Title	(α, β)－計量をもつフィンスラー空間 ：正則性，測地線，主スカラー
Author（s）	北山，雅士；東，正慶；松本，誠
Citation	北海道教育大学紀要．第二部．A，数学•物理学•化学•工学編，46（1） $: 1-10$
Issue Date	$1995-08$
URL	http：／／s－ir．sap．hokkyodai ．ac．jp／dspace／handl e／123456789／1841
Rights	

On Finsler Spaces with (α, β)－metric． Regularity，Geodesics and Main Scalars． （Dedicated to the memory of Professor Dr．Chōkō Shibata）

Masashi Kitayama，Masayoshi Azuma and Makoto Matsumoto
Mathematics Laboratory，Kushiro Campus
Mathematics Laboratory，Kushiro Technical college
Professor Emeritus of Kyoto University

（ α, β ）－計量をもつフィンスラー空間
——正則性，測地線，主スカラー——

北山 雅士•東 正慶•松本 誠
釧路校数学教室
釧路工業高等尃門学校数学教室
京都大学名誉教授

Abstract

Ever since Professor Dr．C．Shibata started on the course of studying the differential geometry of Finsler spaces，he had been especially interested in Finsler spaces with (α, β)－metric，which have been paid special attention in the theoretical physics．We have a comprehensive survey［5］of the theory of Finsler spaces with (α, β)－metric written by the third author in 1991，in which ten papers of C．Shibata were quoted．We dedicate to his memory the present paper consisting of basic and important remarks on the theory of Finsler spaces with（ α, β ）－metric．

§ 1．Irregular（ α, β ）－metrics．

We shall consider an n －dimensional Finsler space $\mathrm{F}^{\mathrm{n}}=\left(\mathrm{M}^{\mathrm{n}}, \mathrm{L}(\alpha, \beta)\right)$ with (α, β)－metric $\mathrm{L}(\alpha, \beta)$ （［3］，§30；［1］，1．4．2）．As usual，we suppose the following conditions ：
（1）The associated Riemannian space $\mathrm{R}^{\mathrm{n}}=\left(\mathrm{M}^{\mathrm{n}}, \alpha\right)([7])$ is quasi－Riemannian．That is，the Riemannian metric

$$
\alpha^{2}(\mathrm{x}, \mathrm{dx})=\mathrm{ay}(\mathrm{x}) \mathrm{dx}^{1} \mathrm{dx}^{j}
$$

is not always positive－definite，but is regular $\left(a=\operatorname{det}\left(a_{i j}\right) \neq 0\right)([1], 1.1 .2)$ ．
（2）Throughout the paper we except the points (x, y) which $\beta(\mathrm{x}, \mathrm{y})=\mathrm{b}_{1}(\mathrm{x}) \mathrm{y}^{1}$ vanishes．

In the following, $\left(a^{1 j}(x)\right)=\left(a_{1 i}(x)\right)^{-1}$, and the raising and lowering of indices are done by means of a^{15} and as respectively.
For instance,

$$
b^{i}=a^{1 j} b_{j}, \quad y_{1}=a u y^{j}
$$

Further, for a function $\mathrm{f}(\alpha, \beta)$ of α and β such as $\mathrm{L}(\alpha, \beta)$ and $\mathrm{F}(\alpha, \beta)=\mathrm{L}^{2}(\alpha, \beta) / 2$, we use the following partial differential symbols :

$$
\mathrm{f}_{1}=\partial \mathrm{f} / \partial \alpha, \quad \mathrm{f}_{2}=\partial \mathrm{f} / \partial \beta
$$

Lemma 1. If we put $b^{2}=b_{1} b^{1}$ and $\gamma^{2}=b^{2} \alpha^{2}-\beta^{2}$, then γ^{2}, a quadratic form of y^{1}, does not vanish.
In fact, if $\gamma^{2}=\left(b^{2} a_{i j}-b_{i j} b_{j}\right) y^{\prime} y^{\prime}$ vanishes, then we have $b^{2} a_{i j}=b_{i j} b_{j} . \quad$ If $b^{2} \neq 0$ (resp. $\left.b^{2}=0\right)$, then we get the determinant $\mathrm{a}=0$ (resp. $\beta=0$). Both of them lead us to a contradiction.

