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Abstract

Let R" = (Mn, a ) be an n-dimensional Riemannian space with a Riemannian metric a(x, dx)
=(aij(x)dx'dxj)l/2 and let F" = (M", L) be a Kropina space with the fundamental function

L(x, y) = a2(x, y)/^(x, y), where /?(x, dx) = bi(x)dx'.
The purpose of the present paper is to study the induced and intrinsic theories of hyper-

surface of a Kropina space.

§ 0. Introduction. The induced and intrinsic theories of the subspaces of a Finsler space
have been studied by Davies ([3]) and Rund ([9]). The connection coefficients of a Kropina
hypersurface can be written as the sum of Riemannian Christoffel symbols and other tensor.
In this paper we compare the induced connection coefficients with intrinsic connection coef-

ficients of a Kropina hypersurface and discuss whether they coincide or not. The notations and
terminologies are refered to M^atsumoto's monograph [7].

§ 1. Preliminaries. Let F" be an n-dimensional Kropina space. Components gij of the

fundamental tensor field are given by gu = (52L2/(9y5yi)/2, and the covariant components
y, = gijyj of the supporting element are given by L9L/9y). The angular metric tensor hij(x,y)
is defined as hij = gij—lilj, li = y-i/L. The Riemannian space R" with the metric a = (aij(x)yyj)l/2

is called the associated Riemannian space with Fn. The Christoffel symbols of R" are denoted by

{jL} and this Riemannian connection is called the associated one. We denote by Vie the covariant
differentiation with respect to xi< relative to the associated Riemannian connection. The fun-
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2 Choko SHIBATA, U.P. SINGH and A.K. SINGH

damental tensor gu and the connection coefficients Fj i< of the Cartan connection are given
respectively by ([11]).

(1.1) gij = r(2au-libj-ljbi)+lilj, r = a2^-2

(1.2) Fj'K-L'iJ+D/,.

The tensor Djlk, called the difference tensor, is given by ([11])

(1.3) Dj'u = -Qlr(Frjlk+FnJ,)-EjuQl-hlj^,<

-h'k^j+hjk^'+^Cj'k,

where we put

(1) Vkbj=bji<, 2Ejk = bjk+bkj, 2Fji< = bjk-bkj,

(2) b'=a'jbj, aljajk=^k, p = saW,

(1.4) Q' = (21'-b')/p, Qir = (alr+Q!br)/2,

(3) 0k = (pFok/^-(oQrFrk+2bok/L+Frobrlk/L)/2,
glT0r = 0\ A = (Eoo/L+Frobr)/p, 0kyk = A.

In (1.4) 3) and the remainder of the present paper the suffix " 0 " means the contraction by y'.
Contraction of (1.3) by yk gives

(1.5) D,'o = -{alr(LFrj+Frolj)+br(211-b')(LFrj+

+Frolj)/p}/2-Ejo(21'-bl)/p-^hlj,

where (1.4) was used.

Lemma 1([11]). The difference tensor D^ vanishes if and only if the covariant vector b\ is
parallel with respect to the associated Riemannian connection, i.e., Vicbi =0.

2. Hypersurfaces of Kropina space and associated Riemannian space.

First, we are concerned with a hypersurface Hn-l of the underlying manifold M" of a
Kropina space F" =(M", L), which is represented parametrically by

(2.1) x'=xl(u°'), j=l,2,---,n-l,

where ucr are Gaussian coordinates on Hn-l. Introducing the notations

(2.2) Ba = 9xl/9ua,

we shall assume that the matrix of these projection factors is of rank n—1. The following
notations are also employed:

(2)
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(2.3) B^= 92x[/9ua9uts, B^--k.= B^---B^.

The functions Ba(x) may be considered as components of n—1 linearly independent vectors
tangent to Hn-l. Therefore any vector x', tangent to Hn-l, may be written uniquely in the form

(2.4) X' = BaXa,

where X" are components of the vector relative to the u-coordinate system. In particular,

we assume that the supporting element y' is tangential to Hn-l so that

(2.5) y'(=x') =B.uff

The induced fundamental metric tensor ga/»(u,u) of the hypersurface Hn-l defined with
respect to such a direction is given by

(2.6) g^(u, u) = gu(x, y)B^.

