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On Finsler Spaces with («, 8)-metric.
Regularity, Geodesics and Main Scalars.
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Abstract

Ever since Professor Dr. C. Shibata started on the course of studying the differential geometry of Finsler
spaces, he had been especially interested in Finsler spaces with (@, 8)-metric, which have been paid special
attention in the theoretical physics. We have a comprehensive survey [5] of the theory of Finsler spaces
with (a, 8)-metric written by the third author in 1991, in which ten papers of C. Shibata were quoted. We
dedicate to his memory the present paper consisting of basic and important remarks on the theory of Finsler

spaces with (a, 8)-metric,

§ 1. Irregular (e, 8)-metrics.

We shall consider an n-dimensional Finsler space F"=(M", L(«, 8)) with (@, 8)-metric L(e, 8)

([31, §30; [1], 1.4.2). As usual, we suppose the following conditions :

(1) The associated Riemannian space R"=(M", @) ([7]) is quasi-Riemannian. That is, the
Riemannian metric |
2*(x, dx) = au(x)dx'dx’
is not always positive-definite, but is regular (a=det(au) = 0) (1], 1.1.2).
(2) Throughout the paper we except the points (x, y) which A(x, y)=bi(x)y' vanishes.

(1)



2 Masashi KITAYAMA, Masayoshi AZUMA and Makoto MATSUMOTO

In the following, (a"(x))=(au(x))™", and the raising and lowering of indices are done by means
of a" and ay respectively.
For instance,
b'=a"h;, yi=any'.
Further, for a function f(¢, 8) of @ and 8 such as L(e, ) and F(e, B)=L%a, £)/2, we use the
following partial differential symbols :
fi=0f/da, f2=0f/0p.

Lemma 1. If we put b*=bb' and v*=b*a® — B2, then 7°, a quadratic form of ¥', does not vanish.
In fact, if ¥> = (b%ay — biby)y'y’ vanishes, then we have b®ai; = bib;.  If b® % 0 (resp. b® = 0), then

we get the determinant a = 0 (resp. 8 = 0). Both of them lead us to a contradiction.

Now, as it was shown in ([3], §30) the fundamental tensor gu(x,y) = 010,F of F" and its

determinant g = det(gi;) are given by

1.D gu = pau + pobibs + p-i(biys + biyr) + p-2yiys,
(1.2) g= (p""T)a,
where, using L or F, coefficients p, pe, p-1, p-2 are written as
p = LLi/a = Fi/a, po = LLs2 + (12)” = Fa,
(1.1a) p-1 = (LL1z + Lil2)/ @ = Fu/ @,

p-z = {LLu + (L)’ — LLi/a}/@* = (Fu — Fi/a)/2".
Further T of (1.2) is written as
(1.2a) T = p(p + pob® + p-18) + {pep-2 — (p-1)*7".
From the homogeneity property of F we have
Fia + F26 = 2F, Fua + Fi2f = F1,” Faa + Faf = Fy,
so that we obtain :
1.3 FuF2 — (F1z)® = {2FFu — B3/ 6% = L’Li/B*
= —(Q2FF — FiF2)/aB = —L’Li/aB
= {2FF2 — (F2)*}/a® = L'Lz/ 0"
Consequently T is rewritten as
(1.2'a) T = 2FFi/a® + {FuF» — (F)%} 7"/’
= (L/@)*(Ls + Luay*/ 8.
Therefore this is the same T as ([1], 3.5.1).

