confidence through 
knowledge of the disease leaf area at the end of tiller-
ing stage and neck blast at harvesting.
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Most rice blast forecasting models related weath-
er variables to the occurrence and the development 
of disease, using statistical procedures. The choice 
of weather variables was mainly influenced by epi-
demic development. This is essential for successful 
application of forecasting schemes to wide-scale pro-
duction areas. Table 2 presents an overview of fore-
casting models, which are categorized by weather 
variable inputs and the prediction type outputs.

Brief descriptions of the published models are 
presented in the next three sections, which represent 
the three forecasting category types: leaf blast, leaf 
and neck blast, and neck blast. Each section indexes 
the models according to prediction type, in chrono-
logical order of publication.

Leaf blast forecasting models
Leaf blast is the first major symptom that occurs 

following P. oryzae invasion. Forecasting favourable 
conditions for leaf blast is critical for early control 
and management of the disease. Thus, most pub-
lished models aim to forecast leaf blast.

Decade 1970

In the 1970s and 1980s in Japan, researchers tak-
ing advantage of developments in computer hard-
ware and software programming reported the devel-
opment of computer simulation models to forecast 
rice blast (Fukuoka Agricultural Experiment Station, 
1975; Hashimoto et al., 1982, 1984; Oota, 1982; Takai 
et al., 1985; Ishiguro 1986). However, these models 
were insufficient for quantifying the dispersion and 
the deposition of P. oryzae conidia within rice cano-
pies, which is an important stage for the disease de-
velopment (Koizumi and Kato, 1991). Limited infor-
mation could be retrieved from the literature, since 
these studies were published in Japanese and the 
original papers were difficult to locate.

El Refaei (1977), in the Philippines, used data 
from blast nursery trials to develop several linear 
regression equations. He separately related numbers 
of lesions per seedling to weather variables, such as 
dew period, mean day or night temperatures, mean 
day or night RHs, and rainfall, along with airborne 
inoculum density. When conidia were incubated in 
water, an increase in germination was observed at 
optimum temperatures between 20 and 25°C. The 
model could forecast leaf blast 5 d in advance. The 

set of equations showed exponential relationships 
between the disease, dew duration in hours and 
aerial conidium concentrations. However, this work 
was limited to nursery experiments. Furthermore, 
negative coefficients in the equations could not be 
biologically interpreted, and plant growth and on-
togenetic changes in susceptibility were neglected.

An approach was developed by Yoshino (1979) in 
Japan, that has continued to be used. This determined P. 
oryzae infection periods, evaluating weather conditions 
every hour, and produced hourly results that indicated 
if the conditions would result in successful infections. 
The model was in two parts. The first contained three 
favourable conditions for successful conidium penetra-
tion and therefore successful infections:

1) the moving average of air temperature during 
past 5 d is 20-25°C

2) the rainfall to be below 4 mm h-1, and
3) the continuous wet period >4 h than the base 

wet hours, calculated by the equation below:

Base wet hours = 60.09 − 4.216 × tempwet + 0.08858 × 
tempwet

2,

(where tempwet is the air temperature when the 
leaves are wet)

The second part estimated the number of “infec-
tion hours”, the hours where the three conditions of 
the first part are true. The infection hours for each 
day determined by the model were accumulated for 
1 d, in order to calculate the daily infection warn-
ing hours (DIWH). The DIWH was categorized into 
four risk levels:  1) Zero Risk, DIWH = 0 h; 2) Low 
Risk, 1 h ≤ DIWH < 3 h; 3) Intermediate Risk, 3 h 
≤ DIWH < 6 h; and 4) High Risk, DIWH ≥ 6 h. The 
Yoshino model is still used as part of three forecast-
ing systems: a commercial system developed in 
Austria (http://www.fieldclimate.com), and in the 
models published by Kang et al., (2010) and Kim et 
al., (2015). Yoshiro’s approach has also been adopted 
in five other published models, including those of 
Koshimizu (1983; 1988) and Hayashi and Koshimizu 
(1988); Tastra et al. (1987); Kim et al. (1987; 1988); Lee 
et al. (1989); and Ishiguro and Hashimoto (1988; 1989; 
1991) and Ishiguro (1991).

Decade 1980

Hashimoto et al. (1982; 1984) developed BLASTL, 
using published data in combination with their own, 
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Table 2. Characteristics of 52 reviewed rice blast forecasting models, including their input variables, outputs and current 
useage. 
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Ashizawa et al., 2001                 X  

Ashizawa et al., 2005    X X X X   X X X X  X X X  

Billoni et al., 2006    X  X X X  X    X   X X

Bregaglio et al., 2016 X X X X X X X

Calvero and Teng, 1991, 1992 X X X  X    X   X     X  

Calvero et al., 1996a       X X  X X  X X  X X X

Calvero et al., 1996b            X     X X

Chiba et al., 1966       X   X  X  X   X X

Choi et al., 1988  X X X X X X X  X   X  X  X  

CRRI, 2013    X   X X X        X  X

El Refaei, 1977 X X     X X X       X X

Fukuoka Agr. Exper. Station, 1975    X             X  

Gunther, 1986 X X X X X     X  X     X  X

Hashimoto et al., 1984  X  X X X X   X X X X  X X X  X

Holcombe et al., 2003   X              X  

Ishiguro and Hashimoto, 1988, 1989, 1991  X X X X X X X  X X X   X X X X

Ishiguro, 1986    X             X  

Izadyar and Baradaran, 1990       X        X  X  

Kanda, 2012       X X  X X X X    X X X

Kang et al., 2010      X X X  X       X  X

Kapoor et al., 2004       X X  X X X  X   X X

Kaundal et al., 2006       X X  X       X  X

Kim and Kim, 1993 X X X X   X X X X  X  X   X  

Kim et al., 1987, 1988      X X X      X X  X  

Kim et al., 2015      X X X  X  X     X  X

Koizumi and Kato, 1991 X X  X X        X    X X

Koshimizu, 1983, 1988      X X X  X X  X    X  

(Continued)



Phytopathologia Mediterranea194

D. Katsantonis et al.
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Kuribayashi and Ichikawa 1952     X            X X

Lanoiselet et al., 2002       X X X      X  

Lee et al., 1989     X X X X  X X   X   X X 

Liang et al., 2013  X     X X    X     X X 

Luo et al., 1997       X X X X X      X

Manibhushanrao and Krishnan, 1991  X  X   X X X        X  

Mousanejad et al., 2009   X   X X X X X X  X   X X X

Ohta et al., 1982, 1987  X X X X X X X  X   X X X  X  

Ono, 1965  X  X   X   X X     X X X

Oota, 1982    X              X  

Padmanabhan, 1965       X X    X  X   X X

Park et al., 1998 X    X X X X  X X X X X   X X

Rafoss et al., 2013      X X X  X X  X X   X X

Sasaki and Kato, 1972       X   X  X   X X  X

Savary et al., 2012      X X X  X X X X    X  

Surin et al., 1991    X   X X  X       X  

Suzuki, 1969b, 1974  X  X X X       X    X X

Takai et al., 1985    X             X  

Takasaki, 1982   X  X             X

Tastra et al., 1987               X X X  

Torres, 1986  X  X X  X  X   X    X X

Tsai and Su, 1984 and Tsai, 1986        X  X       X  

Uehara, 1985       X  X X  X    X  X

Yoshino, 1979      X X   X       X  X

Zhejiang Research Group, 1986       X X  X X X X X X    

Table 2. (Continued).
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conducted in simulation units. This was probably 
the first simulation leaf blast model developed. Life 
cycle stages of P. oryzae, sporulation, conidium dis-
charge, dissemination and deposition, blast infection 
and lesion development were simulated in relation to 
weather conditions, plant growth, leaf position, and 
host susceptibility as affected by weather, fertilizer 
application, plant or leaf age and leaf position. The 
dynamics of leaf blast were calculated as temporal 
changes in the number of lesions. Air temperature, 
rainfall, wind, sunlight duration and wetness period 
were used to feed the model, and additionally mete-
orological data were collected from the Automated 
Meteorological Data Acquisition System (AMeDAS). 
Time was advanced every 3 h. Leaf blast infection 
was measured by the number of lesions, while leaf 
area was assessed in field surveys. The model also 
included other variables, such as susceptibility index 
of leaves and initial inoculum dynamics, which were 
determined by observing the disease epidemics. This 
model was developed to assist farmers in apply-
ing control measures, and the model could predict 
leaf blast outbreaks in 7 d short-term forecasts. The 
model was tested in prefectures of Japan for several 
years, and was useful and practical. Since it con-
tained a fungicide sub-model, it was also a practical 
tool for determining the timing and the efficiency of 
fungicide applications (Takai et al., 1985; Ishiguro et 
al., 1988). However, lshiguro and Hashimoto (1990) 
concluded that BLASTL required further improve-
ments, to estimate the parameters which were first 
determined by trial and error procedures. Further-
more, the model could be improved through integra-
tion of a module that included the initial prediction 
of leaf blast epidemics.

