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Generalized classical thermodynamic analysis of a Stirling engine

Bancha Kongtragooll

Abstract

This paper provides a theoretical investigation on thermodynamic analysis of a Stirling
engine. An isothermal model for an imperfect regeneration Stirling engine with dead volumes of
hot space, cold space and regenerator that the regenerator effective temperature 1s an arithmetic
mean of the heater and cooler temperature is developed. The effects of the regenerator
effectiveness and dead volumes are studied. Results from this study indicate that the engine net
work is affected by only the dead volumes while the heat input and engine efficiency are affected
by both the regenerator effectiveness and dead volumes. The engine net work decreases with
increasing dead volumes. The heat input increases with increasing dead volumes and decreasing
regenerator effectiveness. The engine efficiency decreases with increasing dead volumes and
decreasing regenerator effectiveness.
Keyword: Stirling engine, hot-air engine, regenerative heat engine.
1. Introduction

The Stirling engine is a simple type of external-combustion engine that uses a
compressible fluid as the working fluid. The Stirling engine can theoretically be a very efficient
engine to upgrade from heat to mechanical work with the Carnot efficiency. The thermal limit of
the operation of Stirling engine depends on the material used for construction. In most instances
the engines operate with a heater and cooler temperature of 923 and 338 K [1]. Engine efficiency
range from about 30 to 40% resulting from a typical temperature range of 923-1073 K, and normal

operating speed range from 2000 to 4000 rpm [2].
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Fig. 1 shows a simplified schematic diagram of an imperfect-regeneration Stirling engine.
The p-v diagram for the Stirling cycle with imperfect regeneration is shown in Fig. 2. For an ideal
regeneration, the total heat rejected during process 4-1 is absorbed by a perfect regenerator and
released to the working fluid during process 2-3. However, in the ideal regeneration, the infinite

heat-transfer area or the infinite regeneration time is needed.
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Fig. 1 Schematic diagram Fig. 2 p-v diagram

For an imperfect regenerator, the working fluid temperature at the regenerator outlet and
inlet will be T; and T,I, respectively. An external heat input and output is required to increase i,
to T, and decrease Tlf to T, [1]. Although the regenerator effectiveness of 95%, 98-99%, and
99.09% are reported [3-7], the engine developers who do not have in hand the efficient-regenerator
technology should be taken into account the regenerator effectiveness, then the analysis with
imperfect regeneration should be made.

Dead volume is defined as the total void volume in a Stirling engine. In general, the dead
volume is referred to the volume of working fluid contained in the total dead space in engine,
including regenerator and transfer ports. It is evidenced that real Stirling engine must have somé
unavoidable dead volume. In mormal Stirling engine design practice, the total dead volume IS

approximately 58% of the total volume [8].

=

W



- ¢ 3 Y 1
MIMIIMINTINMTAS 1A U 2 aviun 2 31

Although many researchers have analyzed the Stirling engines; there still remains a room
for further development. The imperfect regeneration Stirling engine including dead volumes is one
that received comparatively little attention in literature and should be study in detail. Many works
on common Stirling engines, low temperature differential Stirling engines and solar-powered
Stirling engines including technology and optimization have been investigated in the authors’
former works [9-12]. Investigation on Stirling engine analysis showed that almost literatures are
treated with ideal regeneration and zero dead volume.

The Stirling engine including dead volume can be analyzed by the Schmidt technique
[13]. However, the ideal regeneration is assumed in Schmidt analysis [1, 14]. For the Stirling
engines with large dead volumes, the correct working fluid temperature in regenerator is important
(8]. The effective temperature of the working fluid contained in the regenerator dead space can be
calculated by separate the dead volume into two halves, the hotter half is at T; and the cooler half

is at Tll. The regenerator effective temperature in this case can be calculated from [8, 14]:
1 l I

= + (1)
T, 2T! 2T,

The regenerator effective temperature in the second way is the arithmetic mean of

working fluid at the outlet and inlet of regenerator [1, 8, 14]:
/ /
T +T,
T

The third regenerator effective temperature is the log mean value of temperature of

T (2)

working fluid at the outlet and inlet of regenerator [8, 14]:

T, = —3 1 (3)

Martini [8] claimed that the log-mean regenerator effective temperature is the most
realistic and he used this regenerator effective temperature in his analysis. But the log-mean
regenerator effective temperature will be infinite at 50% regenerator effectiveness, since T; equals

/ . . .
T,, therefore the log-mean regenerator effective temperature should not be used in the analysis of
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the Stirling engine with varable regenerator effectiveness. However, the definition of the
regenerator effectiveness used by Martini [8] is different from the definition commonly used by
the others [1, 14]. According to [14], the arithmetic-mean regenerator effective temperature should
be a good approximation.