Now, in the theory of Finsler spaces with (a, £)-metric, the regularity (g = 0) of the metric is a
very important assumption, but it has never been discussed. Accordingly, we shall find L(e, 8)
being irregular. By (1.2) and (1.2'a) it is L(e, 8) which satisfies

(14 o L8 + Lua(b*a® — 8% = 0.
The coefficient Lud® of b? is zero whenever Lu vanishes, which leads us to a contradiction, because
(1.4) gives L1 = 0. Therefore from (1.4) b* is expressed as b® = f(a, 8) being a function of @ and A.
Since b* does not depend on y', from di2 = yi/@ and 38 = by, differentiation this by y' yields
fiyi/ @ + fabu = 0. |

Transvecting this by y' and b, we have

(2)



On Finsler Spaces with (e, £)-metric 3

fiad + f28 = 0, f18/a + f20* = 0.
Thus from b%e® — 8% = y* * 0 (Lemma 1) it follows that f1 = f2 = 0, which implies b® being constant.
So that (1.4) is rewritten as ‘

Lu
s

and integrating this by «

ble 1 _
+b2af2—,82 a—o,

Li=———2%
JIb*e® — B’
where co being a function of 8 should be non-zero constant from the homogeneity of Li. Further
integrating this by @ once more, we get | k
b’ *0 : L = a/Ib?a® — B + c(B),
b*=0: L = cad®/B + c(B), «
where c1 is non-zero constant, and c(8) being a function of 8 must be ¢(8) = c28 (cz = constant),

because L is (1) p-homogeneous with respect to @ and 8.

Summarizing up the above we have the following theorem.

Theorem 1. An (a, B)-metric L(a, B) is é'rregular, if and only if bz‘ is constant and L has the
following fov;m : : ‘
(1) p*=0: L = av/[b’d® — B + c28,
@ b*=0: L= c1d®/B + c28,

where c1 (¥ 0) and c: ave constants.

Remark. Thus a Kropina metric L = /8 is irregular when b’ vanishes. In the celebrated
paper [7] of C. Shibata concerned with Kropina metrics, we have o (= b?) in the denominator of (2.4)

giving g".

Example 1 : For a Randers metric L = a + 8, from (1.2'a) we get T = (L/2)* * 0, so that it is
regular. As to a generalized Kropina metric L = a8 (t  0,1) (I8], (3.19)1)), we obtain
T = ta" B2 — 1)8° + (t — Db’}
Hence T = 0 gives
(2 — Hbibs + (£ — Db*ay = 0. , ,
Consequently we obtain b> =0 and t = 2; so that this case reduces to the aboVe remark. Therefore

a generalized Kropina metric which is not a Kropina metric is all regular.

§ 2. Geodesic equations in the Riemannian parameter.

By the arc-length s (Finslerian parameter) the equations of a geodesic of F" = (M", L(e, 8)) is

written in the well-known form
dx

%Z‘S)éi + 2GI<X, _d“S~> =0,

where functions G'(x, y) are given by

2.1



4 Masashi KITAYAMA, Masayoshi AZUMA and Makoto MATSUMOTO

LZ
2
Especially for an (@, f)-metric, the results of [4] may be applied to G'. In case of the Randers

2G' = g"(y' 3:3F — &F), F=

metric L = @ + B, however, using the arc-length r (Riemannian parvameter) in the associated
Riemannian space R" = (M", @), the equations of a geodesic have been simply written by Randers
himself ([11, (1.3.2.2)). So, in this section, using the parameter 7, we shall give the equations of a
geodesic of F".

Using the parameter z, (2.1) is written as

’ d2 x( dx ” _d_Xl
@.1) 9% 1 26(x ) = &5 &,
where ¢ = dr/ds. Since dr = a(x, dx) and ds = L(x, dx) we obtain.
dr _ 1 d’z _ 1 (L dB
ds ~ L, %) &&= r\lrgr L dr>
where %' = dx'/dr. Paying attention to a(x, X) = 1 along a geodesic, we get
d’r _ —1. dB _

2
d*  (@)° dr (Ii)s {bik' + (b + ber'y) X' &},

where by are the covariant derivatives of b: with respect to Levi-Civita connection {7/'x(x)} of the
associated Riemannian space.

In the following we shall employ the symbols used in [4].