The rice blast simulation model BLASTCAST 
was developed by Ohta et al. (1982; 1987) in Japan, 
which was a plant disease simulator similar to that 
of Hashimoto et al. (1982; 1984). BLASTCAST in-
volved variables such as conidium production, dis-
semination, attachment, penetration and blast se-
verity. Additionally, it collected daily data on host 
variables, such as lesion formation, variability of 
resistance to leaf blast and lesion incubation period. 
Hourly recorded field meteorological data were 
also collected, including humidity, wind speed, 
precipitation and LW. The model gave satisfactory 
results in the years 1973-1976 and 1979-1981. The 
authors concluded that increasing the amount of 
input data and including rice varietal resistance 

would improve the model, although these develop-
ments have not been reported.

Koshimizu (1983; 1988) and Hayashi and Ko-
shimizu (1988) developed BLASTAM as a software 
tool to predict rice leaf blast epidemics in Japan. This 
relied on hourly weather data collected from 840 
sites from throughout the country using AMeDAS. 
The meteorological variables used were: air tem-
perature, precipitation, (> 1 mm h-1), sunshine dura-
tion and wind force. The model also used variables 
of LW period, mean temperature during LW and 
mean temperature of the five preceding days, along 
with other secondary weather variables, which met 
certain model criteria. The model first estimated LW 
conditions using AMeDAS, and subsequently deter-
mined the infection potential through relationships 
between the estimated LW condition and the surface 
air temperature. When evaluating the effects of cli-
mate change on LW, BLASTAM encountered many 
of the aforementioned difficulties that are typical of 
empirical models. The model classified favourable 
to unfavourable weather for infection, 7 d after the 
onset of the conditions. The BLASTAM approach 
was similar to that of the Yoshino (1979) model. The 
model is currently reported by the http://www.rei-
gai.affrc.go.jp as operational for leaf blast prediction, 
using data from AMeDaS. 

A forecasting model was also developed in Tai-
wan by Tsai and Su (1984) and Tsai (1986). This used 
multiple regression equations to analyze relation-
ships between meteorological variables and the per-
centage of leaf area infected by P. oryzae, developing 
an early disease warning system. The equations con-
tained three to four meteorological variables, such as 
average RH hours when RH was over 90 %, rainfall 
and number of rainy days. Model operation required 
that average RH, hours of RH over 90% and rainfall 
were the most influential factors for predicting blast 
severity. However, the model’s equations have not 
been further validated or used in rice fields.

The model PYRICULARIA described by Gunther 
(1986) was a systematic theoretical approach written 
in a Continuous System Modelling Program (1972). 
It was a polycyclic leaf blast simulation model de-
veloped using information available from the litera-
ture, and it derived structural data from experiments 
carried out in temperate ecosystems. The model 
simulated phases of the P. oryzae life cycle, including 
conidium formation, free and resident conidia, co-
nidium deposition and germination, appressorium 
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formation and penetration, latent lesions, infectious 
lesions, and ageing of lesions. PYRICULARIA ac-
counted for plant growth, but neglected host suscep-
tibility to the blast fungus, while the weather effects 
were simplified. Specific features depended on the 
chronological order of sequential events, and these 
were handled using “boxcar trains.” The model 
could predict leaf blast until the end of active host 
tillering. However, the model was not validated 
against field data.

In China, 40–50% yield losses were observed 
from severe rice blast infections, and in some cases, 
100% yield losses were found in severely infected 
fields (Wang et al., 2014). Although rice blast impacts 
are severe, few published prediction models have 
come from that country. The Institute of Plant Pro-
tection, Zhejiang Academy of Science, developed a 
computerized rice blast forecasting system (Zhejiang 
Research Group, 1986). Meteorological and biologi-
cal factors affecting the P. oryzae and rice blast sever-
ity were related to field management, growing area, 
and cultivars, to establish a database. Stepwise re-
gression analysis was used to predict disease indices 
based on 20 meteorological, biological and cultural 
factors.

Torres (1986) developed a leaf blast simulation 
model in the Philippines, by adding increasing com-
plexity to a logistic growth function. The P. oryzae life 
cycle components used in the model were sporula-
tion, and conidium dispersal, landing and infection. 
Number of lesions per 100 cm2 was used as the major 
component of host resistance, which was affected by 
plant age. Varietal differences in the number of de-
veloped lesions were observed for each leaf, but va-
rietal ranking varied between the leaf assessments. 
Torres (1986) concluded that the factors which af-
fected epidemic development were: plant age, which 
affected host susceptibility, and conidium deposi-
tion, temperature, dew period, crop row spacing and 
nitrogen fertilization. The model considered latent 
period and host area to be constant. Preliminary vali-
dation results revealed inconsistent prediction of rice 
blast epidemics. Torres (1986) identified the need to 
test varieties for both leaf and neck blast to evaluate 
their resistance patterns, and noted the need for fur-
ther refining and validation at the International Rice 
Research Institute. No further improvements have 
been published.

Tastra et al. (1987), adopting and modifying the 
PYRICULARIA model (Gunther, 1986), developed 

PYRNEW, dedicated to the upland rice farming sys-
tems of Indonesia. New variables were incorporated, 
including the effects of nitrogen fertilization and va-
rietal resistance derived from field experiments. The 
preliminary results of model validation suggested 
the need for further development on structure and 
the stimulus-response relationships.

Kim et al. (1987; 1988), in Korea, developed a 
computer-based program for predicting rice blast 
occurrence, based on microclimatic events. It was 
tested as an on-site microcomputer in upland and 
flooded field plots. The battery-operated computer 
continuously monitored mean air temperature, 
hours of LW and hours of RH greater than 90%, 
and then interpreted the microclimate information 
in relation to rice blast development and displayed 
daily values using the scale 0-8 called Blast Units 
of Severity (BUS). Mean temperatures outside the 
range of 15 to 38°C were considered unsuitable for 
blast development. Temperatures of 19 to 29°C for 
a period more than 16 h were considered as highly 
favourable for blast development. The most favour-
able conditions (BUS = 8) were mean temperature 
between 23 and 26°C, with 24 h of LW and 24 h of 
RH greater than 90%. BUS values were calculated 
using algorithms employing logical functions that 
correlated disease to meteorological variables. Ac-
cumulated daily BUS values were highly correlat-
ed to blast development on the two rice cultivars 
grown in upland conditions, and were then used to 
predict disease progression. The model approach 
was similar to that of Yoshino (1979). The authors 
considered that accuracy improvement could be the 
inclusion of soil moisture for blast epidemics in up-
land conditions. This could also enable adaptation 
of PYRNEW for flooded conditions. Once effects 
of the soil moisture on blast development could be 
quantified, the microcomputer units could be retro-
fitted with soil moisture probes and the algorithm 
for BUS could be adjusted.

LEAFBLST, a computer simulation model (Choi 
et al., 1988), was developed based on the data derived 
from growth chamber experiments with one rice cul-
tivar, and from previously reported data. The model 
consisted of modules that computed conidium ger-
mination, infection, latent period, lesion growth, and 
conidium production, dispersal, and deposition, as 
affected by weather factors. Input variables of the 
model were daily air temperature, relative humidity, 
rainfall, wind speed and LW. LEAFBLST was written 
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in FORTRAN IV, and included six input subroutines. 
These were: 1) conidium germination, 2) infection, 
3) latent period, 4) lesion expansion, 5) conidium 
production, 6) dissemination. Another four output 
subroutines were also used, including: 1) for ini-
tialization, 2) leaf area calculation, 3) numerical and 
4) graphic outputs. The results were tested on two 
rice nursery plots. Leaf blast progress was comput-
ed in terms of lesion number and disease severity. 
The model was successfully validated on two rice 
nursery datasets and in crops for only one rice cul-
tivar. Ontogenetic and environmentally-associated 
changes in host susceptibility were not considered. 
Choi et al. (1988) concluded that LEAFBLST should 
be modified to accommodate incoming inoculum 
dispersed from surrounding infected fields, and to 
include temporal changes in host plant susceptibil-
ity. However, no further development of this model 
has been reported.