The objective of this article is to formulate an isothermal model for an imperfect
regeneration Stirling engine with dead volumes, base on the classical thermodynamics. The model
formulated is in a general form that put in to account both the regenerator effectiveness and the
dead volume. The results obtained in this article will provide a generalized analytical method to

evaluate the Stirling engine performance.

2. Isothermal model of an imperfect regeneration Stirling engine with dead volumes
2.1 Dead volumes

Assume that the hot space, regenerator and cold space dead volume, in ma, 1s respectively
\Y

Ve and V., therefore, the total dead volume is:

SHY s5C?

V= Vgt Vet Voo = (kg kg tkse) Vs (4)
where kg, = V,/V, is hot-space dead volume ratio, kg = V. /V is regenerator dead volume ratio
and kg = V/V is cold-space dead volume ratio.

Let the total dead volume to total volume ratio is represented by kg, = V/V,. Then the
total dead volume can be expressed in term of total volume as:

Vs = kST Vl = kST (VS+VD+VP) ‘ (5)
where V, and V, is displacer and power-piston swept volume in m3, respectively. The ratio kK, =
V_/V, is called the compression ratio. The dead volume is more convenience to express in term of
the total swept volume and power-piston swept volume as:

V.=k

S SDP

(VprVe) = (ke t1) Kgpp Ve (6)
The dead volume to the total volume ratio and the dead volume to the total swept volume ratio are

related by:

k k
_ SDP S Kypp = ST (7
1+ koo 1-kq;

kST
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2.2 Imperfect regenerator

The regenerator effectiveness, e, of an imperfect regenerator is defined as [1, 14]:

= T; - T,
. (8)
T3 _TI

The value of e = 1, for 100% effectiveness or ideal regeneration and e = 0, for 0% effectiveness or
no regeneration. The working fluid temperature at regenerator outlet can be express in term of the
regenerator effectiveness as:

T, = T +e (T,-T) (9)
For a regenerator that having equal effectiveness in heating and cooling, Qz; = QMI, the working

fluid temperature at regenerator inlet is:

T, =Tse (T, -T,) = Tye (TT,) (10)
Substitute Egs. (9) and (10) into Eq. (2) gives:
T.+T
T, = Lz—l (11)

It can be seen that by using the arithmetic mean the regenerator effective temperature does

not depend on the regenerator effectiveness.

2.3 Common pressure
Assume that the hot-space and cold-space volumes are respectively V,, and V. and that the
working fluid temperatures in the hot space, regenerator, and cold space are respectively T,, T,

and T,. The common pressure in an engine with dead volumes Ve Vg and Vi is [8]:

p- mR _ mR (12)
VH+VSH+VSR+VSC+VC £+K+E
T, T, I T, T, T, T,
where K= Vsu + Vse + Vsc (13)
i, Tq T,

m is the total working fluid mass contained in the engine in kg, R is the gas constant in J’kg K.

Substitute Eqs. (4), (6) and (11) into Eq. (13) gives:
K =( Ky N Kgp + Kse
T, 0.5(T, + T) T,

) (kCR+1) kSDP VP (14)
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It is clear that, for a given compression ratio, power piston swept volume, hot-side and cold-side

working fluid temperature, the factor K in general is a function of the dead volumes.

2.3 Working fluid mass contained in engine

In isothermal compression process 1-2, the power piston compresses the working fluid
from state 1, p, and V,, = V+V, to state 2, p, and V, = Vp. At state 1, total working fluid
contained only in cold space and dead spaces, V, = 0, mass of working fluid at state 1 then can be

calculated from Eq. (12):

P, Vo P,
m=—(—+K)=—"+(V., +KT ({15
~ ( T ) RT, (Ve 1)
Substitute Eq. (14) and V, = V +V, = (kegt1) V, into Eq. (15} gives:
\Y% k
= (kg +1Dp,V, 14| ZsH +kSR +ksc Koo T, (16)
RT, T, Ty T,

It should be noted that the working fluid mass depends on the dead volumes. In the case of

zero dead volume Eq. (16) will become the equation of state that can be found in thermodynamics

textbooks.

