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Abstract

Let R" = (M", @) be an n-dimensional Riemannian space with a Riemannian metric a(x, dx)
=(ay(x)dx'dx’)*"? and let F* = (M", L) be a Kropina space with the fundamental function
L(x, y) = a®(x, y) /B(x, y), where 8(x, dx) = hi(x)dx".

The purpose of the present paper is to study the induced and intrinsic theories of hyper-
surface of a Kropina space.

§ 0. Introduction. The induced and intrinsic theories of the subspaces of a Finsler space
have been studied by Davies ([3]) and Rund ([9]). The connection coefficients of a Kropina
hypersurface can be written as the sum of Riemannian Christoffel symbols and other tensor.
In this paper we compare the induced connection coefficients with intrinsic connection coef-
ficients of a Kropina hypersurface and discuss whether they coincide or not. The notations and
terminologies are refered to Matsumoto’s monograph [7].

§ 1. Preliminaries. Let F" be an n-dimensional Kropina space. Components gy of the
fundamental tensor field are given by gy = (8°L?/9y'9y’)/2, and the covariant components
yi = gy’ of the supporting element are given by LoL/dy’. The angular metric tensor h;(x,y)

is defined as hy; = gi;—1il;, I = yi/L. The Riemannian space R" with the metric ¢ = (ay(x)y'y')"?
is called the associated Riemannian space with F”. The Christoffel symbols of R" are denoted by
{ik} and this Riemannian connection is called the associated one. We denote by V, the covariant

differentiation with respect to x, relative to the associated Riemannian connection. The fun-
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2 Choko SuiBaTa, U.P. SinGH and A.K. SINGH

damental tensor gj; and the connection coefficients Fj' of the Cartan connection are given
respectively by ([11]).

(1-1) gij — T(zaij—hbj—ljbl)—l-hlj, T = afz,b’"2

(1.2) Fi'v = {i'x} +Dj".
The tensor Dj, called the difference tensor, is given by ([11])

(1.3) Di'« = —Q"(Frilk+Frdi) —EnQ'—h'; @

—h'@;+hu @'+ ACjy,

where we put

(1) Vib; =by, 2Ex= bik+bk, 2Fx = by— b,
(2) b1 = a]jbj, a”ajk - 311(, 0 = aijbibj,
(1.4) Q = (21-b)/p, Q" =(a"+Q'b)/2,
(3) @« = (pFoi/B—pQ Fri+2bow/L+FrobL/L)/2,
g70: = @', A= (Eoo/L+Freb") /o, Owy*= A

In (1.4) 3) and the remainder of the present paper the suffix “ 0 ” means the contraction by y'.
Contraction of (1.3) by y* gives

1.5) Dio = —{a"(LFr;+Frol;)+b"(21'=b") (LFri+

+Froly)/0}/2—E;0(21'=D') fo— AR},

where (1.4) was used.

Lemma 1([11]). The difference tensor D} vanishes if and only if the covariant vector b, is
pavallel with respect to the associated Riemannian connection, i.e., Vb =0.

§ 2. Hypersurfaces of Kropina space and associated Riemannian space.
First, we are concerned with a hypersurface H"' of the underlying manifold M" of a
Kropina space F" =(M", L), which is represented parametrically by
(2.1) x' = x'(u?), o0=12,n-1,
where u? are Gaussian coordinates on H""'. Introducing the notations
(2.2) B = 9x'/ou’,

we shall assume that the matrix of these projection factors is of rank n—1. The following
notations are also employed:

(2)



On Induced and Intrinsic Theories of Hypersurfaces of Kropina Spaces 3

2.3) be = 0%x'/0u®ouf, Bl = BLBL- B

The functions Bi(x) may be considered as components of n—1 linearly independent vectors
tangent to H""'. Therefore any vector x', tangent to H*"!, may be written uniquely in the form

(2.4) x' = Bix?

where X“ are components of the vector relative to the u-coordinate system. In particular,
we assume that the supporting element y' is tangential to H* ! so that

2.5) y'(=x') = BWu®

The induced fundamental metric tensor gus(u, u) of the hypersurface H" ! defined with
respect to such a direction is given by

(2.6) gas(u, U) = gi(x, y)Bah.