Decade 1990

A dynamic simulation model was developed by 
Koizumi and Kato (1991) at the National Agriculture 
Research Center in Tsukuba, Japan. This quantified 
dispersal and deposition of conidia over rice cano-
pies. Microclimates inside rice cropping systems 
were considered. The simulation was based on data 
derived from the distribution of conidia from leaf le-
sions through sporulation and release. Wind velocity 
and turbulent diffusion coefficients were estimated 
at the canopy level. Conidium deposition and wash-
ing off during rain for every hour from 13:00 to 12:00 
the next day were included. The model consisted 
of six subroutines, written in Microsoft FORTRAN, 
including: 1) weather, 2) canopy structure, 3) wind 
velocity and turbulence, 4) conidiophores and co-
nidium formation, 5) conidium discharge and 6) re-
sidual conidium concentration. Experimental data 
were integrated using equations derived by previ-
ous publications (Uchijima, 1962; Inoue, 1963; Horie, 
1981). Dispersal and deposition of conidia within or 
above rice canopies were simulated by modifying a 
model developed for barley (Legg and Powell, 1979). 
Suzuki (1969a) studied the effects of windspeed on 
the liberation, dispersion, and deposition of P. oryzae 
conidia in a rice crop. Koizumi and Kato (1991) sug-
gested that windspeed and leaf area indices could 
affect conidium production, and, consequently, co-
nidium concentration in the air. These factors could 

influence the number of conidia attached on the 
leaves of susceptible rice plants.

Izadyar and Baradaran (1990) studied rice blast 
on five local cultivars transplanted four times with 
6–7 d intervals, for 6 years in Iran. At every sowing 
date, minimum temperature and the number of days 
after transplanting (NDAT) were recorded until the 
appearance of leaf blast lesions. Regression models 
were generated to establish relationships between 
NDAT and both maximum leaf blast severity and 
minimum temperature. Model predictions showed 
increases in leaf blast severity due to decreases in 
the NDAT and increases in minimum temperature. 
There was a negative correlation between days after 
transplanting to appearance of leaf blast symptoms 
in the field and the average of minimum tempera-
ture during the same period.

An empirical forecasting model was developed 
in Thailand by Surin et al. (1991). Microscope slides 
from spore traps placed 80 cm above ground in sev-
eral fields, were used to collect P. oryzae conidia at 
each growth stage of the crops. The number of co-
nidia was correlated with disease severity, in com-
bination with the weather conditions. When conidia 
numbered more than five per slide, blast occurred in 
that field after a period ranging from 7 to 15 d. The 
model correlated rice varieties with climatic condi-
tions, such as temperature, RH, rainfall, and the 
number of conidia and blast occurrence. Optimum 
conditions for rice blast development were consid-
ered to be RH of 90% or greater and temperature 
between 25 and 28°C. A method of estimating blast 
severity was developed by measuring blast on the 
top four plant leaves. The close relationship between 
severity on the 3rd leaf and the average severity on 
all leaves indicated that samples taken from the 3rd 
leaf could be used as the basis for fungicide applica-
tion decisions, and for crop loss assessments. Direct 
guidelines were developed to assist the farmers to 
control the disease.

EPIBLA (EPIdemiology of BLAst) simulated inci-
dence of blast in India, and made 7-d forecasts of dis-
ease progression in tropical rice cultivation areas of 
that country (Manibhushanrao and Krishnan, 1991). 
This model was developed using multiple regression 
equations. Daily values of maximum temperature 
and maximum RH were used as predictors of num-
bers of conidia in the air. The predicted conidium 
amounts, the minimum temperature and the amount 
of dew, summed and averaged over the 7-d period 
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preceding disease onset, were used to estimate dis-
ease incidence. Three equations were proposed: one 
for predicting the number of airborne spores, and 
the other two for predicting disease progress. It was 
confirmed that disease susceptibility was related to 
plant age. Positive correlation was found between 
the amount of dew and minimum temperature. 
However, the model was developed using only two 
rice varieties, IR50 and IR20. Improvement of the ac-
curacy of prediction required further reformulation 
using feedback from at least two growing seasons 
combining data derived from the field and from 
growth chambers.

BLASTSIM.2 was developed in the Philippines 
by Calvero and Teng (1991; 1992). This simulat-
ed leaf blast monocycle epidemics based on crop 
growth and weather conditions in different tropical 
rice management systems. The model had two main 
components: the blast simulation, in which the state 
values were computed, and the dew period simula-
tion component, which predicted dew periods and 
the amount per day using the program DEWFOR 
(Luo and Goudriaan, 1991). BLASTSIM.2 followed 
the leaf blast factors such as, conidium production, 
release, deposition, and latency, pathogen penetra-
tion and colonization, and lesion production and de-
velopment. Other included data were derived from 
interactive climatic, edaphic and agronomic factors 
considered to affect rice blast. The model was suc-
cessfully validated in 1989 to accurately simulate 
leaf blast progressions in nursery trials with high 
correlation co-efficients.  One limitation was that the 
model did not include a crop growth subroutine. 
After the trials, the authors concluded that BLAST-
SIM.2 could mimic the rice leaf blast pathosystem. 
However, further validation was needed in various 
locations, because data collections were derived only 
from nursery trials. Consequently, Luo et al. (1993) 
carried out blast surveys to determine the intensity 
of disease at specific locations, and assess whether 
models accurately estimated the disease. They in-
cluded BLASTSIM.2 in their surveys. Also, GIS was 
used to superimpose the effect of UV-B radiation on 
BLASTSIM.2-generated blast progressions, convert-
ed into area under disease progress curve units. The 
GIS-generated raster maps of several Asian countries 
revealed possible blast prone areas. Their results 
were compared with actual blast incidence at those 
sites. The results confirmed that BLASTSIM.2 cor-
rectly simulated the expected blast-prone locations 

in tropical and temperate Asian countries. However, 
there are no reports of further development or use of 
this model.

EPIBLAST was published by Kim and Kim (1993) 
in Korea. The model was developed by collecting 
field rice blast epidemiological and meteorological 
data. The model comprised three groups of input 
variables: 1) meteorological (temperature, RH, rain-
fall, dew period and wind velocity); 2) plant physi-
ological state (healthy, diseased and dead leaf area); 
and 3) epidemiological processes (inoculum poten-
tial, sporulation, conidium release and dispersal, 
penetration and incubation period). Validation tests 
of EPIBLAST during the 1990 crop season indicated 
that the model needed corrections for sporulation 
potential under natural conditions, to improve pre-
dictions to better fit actual leaf blast outbreaks. The 
accuracy of EPIBLAST was validated during 1991, 
and the model predicted field leaf blast epidemics. 
However, some fluctuations were observed, particu-
larly when weather was changing rapidly, and Kim 
and Kim (1993) stated that further revision of the 
model was required.

A combined model simulation that studied ef-
fects of leaf blast epidemics on yield loses was de-
veloped by Luo et al. (1997). Historical daily weather 
data were collected from 53 locations in Japan, Ko-
rea, China, Thailand and the Philippines. Two sim-
ulation models were used: CERES-Rice, a growth 
simulation model, and BLASTSIM (Calvero and 
Teng, 1992). These were combined by linking the ef-
fects of leaf blast on rice leaf photosynthesis and bio-
mass production. BLASTSIM was modified by add-
ing new subroutines or modifying the existing ones. 
Two weather generators, derived from the Decision 
Support System for Agro-technology Transfer, were 
utilized to produce estimated daily weather data to 
run in the combined model. The two weather gen-
erators and the estimation methods were applied to 
produce a complete set of estimated weather data re-
quired by the combined model, including tempera-
ture, solar radiation, humidity, windspeed, rainfall, 
dew period, cloudiness and soil temperature. The 
combined model also simulated daily incidence and 
severity of leaf blast and crop growth parameters 
such as root weight, green leaf area, dead leaf bio-
mass and grain weight. Thirty years of historic daily 
weather data were used as inputs to simulate blast 
epidemics for each temperature change based on the 
Monte Carlo method, for each of the generators for 
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every location. The outputs included disease sever-
ity, the area under disease pressure and yield loss. 
Temperature was the most sensitive variable in the 
model, while precipitation was insensitive. Howev-
er, the ability to simulate rainfall effects to estimate 
dew formation and rice blast epidemics was limited. 
Luo et al. (1997) concluded that elevated temperature 
increased maximum blast severity and epidemics in 
cool subtropical zones, but inhibited disease devel-
opment in warm humid subtropics. GIS graphics 
showing scenarios of blast epidemics for each coun-
try were produced from the simulated information 
for several locations for each country, using spatial 
interpolated methods. The model could not produce 
accurate yield loss forecasts because it failed to pre-
dict collar and panicle blast. No further development 
of this model has been published.