Now, as it was shown in ([3], §30) the fundamental tensor $\mathrm{g}_{\mathrm{j}}(\mathrm{x}, \mathrm{y})=\dot{\partial}_{1} \dot{\partial}_{\mathrm{j}} \mathrm{F}$ of F^{n} and its determinant $g=\operatorname{det}\left(g_{i j}\right)$ are given by

$$
\begin{align*}
& g_{i j}=p_{i j}+p_{0} b_{i} b_{j}+p_{-1}\left(b_{i} y_{j}+b_{j} y_{i}\right)+p_{-2} y_{i 1} y_{j} \tag{1.1}\\
& g=\left(p^{n-2} T\right) a
\end{align*}
$$

where, using L or F, coefficients p, p_{0}, p_{-1}, p_{-2} are written as
(1.1a)

$$
\left\{\begin{aligned}
\mathrm{p} & =\mathrm{LL}_{1} / \alpha=\mathrm{F}_{1} / \alpha, \quad \mathrm{p}_{0}=\mathrm{LL}_{22}+\left(\mathrm{L}_{2}\right)^{2}=\mathrm{F}_{22}, \\
\mathrm{p}-1 & =\left(\mathrm{LL}_{12}+\mathrm{L}_{1} \mathrm{~L}_{2} / \alpha=\mathrm{F}_{12} / \alpha,\right. \\
\mathrm{p}_{-2} & =\left\{\mathrm{LL}_{11}+\left(\mathrm{L}_{1}\right)^{2}-\mathrm{LL}_{1} / \alpha\right\} / \alpha^{2}=\left(\mathrm{F}_{11}-\mathrm{F}_{1} / \alpha\right) / \alpha^{2} .
\end{aligned}\right.
$$

Further T of (1.2) is written as
(1.2a)

$$
\mathrm{T}=\mathrm{p}\left(\mathrm{p}+\mathrm{p}_{0} \mathrm{~b}^{2}+\mathrm{p}_{-1} \beta\right)+\left\{\mathrm{p}_{0} \mathrm{p}_{-2}-\left(\mathrm{p}_{-1}\right)^{2}\right\} \gamma^{2}
$$

From the homogeneity property of F we have

$$
\mathrm{F}_{1} \alpha+\mathrm{F}_{2} \beta=2 \mathrm{~F}, \quad \mathrm{~F}_{11} \alpha+\mathrm{F}_{12} \beta=\mathrm{F}_{1}, \quad \mathrm{~F}_{21} \alpha+\mathrm{F}_{22} \beta=\mathrm{F}_{2}
$$

so that we obtain

$$
\begin{align*}
\mathrm{F}_{11} \mathrm{~F}_{22}-\left(\mathrm{F}_{12}\right)^{2} & =\left\{2 \mathrm{FF}_{11}-\left(\mathrm{F}_{1}\right)^{2}\right\} / \beta^{2}=\mathrm{L}^{3} \mathrm{~L}_{11} / \beta^{2} \tag{1.3}\\
& =-\left(2 \mathrm{FF}_{12}-\mathrm{F}_{1} \mathrm{~F}_{2}\right) / \alpha \beta=-\mathrm{L}^{3} \mathrm{~L}_{12} / \alpha \beta \\
& =\left\{2 \mathrm{FF}_{22}-\left(\mathrm{F}_{2}\right)^{2}\right\} / \alpha^{2}=\mathrm{L}^{3} \mathrm{~L}_{22} / \alpha^{2}
\end{align*}
$$

Consequently T is rewritten as

$$
\begin{align*}
\mathrm{T} & =2 \mathrm{FF} / \alpha^{3}+\left\{\mathrm{F}_{11} \mathrm{~F}_{22}-\left(\mathrm{F}_{1}\right)^{2}\right\} \gamma^{2} / \alpha^{2} \\
& =(\mathrm{L} / \alpha)^{3}\left(\mathrm{~L}_{1}+\mathrm{L}_{11} \alpha \gamma^{2} / \beta^{2}\right) .
\end{align*}
$$

Therefore this is the same T as ([1], 3.5.1).
Now, in the theory of Finsler spaces with (α, β)-metric, the regularity $(g \neq 0)$ of the metric is a very important assumption, but it has never been discussed. Accordingly, we shall find $L(\alpha, \beta)$ being irregular. By (1.2) and (1.2'a) it is $L(\alpha, \beta)$ which satisfies

$$
\begin{equation*}
\mathrm{L}_{1} \beta^{2}+\mathrm{L}_{11} \alpha\left(\mathrm{~b}^{2} \alpha^{2}-\beta^{2}\right)=0 \tag{1.4}
\end{equation*}
$$

The coefficient $L_{11} \alpha^{3}$ of b^{2} is zero whenever L_{11} vanishes, which leads us to a contradiction, because (1.4) gives $L_{1}=0$. Therefore from (1.4) b^{2} is expressed as $b^{2}=f(\alpha, \beta)$ being a function of α and β. Since b^{2} does not depend on y^{1}, from $\dot{\partial}_{1} \alpha=\mathrm{y}_{\mathrm{i}} / \alpha$ and $\dot{\partial}_{1} \beta=b_{1}$, differentiation this by y^{1} yields

$$
\mathrm{f}_{1} \mathrm{y}_{1} / \alpha+\mathrm{f}_{2} \mathrm{~b}_{1}=0
$$

Transvecting this by y^{1} and b^{1}, we have

$$
\mathrm{f}_{1} \alpha+\mathrm{f}_{2} \beta=0, \quad \mathrm{f}_{1} \beta / \alpha+\mathrm{f}_{2} \mathrm{~b}^{2}=0
$$