If L(x, y) represents the fundamental function of F" for a direction y' tangent to H"!, it
follows from (2.5) that the corresponding fundamental function for H"! is given by L(u, 1)
= L(x'(u), Bhu*). For the Kropina space F", it follows from (2.1) and (2.5) that the funda-
mental function L is given by

2.7) L(u, u) = aas(u)0%0?/bst’, aws = ayBls,

in which aqs(u) is the fundamental tensor of the Riemannian hypersurface R™ ' and bg(u)
is given by

(2.8) be = hiBL.

Thus, in virtue of (1.1), (2.7) and (2.8), the induced metric tensor g, in (2.6) is written by

(2.6 ~ Bap = T(Zaaﬁwlabﬁ—lpba)%“lalp, T =r.

Here we have
Proposition 1. A hypersurface of a Kropina space is also a Kropina space,

Remark. From the above proposition, the hypersurface of a Kropina space is called a
Kropina hypersurface.

Further, we have
(2.9) I' = Bhl°.

As usual, det(gy) + 0 is supposed. Thus according to our assumption the tensor ges(u, u)
possesses the reciprocal tensor g,, which is used to define a set of n—1 covariant vectors

(2.10) Bi(x, v) = g*(u, Wau(x, v)Bi(x),

(3)



4 Choko SuiBaTA, U.P. SiNGH and A K. SINGH

which satisfy

(2.11) «Bf = 84.

Another useful indentity ([3]) is
(2.12) fBL = §i—NN’,

where the unit normal vector N'(x, y) is defined at each point of the Kropina hypersurface
H! with respect to the tangential supporting element y' by a system of equations

(2.13) N'=g"(x,y)N;, giN'N'=1, NB:=0,
which in turn imply

(2.14) N'Bf = 0.

Further we get

(2.15) gy = gasBfBf +NiN;,  g" = g”BuBs+N'N".

Next, we shall consider a hypersurface R"' of the associated Riemannian space with
the metric @ = (ay(x)y'y')!/? represented parametrically by the same equations as. (2.1).
Then u? in (2.1) are Gaussian coordinates on R"~*. And the function Bi(x) in (2.2) may be
considered to be components of a set of n—1 linearly independent vectors tangent to R,
The induced fundamental metric tensor of the Riemannian hypersurface R*' is given by
ag in (2.7). The hypersurface of the associated Riemannian space R" is called an associated
Riemannian hypersurface R*™' = (M, @ = (am(w)un’)'?).
The quantities Bf(x) are uniquely defined along R"~' by the equations

(2.16) Bf(x) = a*(u)auBh(x).

We denote the covariant components of a unit normal vector of R"! by N'. Then we have
a field of linear frame (BY, -, Bi 1; N' = a"N;) of R* defined along R™* by

(2.17) LBf = 84,  BLBf = 6|—N'N;, NBf =0.
Tt follows from (2.17) that
(2.18) ai; = a«sBfBf +NiN;

Since N\B% = 0 and BLt® = y', we see that the supporting element y' is tangential to the
associated Riemannian hypersurface R*"!, that is Nijy' = 0, so that we have

(2.19) NYi =0, Yi=aw,

which will play an important role later on. The reciprocal tensor g* of g is given by
(2.20) g% = [0a® +2(1°b" +1°b*) —b*b’ + 2( 0T —2)1*] /207,

where we put

(4)



On Induced and Intrinsic Theories of Hypersurfaces of Kropina Spaces 5

221)  (a) p=awb®”, (b) a%be=1b" (c) 19=g“ls.
With the help of relations (1.4)2), (2.7), (2.8) and (2.21)a), we can easily obtain
(222)  p =p—(biN")2
It follows from (2.6"), (2.20), (2.21) and (2.22) that

(1) Y*=(9)/B=r71% (2) 1b*=2-pr,
G2 (3) aee1. = 2Y“—b*,  (4) b =Db*Bi+(bN')N'
Further, in virtue of (2.10), (2.16) and (2.23) we have
(224)  Bf = Bf +(baN")(b*—21%)N//p.
§ 3. Relation between induced and intrinsic connection parameters.