We put
2.2) = %‘(bl;j + bi), Sy = %(bm — b, s't = a'sr, st = brsl.
Then we obtain
dZT _ 1wl
ds (L)s (G + roo + bryd), G = biX.
Thus, as it was shown in [4], we put
| 2G' = %o + 2B,
and (2.1) becomes
” d X i L2
2.1 dz? + 7o + 2B = L(

Now, it follows from [4] that B' are

(2.3) B E i+ agd 10 _ aII::”C +

9 B 100)C
where C, E and ¢ are given by
a/sz _ aLu

(2.4) C= —G s = g 7(C + 5 gro),
2.5) 2L — L + 20,
and = %}U - %bn.
We now obfain
B'bi = —'g(E -0,

(4)



On Finsler Spaces with (@, 8)-metric 5

because of C=B'ci and B'b: = —(ZB-B‘(%yx - ).

On eliminating C from this and (2.5), we get

2.6) 9B'br = 100 — ZII;I E.
2
Consequently, transvecting (2.1”) by b: and substituting (2.6) we have
) _2LE
(2.7) G+ bryoo + roo als
Also, eliminating C by means of (2.3) and (2.5) we have
1 B ale o _ alLluKE
B = ay + L: So BLiL: ©°
Thus, putting p' = b' — *c%y', we have
_E . ale LLuEd® |
2.8) B =yt sot 1.4 P
Therefore, by means of (2.7) and (2.8), (2.1”) is rewritten as
d*! i 2L v, 2LLuE ; _
2.9 dz + v00 + L S°T LiLe p = 0.

Theorem 2. In terms of arc-length v in the associated Riemannian space R" = (M", a), the
equations of a geodesic of a Finsler space F" = (M", L(a, 8)) with (@, 8)-metric are written as
(2.9), where 7/<(x) are the Christoffel symbols of R", p' = b' — Bi', E is given by (2.4) and (2.5),
and y' of each points (v, y) is &' = dx'/dr. '

Remark. From (2.4) C is uniquely determined and E from (2.5), provided that 1 + (aL1:7%/8°L1)
does not vanish. When this is zero, L(a, B) is irregular from (1.4).
The vector p' was often used by C. Shibata : [7], (2.7) and [8] (2.4)1).

Example 2 : We shall consider a Randers metric L = @ + 8.
Because of L = 0, the equations of a geodesic are given by

d*’
dr?

This coincides with the result of G. Randers ([1], (1.3.2, 2)).

+ 7o + 28% = 0.

Example 3 : Secondly we shall consider a generalized Kropina metric L = '8 (t = 0, 1).
From (2.4) we have

roof? + ZSoa'z,B(t—l)/t
N e

roo + %C =

and (2.5) is written as

E= 5%(1 - t)(m + %c).

Therefore the equations of a geodesic are given by

di%' ! 20—t) ;. (t=DfrowB + 2so(t—1/t} 1 _
e e g s T T g - PO

Especially, in case of a Kropina metric (t = 2), we obtain

(5)
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2 1
—_((312)'(2 + ')’olo - % ‘0 + __*_1‘00,86;2* £o pI =0.

§3 . Berwald frames.

In the theory of Finsler spaces the so-called C-tensor, defined by
Cux = 9i(gu/2) = 310 31<(L2/4), , :
plays an important role : For instance, a Finsler space is a Riemannian space, a Berwald space and
a Landsberg space, if and only if Cix = 0, Cin = 0 and Cuwo = 0 respectively ([1], [31).

Throughout the present and the next sections we restrict our consideration to two-dimensional

Finsler spaces. Then the C-tensor can be written as

3.1 L Cix = I mumimy,
in the Berwald frame (1, m), where I=1(x, y) is a scalar field, called the main scalar. The formula
of I for a Finsler space with (@, 8)-metric has been given in the paper [2]. It is, however, written
in an isothermal coordinate system of the associated Riemannian space for the sake of computation
and, as a consequence, it is not easy to put in practice.. ;

The purpose of the present section is to establish the relation between the Berwald frames of a
Finsler space F* = (M?, L(«, B)) with (e, 8)-metric and its associated Riemannian space R* = (M?, a),
and, in the next section, we shall find the formula of the main scalar of F” as an application of the
relation.