Decade 2000

In 2001 a simulation model was developed for 
forecasting leaf blast epidemics in rice multi-lines by 
Ashizawa et al. (2001). Very little information on this 
model can be retrieved as it was published in Japa-
nese and is not available from the Web.

Lanoiselet et al. (2002) developed a different mod-
el approach to evaluate the risks of rice blast in Aus-
tralia. Two climate simulation software programs, 
DYMEX and CLIMEX, were used to investigate risk 
of potential infection and sporulation of the rice P. 
oryzae. An area with typical climate for Australian 
rice cultivation was chosen for comparison to other 
foreign locations where rice blast occurs. Compari-
sons were carried out using temperature, RH and 
rainfall data. Additionally, a rice blast model was 
developed using the software DYMEX to predict the 
behavior of the pathogen in the rice-growing area of 
the country. The model was operated for the period 
1988 to 1999, using the meteorological data of four 
representative Australian rice-growing locations. 
CLIMEX results were confirmed as the most suitable, 
and these highlighted the hypothetical threat of rice 
blast in Australia. This approach theoretical, while 
some validations were achieved for simulated data 
with real rice blast records in certain areas. However, 
the model needed datasets from real canopy condi-
tions to give improved disease predictions.

Holcombe et al. (2003) specified the individuality 
of the P. oryzae pathosystem, considering the way the 
fungus invades host plants and propagates. They de-

veloped a simple model by applying hybrid compu-
tational techniques, using computer simulation and 
automated analysis to understand the behaviour of 
this complex biological system. They concluded that 
a fundamental problem was the understanding of 
the complex interactions between the different sub-
systems. They have expressed doubts about capabil-
ity of understanding and analyses of the model, even 
when it was correctly constructed. They also stated 
that long term research covering 5 to 10 years was 
required to build realistic models.

Ashizawa et al. (2005) developed BLASTMUL in 
Japan. This model modified BLASTL (Hashimoto et 
al., 1984). The model mimicked leaf blast epidemics 
in “Sasanishiki” and “Koshihikari” rice multilines, 
giving a very specific orientation. BLASTL was con-
sidered reliable. They stated that rice blast resistance 
was low in Japan, and that chemical control was the 
major disease management practice in Japan. For 
this reason, mixtures of near-isogenic lines (NILs) 
with different complete resistance (multilines) had 
been released. For the modification, new variables 
such as conidium dispersion and deposition were 
added to the model developed by Ashizawa et al. 
(2001). The new model calculated the numbers of 
lesions per crop subunit, for mixtures of suscepti-
ble and resistant NILs in given proportions, under 
various weather conditions. BLASTMUL was ap-
propriate for evaluating rice mixtures for blast con-
trol in different locations and cultivars. The model 
could contribute to clarifying the stable use of blast 
resistance. However, the accumulated epidemiologi-
cal data revealed the need to integrate more reliable 
variables in the model.

Kaundal et al. (2006) developed a model based on 
machine learning techniques for rice blast forecast-
ing in India. They selected six significant weather 
variables, temperature (minimum and maximum), 
RH (minimum and maximum), rainfall and rainy 
days per week. They introduced a new forecasting 
method based on the powerful machine learning 
technique Support Vector Machines (SVM). This 
had been developed by Vapnik and coworkers, and 
was considered effective for general purpose super-
vised predictions (Cortes and Vapnik, 1995). Among 
the weather variables, rainfall was shown to be the 
best predictor, followed by relative humidity and 
rainy days per week. Temperature was found to 
have the least effect on disease development. This 
disagreed with most published models, where tem-
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perature, especially low temperature, was indicated 
as one of the most critical variables for the disease 
development. Kaundal et al. (2006) concluded that 
the developed SVM was better for forecasting plant 
diseases than other existing machine learning tech-
niques and conventional REG approaches. They 
have also developed an SVM-based web server for 
rice blast forecasting, the first of its kind, which 
can assist decision making. The server is available 
online at http://www.imtech.res.in/raghava/rb-
pred/submit.html. The web-based model can pre-
dict leaf blast severity as percentage. Users input 
temperature, RH (minimum and maximum), rain-
fall and number of rainy days per week. However, 
percentage leaf blast severity output can be difficult 
to interpret where no limits and threshold informa-
tion are provided.

Decade 2010

A forecasting model was published by Kang et 
al. (2010) describing an online information system 
for plant diseases based on weather data. This was 
developed for rice farmers in Gyeonggi-do in Ko-
rea, and is available at http://www.epilove.com. 
The information delivery system was based on a 
Linux server, using MySQL database, PHP and Java. 
Weather data are derived from a network of 82 syn-
optic and 627 automatic weather stations in Korea, 
collecting data at 1 h intervals. The input data are 
air temperature, RH and rainfall. The system gener-
ates hourly or daily warnings at the spatial resolu-
tion of 240 x 240 m. Interpolation of the weather data 
at this resolution was performed after evaluation. 
The leaf blast forecasting model was based on that of 
Yoshino (1979). Kang et al. (2010) concluded that the 
interpolation of rainfall and LW required improve-
ment. They also highlighted that failure to estimate 
LW events based on the interpolated weather data 
was the main reason for low accuracy in the disease 
forecasting.

EPIRICE, a generic model for plant diseases, was 
developed by Savary et al. (2012) in Korea. This was 
coupled with GIS to map simulated potential epi-
demics of five major rice diseases globally, includ-
ing leaf blast, brown spot, bacterial blight, sheath 
blight and rice turgo disease. The model used for the 
development of EPIRICE was based on that devel-
oped by Zadocks (1971), which forecast cereal rusts 
epidemics. The Zadocks model was modified by 

the addition of elements of plant growth, plant se-
nescence and spatial disease aggregation. EPIRICE 
encompassed different hierarchy levels of a growing 
crop canopy, including disease sites on a leaf, whole 
leaves, tillers, plants, crop stands, world regions, 
and the world. The model was parameterized using 
reported data for each of the five diseases, and was 
combined with a few simplified growth stage char-
acteristics. The model was linked to GIS, and crop 
establishment and daily historic climate data over a 
2 year period. The data included temperature, pre-
cipitation, RH, dew point, solar radiation and wind 
speed. Other variables used were: sites, crop growth, 
epidemic onset, residence times, infection rate, age 
effect, temperature effect, wetness effect and aggre-
gation. After the model’s successful simulations of 
epidemics, the authors used the rice crop as a model 
system. They showed that the same model could be 
used at different levels of the crop hierarchy to simu-
late and map potential plant disease epidemics at the 
global level. They also suggested improvements in 
three specific areas: 1) the treatment of spatial struc-
ture of disease epidemics, 2) the handling of epide-
miological processes in vector-borne diseases, and 3) 
the limited published disease progress curves and 
basic information.

In India, the Central Road Research Institute 
(CRRI) operated a simple leaf blast forecasting sys-
tem based on empirical predisposed factors, which 
interacted with rice varieties. Seedling, rapid tiller-
ing after transplanting, and flower emergence were 
identified as the plant stages most susceptible to 
rice blast. It was also concluded that leaf age influ-
enced the host susceptibility; plants with old leaves 
were less susceptible to blast than those with young 
leaves. The critical range of temperature for conidi-
um penetration and infection was in the range of 25 
to 26°C. Conidium germination appressorium for-
mation occurred within 6–10 hours at 20–30°C in the 
presence of LW. The formation of dew, light rainfall 
or the occurrence of fog provided the necessary wa-
ter required for germination of conidia. Analysis of 
the intensity of infection included records from ex-
periments over several years. Infection had occurred 
under natural conditions when the minimum tem-
perature during the night was 26°C and below, with 
the concomitant occurrence of 90% RH and greater. 
These conclusions were verified by experiments 
leading to the development of a forecasting system 
to assist rice farmers.
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Kim et al. (2015), in Korea, published a novel 
model approach, which modified EPIRICE (Sa-
vary et al., 2012). Their study involved two compo-
nents: the modified EPIRICE and linkage to climatic 
change data, aiming to generate disease risk maps. 
Historical disease data and 1 km scale weather data 
were acquired for South Korea for 2002 to 2010. Ad-
ditionally, the Yoshino model (1979) was used as a 
temperature effect module. Likely changes in the 
national disease probabilities were assessed under 
climatic change scenarios, to allow robust planning, 
while EPIRICE was calibrated and validated against 
the observed leaf blast incidence. They predicted 
daily climatic data based on the Intergovernmental 
Panel 4.5 on Climatic Change and Representative 
Concentration Pathways 8.5, while the outputs were 
displayed using GIS. The simulation predicted rice 
blast incidence epidemics until 2100. The authors 
concluded that likely magnitude of changes in dis-
ease risk in South Korea could be predicted. The 
model also estimated climate change impacts on 
crop losses from the disease and on disease control. 
Since this model was recently released, the authors 
suggested that more testing was required to validate 
the accuracy and integrity of the predictions. 