The Cartan connection coefficients of the Finsler space F" are denoted by Fj. The

induced connection parameters of hypersurface are defined by the relation ([8])
3.1) F,% = Bf (B +F\B#):

And the intrinsic connection coefficients F,%, are defined with respect to the induced metric
(2.6) of hypersurface in a manner formally identical with the mode of definition of the co-
efficients Fjy in terms of the fundamental tensor g; of F".

On the other hand, for the h(hv)-torsion tensor Cy of a Finsler space we have ([2])

(3.2) Cijx = CapyBfBfBI +Maus( BFBf N+ BfBEN+B#BfN;)
+ Mo (BfN;N,+ Bf NN+ BfNiN;) + MN;N;Ny,

where Cqas, is the projection of Cy onto the hypersurface, M is the normal components of
Cijk and

(3.3 Mas = CisBasN*, M. = CiBLN’N¥,

The tensor Mg in (4.2) will be called a Brown tensor over a hypersurface of a Finsler space.
Let us denote the difference of induced and intrinsic connection coefficients of a hypersurface
by A% ([9]). From (3.1), we have

(3.4) A% = Fﬁa7~Fﬁa7~
It is then shown [2] that
(35  Apyt® = NMay, Apayt®7 = Meyt? = 0.

The following has been proved by Brown ((2]):
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Lemma.2 Assuming that N =0, the induced and intrinsic commection coefficients coincide
if and only if My = O over the Finsler hypevsurface.

§ 4. Normal unit vector of C-rebucible Finsler space.

In this section, we shall consider the normal unit vector of a C-reducible Finsler space
which is defined by M. Matsumoto. [5].

Definition. A Finsler space F*(n=3) is called C-reducible if the h(hv)-torsion tensor Cis
is written in the form

4.1) Cijx = (hiCix+huCi+huCs) /(n+1).

Remark. M. Matsumoto also indicated two certain metrics of a C-reducible Finsler
space, namely Randers metric (L = ¢ + 8) and Kropina metric (L = a%/8). Moreover,
M. Matsumoto and S. Hc;jc; [6] have proved that the metric functions of C-reducible Finsler
spaces are confined solely to the above metrics.

It is well-known ([10], [11]) that the h(hv)-tortion tensor Ci. of a Kropina space and a
Randers space is respectively given by

k
(4.2) Cie = (hiymu+hyam; +ham;) /2L, m; = 1i—zhy,

R
(4.3) Ciix = (hiLe+haLi+hal;) /2L, Li = (1+p)bi—pul, ©=a'p.
Since Nyy* = 0 and N B% = 0, from (3.3), (4.2) and (4.3), the Brown tensor M,; of a C-redu-
cible Finsler space F" is given by

(4-4) Map = Nkckhaﬂ/(n‘l’l).

On the other hand, the torsion vector E)k of a Kropina space (resp. ék of a Randers space)
is given by
(4.5) i

R
Cv = (H-I-l)(lk—fbk)/ZL, (resp. Ci = (n+1)(ﬂllc_flbl<)/2L,
v’ = 1+p), ([10], [11]).
Therefore, M, of a C-reducible Finsler space F" reduces to
(4-4,) Maﬂ - )/ijjha,e/ZL,
where v is some scalar. Consequently, we have
Theorem 1. Let the covariani vector field b; be tangential to the hypersurface of a C-redu-

cible Finsler space. Then the induced and intrinsic conmnection coincide over the Finsler hyper-
surface.
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§ 5. Induced and intrinsic connection parameters of Kropina hypersurface.