Now the Berwald frame (1, m) has been defined in ([3], §28) but we shall here consider it
without the assumption of positive-definiteness of the metric.

The contravariant components 1' and the covariant components 1i of the first vector 1 of (1, m)
are given by .

(3.2) 1) 1'=y/Lx, ), (2) 1= dL(x,y). ,
Then, in terms of 1: and the angular metric tensor hy = L( 89;L) the fundamental tensor gy =
019,(L*/2) is written as k

(3.3) g = Lily + hy.
Since the rank of the symmetric matrix (hu) of order two is equal to one, we get a sign € = +1 and
(fm, mz) satisfying |

3.9 hu = emimy, ,i=1,2.
It is noted that the covariant vector mu is determined by (3.4) up to the orientation, while € is uniquely
determined. ¢ is called the signature of the space. Thus (3.3) can be rewritten as

(3.3) gi = Ll + emm;.
The equation huy' = 0 yields mil' = 0 from (3.4). The contravariant components m' = g"my satisfies

mi = gym’ = (LL; + emmy)m’ = (emym’)my, ‘

which implies mym’ ='e. Thus m' are given by

(3.5) 1 mL=0, (2 mm=ec

It follows from (3.3) that we have

(6)



On Finsler Spaces with (@, f)-metric 7

(3.6) g = det(gy) = e(limz — lami)’.
Hence € is the sign of g.

We consider the derivatives of (1, m) by y". From (3.2) we get immediately

3.7 (1) Ld1'=em'my, (2) L&l = emumy.
Next we differentiate mil' =0 by y* and get (Ldwm)l' = —m« from (3.7). From (3.3) we get
similarly ‘

2LCix = e(mily + Iimy)mi + e(dem)my + emi( dumy).
Transvecting this by m'm’ and using (3.1) and (3.5), we have (L dim)m' = Imx. Consequently we
obtain (3.8)(2). Further we differentiate mi=gum’ by y" and using (3.8)(2), we get (3.8)(1).
Therefore we obtain
3.8 (1 Lom'=—("+ elm)m,, (2) Lomi= —(L — emDmy.

Proposition 1. The‘contmvaritmt and covdm'ant components of the Bervald frame (1 m) are
given by (3.2), (3.4) and (3.5), where the signature € is the sign of g : (3.6). Their derivatives by
v ave given by (3.7) and (3.8), where I is the main scalar. '

Now we are concerned with a two-dimensional Finsler space F* = (M? L(a, 8)) with (a, 8)-
metric and its associated Riemannian space R* = (M? @). We shall denote by (1, m) and (u, v) the
Berwald frames of F* and R? respectively. (1, m) is found as above. As for (u, v) we have first from
(3.2). : ,

(3.9 1) o' =y'ak,y), 2) w= dalx, y).

Next, if we denote by ki the angular metric tensor of R% then we have ki = @(d:d;@) and,

similarly to (3.3), (3.4), (3.5) and (3.6)

(1) ay = ww + evivs, e= *1,
(3.10) (2) ky = ewivy, '
' 3) v'w=0, v'vi = e,
4) a = det(ay) = e(urve — uzvi)’.
Further, similarly to (3.7) and (3.8), we have
(1) adu' = ev'y;, adiu = evivi,
(3.11) e ,
- (2) aov' = —u'y, adiyi = —wy,

where (2) are obtained from I=0 of R%
We consider bi of 8 = bi(x)y' in the frame (u, v). Putting b = Biui+Bwvi, we transvect it by y' =
au' and b' = a"b;. Then we get 8 = Biz and b® = (B:)* + e(B)>. Hence we obtain

(3.12) bi =L+ By,
R
(3.122) ®7 = o~ £;) = e 2z,

Now we deal with the main purpose of the present section, finding the expression of (1, m) in
(u,v). First (3.2) and (3.9) give L1' = au' and i = Liw + Lzbi. Hence (3.12) leads to

(3.13) 1) 1=2y, @ 1 =Ly + LBw.
L a

Next (3.11) (1) gives
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hy = Léj(LlLIl + Laby)

= LLuwu; + LLiz(wb;s + whi) + LLabib; + e%vm.