Leaf and neck blast forecasting models 
Japanese researchers were pioneers in the devel-

opment of rice blast models due to the importance of 
the disease and the large quantities of agrochemicals 
used for the disease control in their country. Japan 
required elaborate forecasting to precisely determine 
the optimum time for applying fungicides to maxi-
mize profitable returns. The most original study on 
forecasting models was published by Kuribayashi 
and Ichikawa (1952). They studied the time relation 
between the number of conidia deposited on spore 
trap slides and severities of neck and nodal blast out-
breaks for several rice varieties. An average of eight 
conidia was recorded for mild outbreaks, 24 for mod-
erate outbreaks, and 175 for severe outbreaks. Many 
conidia were trapped in a region with severe blast 
outbreaks, while few or no conidia were trapped in 
a region with mild outbreaks. Data sets from 1934 
to 1949 were used, and numbers of trapped conidia 
were correlated with blast severity for data derived 
from eight observatory stations at 5 d intervals. There 
were close correlations between conidium numbers 
and disease severity from July to September. It was 

concluded that spore trapping could provide reliable 
information for disease forecasting. Although ques-
tions were raised concerning calculations based on 
conidium trapping data at each station, combined 
data from eight stations could be used to forecast 
areas within a Nagano Prefecture. Similar forecast-
ing attempts were made at many other prefectural 
experimental stations in Japan, and it was conclud-
ed that a developed formula for one region did not 
always fit another. This research was considered of 
great importance for Japanese rice growing. Many 
rice blast forecasting studies have since been pub-
lished in Japan, based upon further knowledge of P. 
oryzae, the rice hosts and the environment.

Decade 1960

Ono (1965), also in Japan, developed a leaf and 
neck blast prediction model. This involved air-borne 
conidia in combination with sums of sunshine and a 
fertilizer index, using mean percent of sunshine, and 
temperature or precipitation, for forecasting leaf and 
neck blast outbreaks.

In India, Padmanabhan (1965) developed a mod-
el to formulate several forecasting rules. These were: 
1) seedbed infection occurred when minimum tem-
perature was 24 to 26°C for 4–7 d; 2) leaf blast oc-
curred when minimum temperature was below 24°C 
for 4-5 days after transplanting and during tillering, 
and RH ≥ 90%; and 3) neck blast occurred when 
September-October conditions favoured leaf infec-
tion and temperatures were 20–24°C for a number of 
days coinciding with RH ≥ 90%. Severe leaf blast was 
necessary for neck blast occurrence.

Chiba et al. (1966) outlined a method for forecast-
ing rice blast using field sheath inoculation. Variables 
of temperature, rainfall, sunlight and crop growth 
stage were correlated with disease severity, which 
was assessed each week by measuring the mycelium 
growth in rice sheath cells. A linear relationship was 
found between mycelium growth and disease sever-
ity, and a formula was proposed for the calculation 
of standard mycelium growth values. After testing 
predictions in the field, it was concluded that the 
standard value was related more to leaf blast than 
neck blast.

Suzuki (1969b, 1974) devised a rotary spore trap 
and determined that blast incidence was correlated 
with the number of spores collected. In earlier stud-
ies, Suzuki (1969c) found that when dry conidia ab-
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sorbed water, they germinated within 2 h at temper-
atures above 16°C. The maximum number of conidia 
dispersed was detected in the middle of each night. 
Once conidia were discharged from conidiophores, 
they moved with the air flow. The number of conidia 
dispersing were indicated by an exponential formu-
la, showing that the stronger the wind, the greater 
was conidium dispersal. For horizontal dispersion, 
the number of conidia dispersed in different wind 
velocities followed a log linear relationship with dis-
tance from an inoculum source. Almost all conidia 
were deposited near the source. Forecasting preci-
sion was improved by correcting for average wind 
velocity at the time of sampling.

Uehara (1985) in Japan used multivariate analy-
sis techniques to classify regions according to occur-
rence of leaf blast in late July and neck blast from 
mid-September to early October. Seventeen years of 
data derived from 120 stations within paddy fields 
were used to correlate disease distribution with al-
titude. Leaf and panicle blast were shown to have 
similar distribution patterns, and panicle blast oc-
curred in areas with mild leaf blast infections, when 
weather conditions were favourable after heading. 
This approach resembles the “pest zoning” concept 
proposed by Teng (1990).

Decade 1980

Uehara et al. (1988) tested BLASTAM (Koshimizu, 
1983, 1988; Hayashi and Koshimizu, 1988) for fore-
casting leaf and panicle blast. Leaf blast occurrence 
was well-predicted, but not panicle blast. This indi-
cated that hourly weather records should be used for 
disease forecasting. The model used daily weather 
data inputs supplied by AMeDAS. This system au-
tomatically recorded weather conditions, including 
wind direction and speed, types and amounts of 
precipitation, types and base heights of clouds, vis-
ibility, air temperature, humidity, sunshine duration 
and atmospheric pressure. BLASTAM could identify 
when and where favourable infection conditions oc-
curred on a meso-scale. This extension service aimed 
to provide current and projected situations of local 
epidemics, and to recommend topical disease man-
agement advice for local rice growers. BLASTAM 
predictions were found to be reasonably accurate for 
leaf blast, but not panicle blast, so further improve-
ments were needed. Although BLASTAM did not 
provide quantitative information on the disease pro-

gress besides predictions of disease outbreaks, it was 
useful in several prefectures of Japan. The theory 
was adopted that leaf blast epidemics start approx. 
10 d after the first appearance of conditions favoura-
ble for infection. BLASTSAM predictions gave farm-
ers enough time for disease management decision-
making. Hourly weather recordings were also used 
as the basis for the forecasting. Nemoto and Ishig-
uro (2004) tested BLASTAM and BLASTL models 
(Hashimoto et al. 1982, 1984) in combination with 
AMeDAS, as a decision tool to identify rice blast fa-
vourable conditions in Japan. Their predictions were 
freely displayed on the Web.

The forecasting system of Ishiguro and Hashi-
moto (1988, 1989, 1991) and Ishiguro (1991) in Japan 
operated using stochastic functions to accurately 
predict leaf and panicle blast epidemics. In 17 cases, 
the leaf blast pathosystem was mostly described by 
deterministic equations generated from empirical 
data from previous laboratory and field studies. The 
framework of the model was very similar to BLASTL 
(Hashimoto et al., 1982, 1984), except that the panicle 
blast model was stochastic, while BLASTL was a de-
terministic model. This stochastic panicle blast simu-
lation model (PBLAST) used the Monte Carlo meth-
od (Hammersley and Handscombe, 1964); conidium 
deposition and penetration were treated as stochas-
tic processes, and each panicle was subdivided into 
small infection site units. A probability function 
was used for conidium deposition, with considera-
tion of wetness duration and wetness-temperature, 
and the probability of penetration of each deposited 
conidium into an infection site unit was computed. 
This pathogen penetration approach was similar to 
the Yoshino model. Rice heading, fertilization, grain 
growth, susceptibility of each infection site, appear-
ance and growth of lesions, panicle blast severity and 
yield loss were calculated daily. Conidium formation, 
discharge, dispersal, deposition, and pathogen pen-
etration and colonization were calculated every 3 h. 
AMeDAS weather data, additional wetness duration 
data, and data of host development, variety and culti-
vation practices, as well as number of conidia formed 
on leaf lesions, were used as model inputs. Validation 
results were inconsistent, while the model required a 
extensive computer resources. This model was a tool 
for epidemiological research rather than for practi-
cal disease forecasting. Furthermore, the model used 
some preliminary variables and functions that had 
not been experimentally verified.
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Lee et al. (1989) in South Korea used spore traps 
to investigate blast outbreaks in experimental fields 
in Icheon and Suweon, to monitor leaf blast out-
breaks. Primary meteorological variables included 
were temperature, RH, rainfall, sunshine hours and 
LW duration in the field. The number of conidia 
trapped in samplers was used to predict leaf blast 
severity and neck blast incidence. Differences in dis-
ease trends were found between the two sites and 
were attributed to differences in LW periods at each 
site. Differences were found for LW hours obtained 
by synoptic meteorological data and micro-meteor-
ological data from within fields. These differences 
became greater for meteorological observatories dis-
tanced from the field. This model’s approach was 
similar to Yoshino’s (1979), but was highly depend-
ent on data derived from specific locations.