If L(x, y) represents the fundamental function of F" for a direction y' tangent to Hn-l, it

follows from (2.5) that the corresponding fundamental function for Hn-l is given by L(u, u)
= L(xl(u), B;,uff). For the Kropina space F", it follows from (2.1) and (2.5) that the funda-
mental function L is given by

(2.7) L(u, u) = a.,(u)uffu^/b,u/?, aap - a,jB^,

in which aa/i(u) is the fundamental tensor of the Riemannian hypersurface R and ba(u)
is given by

(2.8) b. = biBL

Thus, in virtue of (1.1), (2.7) and (2.8), the induced metric tensor ga/s in (2.6) is written by

(2.6') gap = r(2aff/?—lffb/?—l/;bff)+lffl/», r=r.

Here we have

Proposition 1. A hypersinface of a Kropina space is also a Kropina space.

Remark. From the above proposition, the hypersurface of a Kropina space is called a
Kropina hyperswrface.

Further, we have

(2.9) 1' = BLlff.

As usual, det(gu) 4= 0 is supposed. Thus according to our assumption the tensor go/? (u, u)

possesses the reciprocal tensor gafi which is used to define a set of n—1 covariant vectors

(2.10) Bf(x, y) = gafs(u, u)g,j(x, y)BJ,(x),

(3)
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which satisfy

(2.11) B.Bf = 8^.

Another useful indentity ([3]) is

(2.12) BfBJa = 5J,-NiNJ,

where the unit normal vector N'(x, y) is defined at each point of the Kropina hypersurface
Hn-l with respect to the tangential supporting element y' by a system of equations

(2.13) N'=glj(x,y)Nj, guN'NJ = 1, N,BL = 0 ,

which in turn imply

(2.14) N'Bf- 0.

Further we get

(2.15) g,j = g.,BfBf+N,Nj, glj = gff/?B.Bj,+NjN1.

Next, we shall consider a hypersurface Rn-l of the associated Riemannian space with

the metric a = (aij(x)ylyj)l/2 represented parametrically by the same equations as (2.1).
Then ua in (2.1) are Gaussian coordinates on Rn-l. And the function Bla(x) in (2.2) may be
considered to be components of a set of n—1 linearly independent vectors tangent to Rn- .

The induced fundamental metric tensor of the Riemannian hypersurface Rn-l is given by
s.ap in (2.7). The hypersurface of the associated Riemannian space R" is called an associated
Riemannian hypersurface R = (]V[n-l, a = (a^(u)uffu^)l/2).

The quantities Bf(x) are uniquely defined along Rn-l by the equations

(2.16) Bf(x) =aff/?(u)a,jBJ,(x).

We denote the covariant components of a unit normal vector of R by N . Then we have

a field of linear frame (Bli,---, BLr, N' = aijNj) of R" defined along R"-1 by

(2.17) B.Bf = 8^, B.Bf = ^i-N'Nj,, N'Bf = 0.

It follows from (2.17) that

(2.18) aij = a^BfBf+NiNj

Since NiBL = 0 and B'aG0' = y', we see that the supporting element y' is tangential to the
associated Riemannian hypersurface Rn-l, that is Niy = 0, so that we have

(2.19) N'Yi =0, Yi = auyj,

which will play an important role later on. The reciprocal tensor gap of ga/s is given by

(2.20) gap = [paff/'+2(rb/?+l/2bff)-bffb"+2(pr-2)n/?]/2pr,

where we put

(4)
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(2.21) (a) p=aaW, (b) afl/U - b/?, (c) lff = gffV

With the help of relations (1.4)2), (2.7), (2.8) and (2.21)a), we can easily obtain

(2.22) p^-(biNi)2.