2.4 Isothermal compression process
In compression process, the cold-side working fluid is compressed from Vo = VvV, =
(keg DV to Vi, =V =k, V,. The hot-space working fluid swept volume V, = 0 throughout

this process. Then the heat rejected during the isothermal compression process 1-2 is:

Vel Vel d VC V , +KT1
L=W = P = - ~mRT In————
Ql 2 WIZ J. d‘VC ID_RTI j II .

; ; Ve +KT, Vg, +KT,

kCR +(kSH + kSR + l(SC Jk T

ke +1) LT, T, T )%

—mRT, I e ,)k 3k k ‘ (17)
I+] T = JkSDPTl
Lots R 1

It should be noted that the compression work depends only on the dead volumes.
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2.5 Isochoric heating process
[n principle, the heat added during the isochoric heating process 2-3 is:

Q=mC (T,~T,)=mC,(T,-T) (18)
where C, is the specific heat at constant volume in J/kg K, and is assumed to be constant. Without
regeneration, this amount of heat is .';tdded by an extemal source and for ideal regeneration this
amount of heat is released from an ideal regenerator.

The regeneration heat released from an imperfect regenerator during this process is:

Q,, =mC, (T, -T)=emC,(T,—-T) (19)
Heat added from an external source during process 3-3is:

Q,,=mC,(T,-T,)=(l-e)mC, (T,-T) (20)

It can be seen that, since the working fluid mass depends on dead volumes, the heat input

" to this process depends on both the regenerator effectiveness and dead volumes.

2.6 Isothermal expansion process
In expansion process, the hot-side working fluid volume changes from V,, =V, =k V,
to Vs = Vp +V, = (kg +1) V,. The cold-space working fluid swept volume V. = 0 throughout

this process. The heat added to the cycle during the isothermal expansion process 3-4 is:

Vira Virs d VH
Q.. = W., = m p dV, = mRT ——— = mRT
34 3-4 V'L H 3 VL VH o KT3 3

. Vi +KT,
Vg, +KT,

T T Y ; Jksins
-mRT, n———t & !

kCR +(kSH + kSR k

+ € k. ..T
ke +1) T, T, T, J SbP=3

1+(kSH kSR k C

(21)

It is evidenced that, similarly to the compression work, the expansion work is only

depends on the dead volumes.
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2.7 Isochoric cooling process
The heat rejected during the isochoric cooling process 4-1 is:
Q,,=mC,(T,-T)=-mC, (T,-T) (22)
Without regeneration, this amount of heat is rejected to an external sink and for ideal regeneration;
an ideal regenerator absorbs this amount of heat.
For an imperfect regeneration, the heat absorbed by a regenerator is:
Q, =mC,(T/T) =-emC,(T,-T,) (23)
The heat rejected to an external sink, an adequate cooler, during process 1-1:
Q,=mC,(T-T) =-(-eymC,(T,~T,) (24)
It can be seen that, except the minus sign, Eqs. (23) and (24) is respectively the same as
Egs. (19) and (20). Therefore, similarly to the isochoric heating process, the heat transfer in

cooling process depends on both the regenerator effectiveness and dead volumes.

2.8 Total heat added

For an imperfect regeneration, the total heat added from an external source to the cycle is:

Q,= Q3/-3 +Q,, (25)
Substitute Egs. (20) and (21) into Eq. (25) gives:
Q. = m C, [(1-e) (T,-T)) + (k-1) T,
k k k
1+[ S S ]kSDPT‘}
In N S A
Ken — + Ks - k—SR- - k_“" ‘qu,an
(kg +1) \ T, Ty L)
(26)

where k is the specific heat ratio. Therefore, the heat input to the engine is depends on both the
regenerator effectiveness and dead volumes. The heat input increases with increasing dead

volumes and decreasing regenerator effectiveness.