In virtue of (1.2), the induced connection parameters F,% of a Kropina hypersurface
H" ! is written in the form
(5-1) Fs = B?<B/57+{ilk}BAj?1;)+B‘ij1kB,¥§.

Since the induced and intrinsic Christoffel symbols of the associated Riemannian hyper-
surface R""! are equal, from (2.24) and (5.1) we have

(5.2) Foy = {55} + V% + 0(b*—21%) 24, /0,
where we put

(5.3) (a) Vs =B4D\Bi,
(b) {/iar} - E‘:(B}rﬁ’{jlk}B% s

and Q,, are components of the second fundamental tensor of the Riemannian hypersurface
R"!. Contraction of (5.3)a) by u’ yields

(5.4) V4507 = BID/B4.

The intrinsic connection parameters F,%, of a Kropina hypersurface H™ ! ‘are given by
(5.5 Fo'y = {4} +Ds%,

where we put

(5.6) Ds"y = —Q*(Feply+Ferls) —EpyQ*—h$ 0 —hi @, +hs, 0%+ ACs%,

and

2Eaﬁ = baﬂ +bﬂa, ZFa,G = baﬂ“bﬂa,
b* = a®bs, a®as = 6%, 0 = awb®h?,
QY = (21=b%) /o, Q* = (a*+Q"°)/2,
6.7) @4 = (0F0a/B—0Q Fea+2bora/T+Feob®la/T) /20,
g0, = 0° A= (Eoo/L+Feob®)/o, Oo* =1

The suffix “0’” means the contraction by u¢. Contracting (5.6) by 0 and using the relations
Cs%0” =0, h,%0” = 0 and (5.7) we obtain

(5.8) D% = —{a®(LFes+Feols) +b(21°—b*)(LFes+Feols)/0} /2
—Eo4(219=b%) /o — Ah4.

Differentiating (2.8) covariantly with respect to v* in the Riemannian hypersurface R"!,
we get

(5.9) Vsba = bap = biBdh+bilds,
where T (= V;Bd) is the normal curvature vector of R"™!. Since the unit normal vector

(7)



8 Choko SuiBaTa, U.P. SiNGH and A K. SiNGH
of R™ ! is NI, (5.9) may be written as

(56.10) bas = buBak+biN'Qas.

From (5.7) and (5.9), we have

(611) (1) Eaw = EiB&+biN'Qus, (2) Fap = FuBah,

where we have used the fact that Q.; is symmetric in @ and 8. Owing to (5.2) and (5.5) the
difference A%, of the induced and intrinsic connection coefficients of a Kropina hypersurface
are given by

(5.12) A% = F—Fs% = D% — V% — ¢ (b?*—21%) D4, /0.

Multiplying (5.12) by u’, using (3.5), (5.4) and (5.8) we obtain NM,, of the Kropina hyper-
surface H*':

NMas = (A=A has—(21a—garb D (LFep—Foels) /2+Eos} fo v
—8aya” (LF s+ Feols) /24 (210 —gayBID'){ b (LF +Bi+Frols)/2-+E; B} } /o

(5.13) . T
+garBTa" " (LFrB+Frols) /2+ ¢ (21a—garb”) 240/ 0.

On direct calculation with the help of relations (1.1), (2.5), (2.6"), (2.8), (2.9), (2.19), (5.7) and
(5.11), we get

(5.14) 21e—gasb” = p‘r‘(21a—jba), ZICgapBﬁb’ = fp(ZIa—fba);
bFeor = b'Fjo—@FioN!, ¢ = bN’, boor = Eoo+PL0r0.
Consequently, in virtue of (2.23), (2.24) and (5.14), NM,, is written in the form
(5.13)  NMuae = (bN){b:N"(Ego/L+Frob")/0+LQ00//L—FroN'} hap.

From (5.13') we have to discuss the two cases given by

(5.15) (A) ©biN'=0, (B) biN'=#0.