It follows from (2.6/), (2.20), (2.21) and (2.22) that

(1) Yff-(uff)//9= rlff, (2) l.bff-2-pr,

(3) affel.=2Yff-rbff, (4) bj = bffBJ.+(b,Ni)Nj.

Further, in virtue of (2.10), (2.16) and (2.23) we have

(2.24) Bf = Bf+(bmNm)(bff-21ff)Ni/p.

§ 3. Relation between induced and intrinsic connection parameters.

The Cartan connection coefficients of the Finsler space F" are denoted by Fjk. The
induced connection parameters of hypersurface are defined by the relation ([8])

(3.1) FA, - Bf(B^+FjlkBJ^)-

And the intrinsic connection coefficients Y/'r are defined with respect to the induced metric
(2.6) of hypersurface in a manner formally identical with the mode of definition of the co-
efficients Fj k in terms of the fundamental tensor gij of F".

On the other hand, for the h(hv)-torsion tensor Cijk of a Finsler space we have ([2])

(3.2) Cuk = C^BfBfBi^+IVUBfBfNk+BfB^Ni+B^BfNj)
+M.(BfNjNk+BfNkN,+BgNiNj)+MN,NjNk,

where Caur is the projection of Cuu onto the hypersurface, M is the normal components of

Cijk and

(3.3) Map = CljkBaW, 1VL = CijkBLNjNk.

The tensor M.afi in (4.2) will be called a Brozun tensor over a hypersurface of a Finsler space.

Let us denote the difference of induced and intrinsic connection coefficients of a hypersurface

by AA ([9]). From (3.1), we have

Apaf = ¥ft y—F^ y.

It is then shown [2] that

(3.5) Apar^ = NM^, Apar^V7 = M.arU7 = 0.

The following has been proved by Brown ((2]):

(5)
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Lemma.2 Assuming that N-^-0, the induced and intrinsic connection coefficients coincide

;/ and only if Man = 0 over the Finsler hyperswface.

§ 4. Normal unit vector of C-rebucible Finsler space.

In this section, we shall consider the normal unit vector of a C-reducible Finsler space

which is defined by M. Matsumoto. [5].

Definition. A Finsler space F"(n^3) is called C-reducible if the h(hv)-torsion tensor Cijk

is written in the form

(4.1) C,jk = (hijCk+hjkCi+hkiCj)/(n+l).

Remark. M. Ivlatsumoto also indicated two certain metrics of a C-reducible Finsler
space, namely Randers metric (L = a + (5) and Kropina metric (L = a 2//3). Moreover,
M. Matsumoto and S. Hojo [6] have proved that the metric functions of C-reducible Finsler
spaces are confined solely to the above metrics.

It is well-known ([10], [11]) that the h(hv)-tortion tensor Cijk of a Kropina space and a
Randers space is respectively given by

k
Cijk = (hijmk+hjkmi+hkimj)/2L, mi = li—rbi,

(4.3) Cijk = (hijLk+hjkLi+hkiLj)/2L, Li = (l+//)bi-^li, ^ = ff-1/?.
Since Nkyk = 0 and NkB^ = 0, from (3.3), (4.2) and (4.3), the Brown tensor M^ of a C-redu-
cible Finsler space F" is given by

(4.4) M.,=NkCkW(n+l).
k , . R

On the other hand, the torsion vector Ck of a Kropina space (resp. Ck of a Randers space)
is given by

k . R

Ci,= (n+l)(lu-rbk)/2L, (resp. Ck = (n+l)(^lk-r/bk)/2L,
r/=l+^), ([10], [11]).

Therefore, M-a/s of a C-reducible Finsler space F" reduces to

(4.4/) M., = ^bjNJh.,/2L,

where v is some scalar. Consequently, we have

Theorem 1. Let the covariant vector field bi be tangential to the hyperswface of a C-redu-
cible Finsler space. Then the induced and intrinsic connection coincide over the Finsler hyper-
surface.

(6)
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§ 5. Induced and intrinsic connection parameters of Kropina hypersurface.