Without regeneration, the total heat added from an external source is:

Qu=Qy; + Qs (27)

ey
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However, for an ideal regeneration, the total heat added from an external source will be:

Q.=0Q, (28)

2.9 Total heat rejected
For an imperfect regeneration, the total heat rejected from the cycle to an external sink is:

Q= Q]I-l +Q,, (29)
Substitute Egs. (17) and (24) into Eq. (29) gives:

Qe = - m C,l(1-¢) (T,-T,)+(k-1) T,
kg, k
1+( e S JkSDPTl
In & e 1 ]
kCR + kSH + l(SR + kSC k T
(kCR +1) T3 TR T] SDP ~1
(30)

The heat rejected from the engine is also depends on both the dead volumes and regenerator
effectiveness.

Without regeneration, the total heat rejected to an external sink is:

qu'[: Q4-| + Q[-2 (31)
Foran ideal regeneration, the total heat rejected to an external sink can be only:
QOUI = QI-Z (32)

It is evidenced that the amounts of heat added to the cycle and rejected from the cycle are

depend on the regeneration heating and cooling.

2.10 Net work
The surplus energy of two isothermal processes 1-2 and 3-4 is converted into a useful
mechanical work. The net work for an imperfect regeneration engine with dead volumes can be

determined from:

Wnet = Z(2 = Qin - Qout = Q3!-3 + Q3-4 + Qlf‘l + Ql-2 = Q3-4 + Q1-2 (33)
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Substitute Eqgs. (17) and (21) into Eq. (33) gives:

|’ l(SH kSR kSC }
——+-—=+ X |k T
T T T. 4 SDP 3
W..=mR[T, In e ' =i =

ke, ko)
& 4 SR 4+ —5C |kSI.J|'T.=
kD T, T, T

k k
l+[ ]f“ = TSR + k]f’c)kSDPT,
T 11’1 3 R 1

|
kg +(ksn " Ksr +1(£JkSDPTl
(keg +1) T, Ty T,

(34)

It is evidenced that the cycle net work is only depends on the dead volumes. The engine net work

decreases with increasing dead volumes.

In a case of zero dead volume, the cycle net work is:

koo +1YV V
W =mR(T,-T)In M= mR (T,-T,) ln —- (35)
CR *p VZ

Eq. (35) can be found in many thermodynamics textbooks. It should be noted that a case of zero

dead volume the cycle net work does not depend on the regenerator effectiveness.

2.11 Mean-effective pressure
The engine net work can be determined from the cycle mean-effective pressure, p,, and
total volume changed, V,,,-V,, = V-V, = V-V, =V,
We.=pr.V; (36)
Equate Eq. (36) to Eq. (34), then:
(kSH kep | kg |

1+| +R 4 2SC T
mR \ T Ty T, J
P FT.08 ., \ -
Ve ] Kcg 4 kSH " Kor T Ksc Ikswrl.t
(keg +1) T, T |
I | k.-;H i k.-rSR + k—rSC \llk .‘i['.II"Ti
T, In- : - — — ] (37)

l: k
t \ = ]kHIJPTI
kg +1) TI

eff

anc
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It should be noted that, same as the engine net work, the mean-effective pressure is only depends
on the dead volumes.

For zero dead volume, by using the perfect gas law and noted that T, = T, and Vp=V,=V

V, vV, (p;-p,). V,
=(p,;p,) —— In— = —"=" |n—L (38)
FI.. p F 2 1'\.-! _ 1\_.-‘ .1-1.:_---| "u' : '\Frl
2 f r' : s 1] r|
\' 2

Again, Eq. (38) can be found in many thermodynamics textbooks. It can be seen that the
greater pressure change in the constant volume heating process 2-3, the larger the volume ratio,
V,/V,, and the larger in volume after compression, V,, the value of cycle net work will be more.
Since the mean-effective pressure is the net work divided by the power-piston swept volume,

therefore, its characteristics should be the same as the net work.