Decade 1990

Empirical models to predict rice blast were devel-
oped by Calvero et al. (1994) and Calvero et al., (1996a) 
in the Philippines, using regression equations gener-
ated from weather factors highly correlated with dis-
ease and the WINDOWS Pane program. Equations 
were used to predict rice blast on two cultivars cul-
tivated at two testing sites, at Icheon in South Korea 
and at Cavite in the Philippines. This was an early 
effort to develop a model to forecast rice blast in two 
different countries. The input variables were: RH, 
precipitation (per day and total), mean, maximum 
and minimum temperatures, solar radiation and 
wind speed. Weather data acquisitions were from 
both sites but not from in-field collection points. The 
important role of saturated air for survival of airborne 
conidia to initiate infection was validated. However, 
the negative correlation of RH with neck blast was 
likely to be due to the lack of direct relationship be-
tween leaf and neck blast, because the two diseases 
require different weather conditions. Validations 
showed that all models developed for the two sites 
predicted blast reasonably well, with very few pre-
diction errors. The only exception was for maximum 
lesion number and panicle blast incidence predicted 
at Icheon, and panicle blast severity on cultivar IR50 
at Cavite. These models were shown to be useful for 
rice production systems, but further validation was 
suggested to improve prediction accuracy.

A procedure to assess temporal risk of rice blast 
was developed by Calvero et al. (1996b). This pat-

terned the relationship between proneness to disease 
and time of sowing at three sites in the Philippines 
and Indonesia. The data were analyzed using multi-
variate statistical procedures. Historical meteorolog-
ical data were used for the construction of the data-
bases, including parameters of temperature, rainfall, 
RH, wind speed and solar radiation, and a single 
year weather database representative of the historical 
weather patterns. Using simulated weather avoided 
bias in selecting particular years at a particular site, 
because rice blast did not occur every year. Patterns 
were developed by combining predicted diseased 
leaf area and neck blast severity with hypothetical 
sowing dates, and they were grouped using cluster 
analysis. Differences in sowing dates fell into blast 
proneness groups, and these were difficult to iden-
tify from long-term weather patterns at the stud-
ied sites. Additionally, from discriminant analysis, 
various weather factors were shown to influence the 
classification of sowing dates into blast proneness 
groups. The discriminant empirical equations gener-
ated were therefore cultivar- and site-specific.

An information delivery system for the imple-
mentation of rice blast forecasting was developed in 
Korea by Park et al. (1998), based on real-time weath-
er data. This system was composed of four Linux 
OS servers for: 1) the weather data management; 2) 
the database; 3) the program; and 4) a web server. 
The system collected hourly weather data through 
telephone modems from eight automatic weather 
stations installed in paddy fields in eight provincial 
rural development administrations. The input vari-
ables were: conidium release, solar radiation, wet-
ness period, conidium deposition, air temperature, 
wind speed, infection, air temperature and rainfall. 
The program server ran the BLAST model to predict 
leaf blast severity (infected leaf area) and neck blast 
incidence. Accuracy of the forecasting information 
could be increased using weather data measured 
within rice paddy fields rather than that measured 
on macro or meso scales. This model might cause in-
accurate forecasting due to its limited validity. Fur-
thermore, the BLAST model had forecasting accura-
cy limitations especially when disease development 
was at low levels.

Decade 2000

Kapoor et al. (2004) reported a 50% reduction in 
rice blast in experimental plots managed using a 
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forecasting model developed for the Kangra district 
of Himachal Pradesh in India. Meteorological data 
were collected from farmer fields and experimental 
plots, while analyses of 13 years’ data (1984–1996) 
was used to define critical periods of particular 
weather conditions, for comparisons with rice blast 
epidemics. In the 3 years of experimentation, opti-
mum requirements for disease development during 
a crop season were: temperature 18–28°C and RH to 
remain greater than 90% for more than 9 h. Leaf blast 
rules for moderate to high severity were identified, 
along with neck blast predictions. Data on blast and 
on meteorological variables, including temperature, 
RH, rainfall, sunshine hours, wetness durations and 
wind velocity, were subjected to linear regression 
analysis. The requirements were RH greater than 
80%, prevailing low temperature from 16-19°C with 
maximum limit of 28C°, 6–8 d of cloudy weather 
(low solar radiation) and 5–6 rainy days in 7 d. Fur-
ther studies on rice blast and critical weather factors, 
such as LW period and distribution of rainfall, were 
required in the model to refine the predictions.

In Europe, development of rice blast forecasting 
models has been much less extensive than in Asia. 
Billoni et al. (2006) developed SIRBInt (Simulation of 
Rice-Blast Interaction), by monitoring airborne P. ory-
zae conidia with volumetric spore traps, and measur-
ing temperature, RH, LW and rainfall. All input data 
were correlated to visual estimation of necrotic le-
sions on leaves, culms and panicle necks. The model 
consisted of Rice and Blast interacting sub-models. 
The Rice sub-model was derived from Oryza-1, 
while the Blast sub-model was newly developed. 
Oryza-1 was originally written in Fortran, and was 
modified for Italian rice characteristics and growing 
conditions. It was written for Visual Basic in an MS 
Excel environment, since it had already been used as 
the modelling environment in another study (Bocchi 
et al., 1997). The model simulated rice blast interac-
tions and development, including weather depend-
ent crop and pathogen growth patterns. During four 
trial years the model simulated blast appearance in 
the field, and could be used as an advisory tool for 
fungicide applications. The SiRBint model consisted 
of many data, while the achieved approximation was 
not uniform. However, after an uncertainty analy-
sis, it was shown that the more simulated processes 
were used within the model, the greater became the 
errors, since every simulation had its own uncer-
tainty. The model could be improved with further 

research to reduce the uncertainty risk, with more 
calibration and validation processes, and collecting 
data for more growing seasons. However, no further 
development of this model has been reported.

Mousanejad et al. (2009), developed a leaf blast 
and neck blast severity prediction model in Iran. 
This was based on data collected by weather stations 
5 km from experimental rice paddies, and using sim-
ple spore traps in the Guilan province. The leaf and 
neck blast model was similar to that of Calvero et al. 
(1994). The collected weather data were: precipita-
tion, daily minimum and maximum temperature, 
daily minimum and maximum RH and sunshine 
hours. Two quantitative models were developed for 
the prediction of leaf blast and neck blast indices. 
These parameters were also related to N fertilization 
and plant population density. Precipitation, RH, de-
creased temperature and sunny hours were shown 
to be the most important weather predictors for rice 
blast, since the correlations were high. Also, N fer-
tilization was highly correlated with final leaf blast 
incidence. This research was a starting point for a 
comprehensive study on blast forecasting in Guilan 
province. The model is well-organized regarding in-
put variables, but large distance of 5 km from experi-
mental plots may have affected prediction accuracy.

Decade 2010

An early warning system for cool weather condi-
tions was developed and operated by the Japan Me-
teorological Agency and the National Agriculture 
and Food Research/Tohoku Agricultural Research 
Center (Kanda, 2012). This was developed for the 
Tohoku District (Northern Japan). The model indi-
cates high rice blast risk, as the disease is most seri-
ous when summer temperatures are low. The system 
estimates rice growth stage, abnormal weather dam-
age, and occurrence of rice diseases, based on week-
ly weather forecasting data, and is presented on the 
Google Maps API. The current version provides 
2-week temperature forecasts so farmers can make 
timely disease management decisions. Each user can 
choose an individual rice field. If a warning situation 
occurs, the users immediately receive notification by 
email or mobile phone, so control measures can be 
implemented before disease occurs. The system is 
available at http://www.reigai.affrc.go.jp.