In virtue of (1.2), the induced connection parameters F/y of a Kropina hypersurface
H"-l is written in the form

(5.1) FA = Bff(B^+{jlk}B^)+BffDjl,B^.

Since the induced and intrinsic Christoffel symbols of the associated Riemannian hyper-
surface Rn-l are equal, from (2.24) and (5.1) we have

(5.2) FA = {A}+VA+(W-2r)^/p,

where we put

(5.3) (a) VA=BffDjW,
(b) {A} =Bff(B^+{j'k}B^),

and Qftv are components of the second fundamental tensor of the Riemannian hypersurface

Rn-l. Contraction of (5.3)a) by ii7 yields

(5.4) VAu/ = BID/oBi.

The intrinsic connection parameters F/s"-y of a Kropina hypersurface Hn-l are given by

(5.5) FA={A}+DA,

where we put

(5.6) DA = -QffE(Fe,lr+FcrlA)-E^Qa-h^,-h^,+h^^ff+^CA,

and

2Ea^ = ba^+b^a, 2Fa^ = ba/3—bfta,

bff = a^b,, aff/3a,r = 8ar, p = a^W,

Qff = (21ff-bff)/p, Qff£ = (aff£+Qflbe)/2,

(5.7) 0, = (pFo'^-pQ£F^+2bo^/L+F.o'b£L/L)/2p,
gae0,=0a, A= (Eo'o'/L+Feo'b£)/p, 0aua=^-

The suffix "0/" means the contraction by u€t. Contracting (5.6) by ur and using the relations
Cpar\ir = 0, h/ur = 0 and (5.7) we obtain

(5.8) D/o' = -{aff£(LF^+Feo'l,)+b£(21ff-bff)(LF^+F.o'l,)/p}/2
-Eo',(2r-bff)/p-^.

Differentiating (2.8) covariantly with respect to u/? in the Riemannian hypersurface Rn-l,

we get

(5.9) V/,b^ = bap = buB^+biI^,

where Van (= V/aB<0 is the normal curvature vector of Rn-l. Since the unit normal vector

(7)
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of Rn-l is N', (5.9) may be written as

(5.10) b^-bijB^+biN'^.

From (5.7) and (5.9), we have

(5.11) (1) E., = EijB^+biN'^, (2) P., - FijB^,

where we have used the fact that Qap is symmetric in a and /?. Owing to (5.2) and (5.5) the
difference Apar of the induced and intrinsic connection coefficients of a Kropina hypersurface

are given by

(5.12) AA = FA-FA = DA-VA-0(bff-21ff)^/p-.

Multiplying (5.12) by u/, using (3.5), (5.4) and (5.8) we obtain NM^ of the Kropina hyper-
surface H"- :

NM., = (^-/l/)h.,-(21.-g.,b''){b£(LF^-Fo'el,)/2+Eo',}/p

-g.,a/£(LF.,+F.o'l,)/2+(2L-g.,B',bI){br(LFrjBi+Frol,)/2+EjoBn/p
+g.,B'ialr(LFrjB/l+Frol,)/2+^(21.-g.,b/)JWp-.

On direct calculation with the help of relations (1.1), (2.5), (2.6/), (2.8), (2.9), (2.19), (5.7) and

(5.11), we get

21a-gapbp = pT{21a-Tba), 21a-gapW = Fp( 21^- rb<0 ,

b£Feo' = bjFjo-^FjoNJ, ^ - bjNJ, bo'o' = Eoo+(?^o'o'.

Consequently, in virtue of (2.23), (2.24) and (5.14), NM^ is written in the form

(5.13/) NM., = (biNl){brNr(Eoo/L+Frobr)/p+^o'o'/L-FroNr}h.,.

From (5.13/) we have to discuss the two cases given by

(5.15) (A) biN'=0, (B) biN'+O.

First, we consider the case (A). In this case Rn-l is called a tangential associated hype^swface,
because the covariant vector field bi is tangential to the associated Riemannian hypersurface
Rn-l. From (5.13/) and lemma 2 we can state

Theorem 2. On a tangential associated Rieinannian hypersurface, the induced and intrin-
sic connections coincide with each other.