First, we consider the case (A). In this case R*! is called a tangential associated hypersurface,
because the covariant vector field b; is tangential to the associated Riemannian hypersurface
Re-!. From (5.13") and lemma 2 we can state

Theorem 2. On a langential associated Riemannian hypersurface, the induced and intrin-
sic connections coincide with each other.

For a tangential associated hypersurface R* !, from (5.10) we obtain bas = b;Baj, so that
it follows. that
(5.16) basBIBE =bmH5HL,

where we put Hu = an;—NuN; and H% = a™H,,;. Since ¢ = biN' = 0, if V,N' =0, (5.16)
vields besB% = bs. Thus we have

(8)



On Induced and Intrinsic Theories of Hypersurfaces of Kropina Spaces 9

Theorem 3. Assume that an associated Riemannian hypersurface Rn-1 be tangential and
the unit normal vector fiejd N* of R is parallel with respect to the associated Riemannian
connection. Then Vb = 0 if and only if V.bs = 0.

In (5.10), if the vector field b; is parallel with respect to the associated Riemannian
connection, that is b; = 0, then we get

(5.17) bas = biN'Qes.

Here we can state
Theorem 4. Assume that the covariant vector b, be parallel with respect to the associated
Riemannian connection and the associated Riemannian hypersurface R*1 be not totally geodesic.

Then an associated Riemanwian hypersurface R"! is tangential if and only if Vabs = 0.

Definition. A Finsler space is called an affinely connected space if the Berwald connec-
tion coefficients are functions of position only, such a space will be called a Berwald sqace.

Lemma 3 ([11]). If the covariant vector field b; is parallel with respect to the associated
Riemannian connection, then the Kropina space is the Berwald one.

From (5.17) and the above lemma, we have

Theorem 5. If the vector field by is tangential to the Riemannian hypersurface R, then
the Kropina hypersurface H" ' is a Berwald space, provided that b:; = 0.

Next we consider the case biN'# 0. In virtue of (5.17), we have the following

Theorem 6. Assume that the vector field b; be parallel with respect to the associated Rie-
mannian connection and b:.N' + 0. Then the associated hypersurface R"™' is totally geodesic if
and only if Va4bs =0.

From the above theorem and the lemma 3, we obtain

Corollary. Assume that the vector field b be parallel with respect to the associated Rie-
mannian connection and biN' # 0. If the associated hypersurface R"1 is totally geodesic, the
Kropina hypersurface H*™! is a Berwald space.

Further from (5.13') we get

Teeorem 7. Assume that the vector field b: be parallel with respect to the associated Riemannian
connection. If the associated hypersurface R"* is totally geodesic, then the induced and intrinsic

(9)
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connections of a Kropina hypersurface coincide with each other, provided that N = 0.
Next, we assume that the vector field b, is gradient, that is 2Fy; = by—bu =0. Then
(5.13") yields
(518)  NMas = (biN){(b-N")boo/0+L2070'}/L.
Here we get
Theorem 8. Assume that the vector field b; be gradient and N=+ 0, b;N' 0. Then the

induced and intrinsic conmections of a Kropina hypersurface coincide with each other if and only
if the relation

(5.19) (biN—i)bOO/p_f‘.Q_O’O’ =90
holds.

Also, the following lemma has been proved by Brown [2] :

Lemma 4. A geodesic of a Finsler hypersurface is a geodesic of a Finsler space if and only
if N= Qup 4 = 0 along the curve, where Qqs are to be considered as the components of the
second fundamental tensor of the Finsler hypersurface.

Using the above lemma and (5.18), we get

Theorem 9. Assume that the vector field b; be gradient and Mas &+ 0, b:N* & 0. Then a
geodesic of a Kropina hypersurface H*™' is a geodesic of a Kropina space F" if and only if the
relation (5.19) holds.

From the above and (5.17) we can state

Theorem 10. Assume that the vector field b; be pavallel with respect to the associated Rie-
mannian connection and Mys £ 0, b; N £ 0. If Vabs = 0, then a geodesic of the Kropina hyper-
surface H" ' is a geodesic of a Kropina space F".
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