Liang et al. (2013) developed a forecasting system 
that processed data collected from agricultural envi-
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ronments through Wireless Sensor Network (WSN) 
technologies. The system aimed to provide a precise 
decision-making system for farmers. The sensor data 
stream was different from traditional streams charac-
terized by real-time, sequential, missing data and lack 
of precision. The new system, used a sliding window 
to model the sensor data. Fuzzy rules were constructed 
based on expert knowledge, and fuzzy inference was 
used to collect different environmental data streams. 
This provided intelligent services to guide disease 
management or other applications. A simple disease 
outbreak prediction system was developed for rice 
blast, using Java and MATLAB. Environmental vari-
ables used for disease prediction, include tempera-
tures for P. oryzae hyphal growth and conidium devel-
opment, humidity and time. The fuzzy system gave 
probabilities of rice blast, classified into three risk lev-
els, as 0-50% (low), 50-80% (moderate), and 80–100% 
(high). The models needed to enrich the database to 
make diagnoses versatile. The confidence factors of 
all the fuzzy rules and the each environmental vari-
able affected the accuracy of the results. Increasing the 
number of environmental variables made definition 
of the rules very complicated, and the number of rules 
would increase exponentially.

In a more recent model approach in India, CLI-
MARICE II was developed by Rafoss et al. (2013). 
This exploited the potential for climate adaptation 
and mitigation through online dissemination of pest 
and disease forecasts to rice farmers. The system 
was based on the reasoning that farmer’s daily ad-
aptation to the day-to-day variability in weather is 
a short-term analogy to the need for adaptation to 
long term climatic changes. Weather-driven math-
ematical models incorporating scientific insights 
on the biological responses of plant pests to climate 
were linked to automatic weather station networks, 
to provide pest risk forecasting/forewarning/early 
warning to rice farmers. The model used 224 auto-
matic weather stations operated by the Tamil Nadu 
Agricultural Weather Network. The stations auto-
matically transmitted weather variables implicated 
in the disease development process, including air 
temperature, wind speed, rainfall, solar radiation, 
soil temperature and moisture, LW and air humidity. 
The data were combined with disease epidemiology 
knowledge, and were formulated mathematically 
and stored in a MSQL database. The model followed 
rice blast, with assessments of leaf and neck blast 
used by Tamil Nadu Agricultural University (India). 

No information was provided on the efficiency or 
current status of the model.

The most recently developed model was pub-
lished in Italy by Bregaglio et al. (2016). The WARM 
model (Confalonieri et. al., 2009) was used as a cou-
pling generic model to simulate leaf and panicle 
blast impacts in a temperate climate. The hypothesis 
was that rice blast symptoms occurred in Northern 
Italy around the mid July. Weather and disease data 
derived from field trials under flooding irrigation 
were collected from 1996 to 2012. Variables used in 
the first coupling point were: air temperature, RH, 
LW, wind speed and precipitation. The simulation 
evaluated disease impacts on leaf area index and 
aboveground plant biomass. The second coupling 
point between the crop and the disease models re-
produced the impacts of panicle blast on final yield 
by simulating reduced photosynthate accumulation 
in kernels. Good correlation between yield and dis-
ease assessments was achieved. This approach al-
lowed exploration of blast-associated yield losses 
in relation to climate change or optimized fungicide 
strategies. The main limitations identified were: the 
lack of dedicated field experiments for collection of 
micro-meteorological data, the use of single values 
for the two blast symptoms and the lack of impor-
tant pathogenesis information, including LW and 
conidium dispersal. Correcting these limitations 
would improve correlations, allowing the model to 
precisely predict real disease occurrence.

Neck blast models
A statistical method for forecasting neck blast 

was developed by Sasaki and Kato (1972), using data 
from 1962 to 1967. Cumulative numbers of diseased 
spikelets were plotted against time, forming sigmoid 
relationships for all cultivars grown under differ-
ent conditions for all six years. Based on 112 sets of 
readings, each linear equation related the logit of the 
percentage of diseased spikelets 12 d after the crop 
stage of 50% heading and the rate of increase during 
the following 6 d. The numbers of diseased spikelets 
in the next 6 d were predicted by extrapolation. The 
regressions and correlations were shown to be valid 
only if the data were acquired during the same stage 
of development and within similar environmental 
conditions. Modifications were suggested to allow 
specific inhibitory or stimulatory effects on rates of 
infection development.
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The first neck blast simulation model was devel-
oped by Takasaki (1982) in Japan. Conidium depo-
sition and penetration were treated as stochastic 
processes, and individual panicles were treated as 
infection site units. Infection was computed accord-
ing to a probability function, and affected panicles 
were classified into several types. The model’s main 
limitation was that it did not account for secondary 
neck blast infections.

Rice blast forecasting models currently 
in use

Few rice blast forecasting models are currently 
in use for rice growers. Of the 52 published models, 
three operate inside the processes of other models or 
systems as modules or subroutines. These are those 
outlined by Yoshino (1979), Hashimoto et al. (1984) 
and Gunther (1986). Furthermore, four models are 
currently in use with the derived information avail-
able on the Web. Three of these were developed by 
Kaundal et al. (2006), Kang et al. (2010) and Kanda 
(2012). The fourth is currently available in Europe as 
a module implemented in the EU service “Monitor-
ing Agricultural ResourceS” (MARS), operated by 
the Joint Research Center at Ispra (Italy). The system 
incorporates data from 1450 European weather sta-
tions and satellites. MARS issues bulletins on rice 
yield predictions every year, which include rice blast 
forecasting. Bulletins are available at http://mars.
jrc.ec.europa.eu/mars. MARS uses the subsystem 
Water Accounting Rice Model (WARM) (Confalonie-
ri et al., 2010), which is an object-oriented simulation 
tool. The structure of WARM allows development of 
separate class modules for each aspect, and testing 
in an independent environment. Crop damage from 
rice blast is simulated within the processes, using 
variables of temperature, humidity and dew.

Examination of currently used rice blast forecast-
ing systems has shown that they all require inputs 
from extended and systematic datasets, so that the 
forecasts cover large areas of rice cultivation. They 
require powerful computers, and advanced net-
works and servers with extensive database capabili-
ties. Moreover, Yoshino’s approach to LW operates 
through Kang et al. (2010) models, and the Japanese 
service based on Kanda’s (2012) low temperature 
approach along with BLASTAM. The approach of 
Kaundal et al. (2006) to rainfall is closely connected 
to increased RH and moisture saturation, which 

leads to elevated LW. The WARM model in MARS 
interpolates LW with a temperature and RH general 
approach, giving emphasis to P. oryzae penetration 
from germinating conidia.

Discussion
We have carried out an analysis of several fac-

tors to provide a deeper understanding of the model 
reviewed in the present study, to facilitate more ac-
cumulated knowledge, and to analyse information 
provided by each model.

Type of forecasting and input variables

Output type
The majority (60%) of the published rice blast 

models were developed to forecast leaf blast. This is 
the first symptom of P. oryzae infection that appears, 
so prediction of leaf blast is critical for early blast 
control, particularly in countries where the disease 
occurs early in the growing season. Just over a third 
(37%) of the blast models could forecast both leaf 
and neck blast. These models are likely to be more 
suitable for practical decision-making, since they can 
assist farmers throughout the crop growing period. 
In contrast, few of the models (4%) can forecast neck 
blast. Furthermore, neck blast prediction accuracy is 
reported to be low.

Input variables
The frequency of different input variables used 

in rice blast prediction models is presented in Figure 
1. “Air Temperature” (67% of the models), “Relative 
Humidity” (58%) and “Rainfall” (56%) are the pre-
dominating weather variables used. Also, in more 
than the 30% of the models, variables regarding either 
P. oryzae or plant biology were included. These were 
“Spore Dissemination” (37% of the models), “Leaf 
Wetness (LW)” and “Plant Stage” (35%), “Sunlight” 
and “Wind Speed” (31%). Although variables such as 
“Air temperature”, RH and conidium related inputs 
(“Spore Dissemination”, “Spore Penetration”, “Spore 
Disposition”) are known to be critical factors affect-
ing pathogenesis and disease development, these pa-
rameters have not been included in all models.