For a tangential associated hypersurface Rn-l, from (5.10) we obtain b^ = bijB^, so that
it follows that

(5.16) b^BIBi" -bhiHW,

where we put Hhj = ahj-NhNj and Hhj = ahmHmj. Since 0 = biN' = 0, if VjN' = 0, (5.16)

yields ba/sB"^ = bju. Thus we have

(8)
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Theorem 3. Assume that an associated Rienwnnian hypersurface Rn~1 be tangential and

the unit normal vector fiejd Nl of Rn~1 is parallel with respect to the associated Riemannian
connection. Then Vjbi = 0 if and only if V'ab/s = 0.

In (5.10), if the vector field bi is parallel with respect to the associated Riemannian
connection, that is bij = 0, then we get

(5.17) b^ = biN1^.

Here we can state

Theorem 4. Assume that the covariant vector bi be parallel with respect to the associated
Riemannian connection and the associated Riemannian hypersitfface Rn~ be not totally geodesic.
Then an associated Riemannian hypei^wface Rn~1 is tangential if and only if' \7 abp = 0.

Definition. A Finsler space is called an affinely connected space if the Berwald connec-
tion coefficients are functions of position only, such a space will be called a Berwald sqace.

Lemma 3 ([11]). If the covariant vector field bi is parallel with respect to the associated
Rieinannian connection, then the Kropina space is the Berwald one.

From (5.17) and the above lemma, we have

Theorem 5. If the vector field b\ is tangential to the Riemannian hyperswface Rn~1, then
the Kropina hypersnrface Hn~ is a Berwald space, provided that bij = 0.

Next we consider the case biN =)= 0. In virtue of (5.17), we have the following

Theorem 6. Assume that the vector field bi be parallel with respect to the associated Rie-
mannian connection and biNi -^ 0. Then the associated hyperswface Rn-l is totally geodesic if

and only if Vab^ = 0.

From the above theorem and the lemma 3, we obtain

Corollary. Assume that the vector field bi be parallel with respect to the associated Rie-
tiwnnian connection and biN + 0. If the associated hypersw^face Rn~1 is totally geodesic, the
Kropina kypeivwface Hn~ is a Berwald space.

Further from (5.13/) we get

Teeorem 7. Assume that the vector field bi be parallel with respect to the associated Rieinannian
connection. If the associated hyperswrface Rn-l is totally geo desk, then the induced and intrinsic

(9)
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connections of a Kropina hypersurface coincide with each other, provided that N^p 0.

Next, we assume that the vector field bi is gradient, that is 2Fij = bij—bji =0. Then

(5.13/) yields

(5.18) NM., = (biNl){(brNr)boo/p+^o'o'}/L.

Here we get

Theorem 8. Assume that the vector field bi be gmdient and N^ 0, biN1 =1=0. Then the
induced and intrinsic connections of a Kropina hypersurface coincide with each other if and only
if the relation

(5.19) (biN')boo/p+^o'o'=0

holds.

Also, the following lemma has been proved by Brown [2] :

Lemma 4. A geodesic of a Finsler hypersurface is a geodesic of a Finsler space if and only
if N= Qap u"^ = 0 along the curve, where Qap are to be considered as the components of the

second fundamental tensor of the Finsler hypersurface.

Using the above lemma and (5.18), we get

Theorem 9. Assume that the vector field bi be gradient and M.ap + 0, biN1 4= 0. Then a
geodesic of a Kropina hypersnrface Hn~1 is a geodesic of a Kropina space Fn if and only if the
relation (5.19) holds.

From the above and (5.17) we can state

Theorem 10. Assume that the vector field b{ be parallel zvith respect to the associated Rie-
mannian connection and Map + 0, b^N1 =(= 0. If^abp = 0, then a geodesic of the Kropina hyper-

surface Hn~ is a geodesic of a Kropina space Fn.
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