Since we have Lu@ + Li28f = Lai@+L28 =0 from the homogeneity, the Weierstrass invariant
w(a, B) of the space, similarly to the case of a two-dimensional Finsler space ([1], 1.1.3), can be
defined by

(3.14) b= =12 — e ).

a

Then we have hy = eL(Li/a+wr*)vivi by virtue of (3.12). Thus (3.4) leads to
(3-15) m: = mvi,

Li

(3.15a) (m)* = eeL(*CT + W)’Z>.

Finally we put m' = ru' + sv'. Transvecting this by 1 and my, (3.13) and (3.15) lead to Lr/a +

eL2Bs = 0 and ems = €. Hence we get

(3.16) m' = —ﬁ(LzaBu’ — eLv).

Proposition 2. In the Berwald frame (u, v) of its associated Riemannian space R® of a two-
dimensional Finsler space F* with (a, B)-metric, the Bevwald frame (I, m) of F* is written as (3.13),
(3.15) and (3.16), where B and m are given by (3:12a) and (3.15a) respectively, w by (3.14), and €

and e ave signatures of F° and R*? vespectively. The vector b is written as (3.12).

Example 4 : For a Kropina metric L = &*/8 we have

2
I'= gu', L= %ui — <%> Bvi,
m'—eB—% i+e—I§V', mi = mvi,
2 4
b= gm + By, B} = e*Z;“z-, (m)* = eé‘% b%.
C. Shibata gives in [7]
2
2.2) hy = <%> (2aiy — Lib; — 1iby).

It is observed that this hy is written as hiy = e(@b’*e*/ 8*)vivi, which is equal to hy = emmy.

§4 . Main scalar.

We shall consider the main scalar I of a two-dimensional Finsler space with (@, 8)-metric. If we
write (3.6) in the Berwald frame (u, v), then we have from (3.10) (4) k

e R

Since (1.2) reduces to g/a = T in the two-dimensional case, the above can be written as

@.1) £ 1 —ee( LMY — (LY + ward,

(8)
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which yields T2 = 0T/08 of the form

Lm
a,Z

4.2) Te = Zee (Lm)a.

Now (3.15) and (3.11) give

c m
dsmi = (miuy T mebs)vi — i

Substituting (3.12), we have

dymi = %(mla/ + mzf)viui — <~%,1*u1 - szV1>VJ.

Since m(e, B) is positively homogeneous of degree zero in (@, ), the first term of the right-hand side
of the above vanishes. On the other hand, (3.8) together with (3.13) and (3.15) yields

dmy = “%um + %(elm — L2B)vivs.

Comparing these two expressions of d;mi, we obtain [=&eB(Lm)z/(m)? and (4.2) yields I=eBT:a?/
2L(m)°. Since the sign of I depends on the orientation of mu, it is enough to deal with I>. Thus
(3.12a) and (4.1) lead to
5 _ L4,YZ (TZ)Z
(4.3) el 40'4 (T)s .
Theorem 3. The main scalar I of a two-dimensional Finsler space with (@, B)-metvic is given by
(4.3), wheve T is given by (4.1) and T: = 0T/3B.

Example 5 : (1) We consider a two-dimensional Randers metric L=a+£. Then we have w=
0 and T=(L/@a)? so that

2 __ 97’2 .
P = NatBa Ccf. [11, p.127; [2].
(2) We deal with a two-dimensional generalized Kropina metric L = ¢'8°, r + s =1. We have
W= — rsar—zlgs~2, T:ra4r~4ﬂ4s—z{(1 _+_ S)BZ _ szaz}.

Hence we obtain
op? = S0+ 98 + (= 29)b%a’}*y"

I r{(l + S)BZ . szaZ}s ) Cf [2]
In particular, for a Kropina metric (r = 2,s = —1) we have
EIZ — 9)/2
2b2a2 .
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