The infrequent integration of LW in the models 
(used in 35% of the models) may account for the 
general lack of prediction certainty, because LW is 
considered in the literature to be among the most 
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critical factors for the rice blast pathogenesis, and 
for connecting forecasting with rice canopy micro-
climate (Greer and Webster, 2001; Lanoiselet et al., 
2002; Yoshida et al., 2015). Field measurements of LW 
require in-field devices, increasing the need of hu-
man interaction or automatic transmission systems. 
However, of the models with LW inputs, only 33% 
acquired real canopy data, and the others interpo-
lated these parameters. Lanoiselet et al. (2002) sug-
gested that data loggers should be placed in rice 
fields to assess microclimates of waterlogged fields 
to record realistic meteorological data needed to run 
the models. Significant differences occur between 
the RH values recorded outside field compared with 
those from rice canopies. Fluctuations in RH can 
reach an average of at least 20% greater inside cano-
pies than above canopies or outside rice fields. Also, 
RH ≥ 95 %, equivalent to saturation, is assumed to 
indicate LW or moisture on leaf surfaces sufficient 
for sporulation and infection initiation on leaf tissues 
(Abrol, 2013). Trials carried out in three Mediterra-
nean countries (Italy, Greece and Portugal) in 2015 
and 2016 (RICE-GUARD FP7 project, unpublished 
data), where commercial mini-weather stations were 
installed inside rice paddies for monitoring canopy 
air temperature, RH and LW, allowed useful conclu-
sions or hypothesis development relating to differ-

ent published results. For example, the high correla-
tion of the LW with RH ≥ 95% reported by Albrol 
(2013) could not be validated as a narrow principal, 
because high LW values (> 65% coverage) occurred 
where RH was less than 95%, when rice blast risk 
could still be great. Nevertheless, interpolations with 
other variables may produce errors affecting the ac-
curacy of the predictions. For example, linear regres-
sion analyses of variables “Air temperature” and RH, 
derived from these recent trials, resulted in R2 values 
ranging from 0.203 to 0.683. Although adding more 
variables in the regression analyses, such as “Wind 
speed” and “Solar radiation”, improved the R2 val-
ues, but these were still not satisfactory, ranging 
from 0.750 to 0.762 (RICE-GUARD FP7 project, un-
published data). This level of relationship, although 
acceptable for field experiments, may still produce 
uncertainties in interpolations at a minimum of 24%. 
These findings agree with those of Kang et al. (2010), 
who concluded that inaccuracies in predictions from 
rice blast models are due to failures to interpolate 
LW with other weather variables.

Less frequently incorporated variables were 
“Spore release” (12% of the models), “Dew Point” 
(15%) and “Spore Penetration” (17%), while impor-
tant parameters such as “Nitrogen Fertilization” and 
“Varieties” (host resistance) were infrequently used 

Figure 1. Frequency of different meteorological variables used in 52 rice blast forecasting models.
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(19% of models) (Ou, 1985; Freitas et al., 2010). This 
limited integration could lead to anomalies, because 
both factors play important roles in P. oryzae patho-
genesis and blast progress. For example, excessive 
nitrogen fertilization can increase disease severity 
by altering host susceptibility, even in highly resist-
ant varieties. These varieties could escape disease 
even under favourable conditions for the pathogen, 
because of strong field resistance. The main reasons 
for limited integration of these variables may be that 
they require direct user interactions for inputs, or 
development of extended databases with frequent 
update requirements. However, recent technol-
ogy improvements allow these features to be easily 
adopted, to improve future forecasting systems.

Input variable combinations

Combinations of variables were used in 54% of the 
models (Figure 2). “Air temperature + RH” and “Air 
temperature + Rainfall” were most commonly used 
(50%), followed by “LW + Air temperature” (29%) and 
“LW + Air temperature + RH” (27%). Less used combi-
nations were “LW + Air temperature + RH + Rainfall” 
(23%) and “LW + Wind speed” (19%). Combinations 
with the least integration were “Air temperature + RH 
+ Nitrogen fertilization” and “LW + Air temperature + 
RH + Rainfall + Spore dissemination” (7.7%).

Geographical distribution

The geographical distribution of the 52 forecast-
ing models is presented in Figure 3. Most models 
originated from Japan (38%), while 13% came from 
Korea, 11% from India and 10% from the Philippines. 
Despite the magnitude of rice production in China, 
only 4% of the models originated from that country.

Timeline for model publication

The greatest numbers of model publications were 
from the 1980s (31%) or the 1990s (21%), Publications 
from the decades of 2000 and 2010 were less (15%), 
and frequency of publication since then remains at a 
stable rate. Introduction of advanced software engi-
neering and new computer and sensor technologies 
has not recently increased the numbers of models 
developed, with relatively few models published af-
ter 2000.

Model modifications

In more than 30% of the publications, further 
revisions/development/modifications were sug-
gested to be required by their authors to improve 
the efficiency and accuracy of disease predictions. 
Nevertheless, no evidence was presented for im-

Figure 2. Frequency of combinations of meteorological variables used in 52 rice blast forecasting models (RH = Relative 
humidity).
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Figure 3. Country distribution of published rice blast prediction models.

Figure 4. Publication date decades for rice blast prediction models.
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plementing these improvements or that the models 
were further developed. Only four of the 52 models 
(8%) were modified after their original publication. 
These were: BLASTL (Hashimoto et al., 1984), modi-
fied by Ashizawa et al. (2005); the model of Gunther 
(1986), modified by Tastra et al. (1987); BLASTSIM.2 
(Calvero and Teng, 1991; 1992), modified by Luo et 
al. (1977); and EPIRICE (Savary et al., 2012), modified 
by Kim et al. (2015).

Reference area

Most of the models, including those not based 
only on field data, reference areas were either small 
or limited, with reference to the magnitude of rice 
cultivation, the destructiveness of disease caused 
by P. oryzae, and the high annual crop losses. Even 
where an application or a tool is still in use, the fore-
casting is restricted to specific areas. There is also lit-
tle or no evidence that the published models were 
evaluated or validated in geographical areas other 
than those where they were developed, including 
regions with similar environments. The only excep-
tions were: the model published by Luo et al. (1997), 
which was tested in five Asian countries; BLASTAM 
(Koshimizu, 1983; 1988; Uehara et al. 1988), tested in 
several prefectures of Japan; and BLASTSIM.2 (Cal-
vero and Teng, 1991, 1992), which was refined and 
validated at IRRI in 1992.

Spatial distance scenarios

Reliability of forecasting type is affected by the 
source of weather data and whether data logging 
systems are located near or away from rice crops. 
Only 12 of the models (23%) used in-field weather 
data collection, and there is little evidence that this 
was from within rice canopies. Park et al. (1998) con-
cluded that the absence of rice crop microclimatic 
conditions could lead to unreliable model predic-
tions. Moreover, some theoretical approaches have 
developed forecasting models that are based only on 
historic data derived from study areas or countries.

Recommendations

Future attempts to develop rice blast prediction 
systems should consider the recommendations out-
lined below. The integrity of weather data collected 
from different points (in-field, outside the field or 

large distances from rice fields) should also be con-
sidered.
1) Model integration of modules or routines with 

two-way interactions should be used, giving the 
ability for end-users to input or parametrize vari-
ables. These can affect rice blast incidence or se-
verity, and could include sowing dates, variety 
resistance and rates of nitrogen fertilization.

2) Canopy recordings should be made of the most 
critical variables (e.g. LW, air temperature and 
RH).

3) LW interpolation errors can be reduced by add-
ing variables that can greatly affect dryness (wind 
speed and solar radiation). Interpolation of LW 
should be eliminated.

4) The number of data collection points should be 
large, utilizing and integrating modern technolo-
gies (smartphones, GSM networks) for in-field 
recording and data transmission.

5) Conidium trapping methods, which require spe-
cialized in-field expertise, should not considered 
to be an essential model component. Automatic 
systems should be used to improve widespread 
monitoring of rice cultivation areas.

Conclusions
Analysis of published rice blast prediction mod-

els has provided comprehensive knowledge on rice 
blast forecasting. Weather variables, such as “Air 
temperature”, “Relative Humidity”, “Spore Dis-
semination” and “Leaf Wetness” are among the most 
critical model inputs, since these play important 
roles in P. oryzae pathogenesis and rice blast develop-
ment. However, the present review has shown that 
most studies have not included the combinations 
of inputs of these variables. Nevertheless, interpo-
lations were often attempted, to calculate weather 
variables, an approach likely to lead to uncertainties. 
Difficulties in retrieving canopy monitored microcli-
mate data is another limitation. In-field conditions 
differ substantially compared with the parameters 
recorded in weather stations located above, or well-
separated from, rice crops or cultivation areas.

This review has also shown that very few pub-
lished rice blast prediction models can be used for 
long periods (years) or in different geographical re-
gions. Study of errors, uncertainties, improvements 
and modifications will assist development of more 
reliable forecasting systems. New remote sensing 
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technological innovations will assist canopy data 
collection.

The contributions of information derived from 
rice blast prediction models towards improvement 
of disease management has been limited through 
the decades. Prediction of initial P. oryzae infection 
and the patterns of rice blast development are the 
most important factors for forecasting this disease. 
Despite the development of 52 published rice blast 
prediction models in the last 67 years, the majority 
of these are research oriented. The question of Gold 
(1988) is still very relevant: “How useful is the in-
formation provided by the model relative to its in-
tended purpose?”
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