2.12 Thermal efficiency
The Stirling engine thermal efficiency can be determined from:
ES = wnel/Qin (39)

Substitute Eqs. (26) and (34) into Eq. (39) gives:

1+‘ K s +kSR n ksc Iksost

\ T . —
filn—— ?—_ R L — +(T3—Ti)(1 e)
kCR Y kSH + kSR + k.S'C ‘k

ket \ T, T, T,

SDPI;
(40)
It can be seen that the Stirling engine efficiency also depends on both the regenerator
effectiveness and dead volumes. The engine efficiency decreases with increasing dead volumes

and decreasing regenerator effectiveness.
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In a case of zero dead volume, Eq. (40) will be reducing to:
B == (T3 - Tl )

s (1 —e_]__

T;+(T1 'T|j I
(k—1In x
v,

(41)

Even the different notation is used in Eq. (41) the results are the same as the former works
approached by the classical thermodynamics [8, 14, 15] and the finite-time thermodynamics [16].

Without regeneration, e = 0, the worst case of Stirling cycle efficiency:

(T, -T,)

E. = ~ 42
] ["Irl‘ oo TI } ( )

e v

(k—=1)In- rl

V,

For an ideal regeneration, e = 1, the best case of Stirling cycle efficiency:

E;=1-T/T, (43)

That is the endo-reversible Carnot-like engme efficiency [17].

It is evidenced that, in theory, the Stirling engine can be a very efficient device for
converting heat into mechanical work with high efficiency requiring hi gh-temperature difference.
The efficiency of the Stirling engine with imperfect Tegeneration and zero dead volume equals that
of the endo-reversible Carnot-like engine efficiency. The endo-reversible Carnot-like engine
efficiency is lower than the complete reversible Camot engine efficiency; however it produces

useful power output [12].

3. Conclusions

The thermodynamic analysis for an imperfect regeneration Stirling engine with dead

volumes is presented in this article. This study shows that an imperfect regeneration Stirling
engine with dead volumes can be analyzed by using the basic classical thermodynamics. The
analysis presented should provide a more generalized and more realistic analytical method for

Stirling engines performance evaluation and Improvement.
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Results from this study indicate that for an imperfect regeneration Stirling engine with
dead volumes and an arithmetic-mean regenerator effective temperature, the working fluid mass,
net work and mean-effective pressure are affected only by the dead volumes and the heat added,
heat rejected and thermal efficiency are affected by both the dead volumes and the regenerator
effectiveness. From this study, we can conclude that:

1) For a Stirling engine with a given dead volume, an inefficient regenerator will not
affect the engine net work (see Eq. (34)). But an engine with an inefficient regenerator need more
heat input and better cooling than an efficient one (see Egs. (26) and (30)).

2) The dead volume will decrease both the engine net work and the thermal efficiency (see
Egs. (34) and (37)) and will increase both the external heat input and outpuf (see Egs. (26) and
(30)). However, the real engine must have some unavoidable dead volume.

3) Some small figure of the engine net work can be produced even the engine has a large
dead volume (see Eq. (34)).

4) To attain high efficiency, a good regenerator is needed. However, the Stirling engine

has some small efficiency without a regenerator (see Eq. (42)).

Nomenclature
C, = specific heat at constant volume, Jkg K
e = regenerator effectiveness
E = Stirling engine thermal efficiency
K = a factor defined by Eq. (13)
k = specific heat ratio
kg = V/V, is compression ratio
Koy = V!V is hot-space dead volume ratio
kgy = V/V is regenerator dead volume ratio
kse = V5/ Vs is cold-space dead volume ratio

Kypp = V/(Vp+V,) is total dead volume to total volume ratio
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ki, = V/V, is total dead volume to total volume ratio

m = total working fluid mass contained in the engine, kg

p = absolute pressure, N/m’

p,, = mean-effective pressure, N/m’

Q,, = total heat added from an external source to the cycle, J
Q,, = total heat rejected from the cycle to an external sink, J
R = gas constant, J/kg K

T, = working fluid temperature in the hot space, K

T; = working fluid temperature at regenerator outlet, K

T, = working fluid temperature in the cold space, K

Tlf = working fluid temperature at regenerator inlet, K

T, = effective working fluid temperature in regenerator dead space, K
T, = cooler temperature, K

T, = heater temperature, K

V¢ = hot-space dead volume, m’

V4 = regenerator dead volume, m’

Vg = cold-space dead volume, m’

V. = total dead volume, m’

V,, = displacer swept volume, m’

V, = power-piston swept volume, m’

W__, = engine net work, J
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