Thus from $\mathrm{b}^{2} \alpha^{2}-\beta^{2}=\gamma^{2} \neq 0$ (Lemma 1) it follows that $\mathrm{f}_{1}=\mathrm{f}_{2}=0$, which implies b^{2} being constant. So that (1.4) is rewritten as

$$
\frac{\mathrm{L}_{11}}{\mathrm{~L}_{1}}+\frac{\mathrm{b}^{2} \alpha}{\mathrm{~b}^{2} \alpha^{2}-\beta^{2}}-\frac{1}{\alpha}=0,
$$

and integrating this by α

$$
L_{1}=\frac{c_{0} \alpha}{\sqrt{\left|b^{2} \alpha^{2}-\beta^{2}\right|}},
$$

where co being a function of β should be non-zero constant from the homogeneity of L_{1}. Further integrating this by α once more, we get

$$
\begin{array}{ll}
\mathrm{b}^{2} \neq 0: & \mathrm{L}=\mathrm{c}_{1} \sqrt{\left|\mathrm{~b}^{2} \alpha^{2}-\beta^{2}\right|}+\mathrm{c}(\beta), \\
\mathrm{b}^{2}=0: & \mathrm{L}=\mathrm{c}_{1} \alpha^{2} / \beta+\mathrm{c}(\beta),
\end{array}
$$

where c_{1} is non-zero constant, and $\mathrm{c}(\beta)$ being a function of β must be $\mathrm{c}(\beta)=\mathrm{c}_{2} \beta$ ($\mathrm{c}_{2}=$ constant), because L is (1) p-homogeneous with respect to α and β.

Summarizing up the above we have the following theorem.
Theorem 1. An (α, β)-metric $L(\alpha, \beta)$ is irregular, if and only if b^{2} is constant and L has the following form :

$$
\begin{array}{ll}
\text { (1) } \mathrm{b}^{2} \neq 0: & \mathrm{L}=\mathrm{c}_{1} \sqrt{\left|\mathrm{~b}^{2} \alpha^{2}-\beta^{2}\right|}+\mathrm{c}_{2} \beta, \\
\text { (2) } \mathrm{b}^{2}=0: & \mathrm{L}=\mathrm{c}_{1} \alpha^{2} / \beta+\mathrm{c}_{2} \beta,
\end{array}
$$

where $c_{1}(\neq 0)$ and c_{2} are constants.
Remark. Thus a Kropina metric $\mathrm{L}=\alpha^{2} / \beta$ is irregular when b^{2} vanishes. In the celebrated paper [7] of C. Shibata concerned with Kropina metrics, we have $\rho\left(=b^{2}\right)$ in the denominator of (2.4) giving g^{13}.

Example 1: For a Randers metric $\mathrm{L}=\alpha+\beta$, from ($1.2^{\prime} \mathrm{a}$) we get $\mathrm{T}=(\mathrm{L} / \alpha)^{3} \neq 0$, so that it is regular. As to a generalized Kropina metric $\mathrm{L}=\alpha^{\mathrm{t}} \beta^{1-\mathrm{t}}(\mathrm{t} \neq 0,1)([8],(3.19) 1)$), we obtain

$$
\mathrm{T}=\mathrm{t} \alpha^{4 t-4} \beta^{2-4 t}\left\{(2-\mathrm{t}) \beta^{2}+(\mathrm{t}-1) \mathrm{b}^{2} \alpha^{2}\right\} .
$$

Hence $\mathrm{T}=0$ gives

$$
(2-t) b_{i} b_{j}+(t-1) b^{2} a_{i j}=0 .
$$

Consequently we obtain $b^{2}=0$ and $t=2$, so that this case reduces to the above remark. Therefore a generalized Kropina metric which is not a Kropina metric is all regular.

§2. Geodesic equations in the Riemannian parameter.

By the arc-length s (Finslerian parameter) the equations of a geodesic of $\mathrm{F}^{\mathrm{n}}=\left(\mathrm{M}^{\mathrm{n}}, \mathrm{L}(\alpha, \beta)\right)$ is written in the well-known form

$$
\begin{equation*}
\frac{d^{2} x^{1}}{d s^{2}}+2 G^{\prime}\left(x, \frac{d x}{d s}\right)=0 \tag{2.1}
\end{equation*}
$$

where functions $\mathrm{G}^{1}(\mathrm{x}, \mathrm{y})$ are given by

$$
2 \mathrm{G}^{\mathrm{i}}=\mathrm{g}^{\operatorname{lr}}\left(\mathrm{y}^{\mathrm{j}} \dot{\partial}_{\mathrm{r}} \partial_{\mathrm{j}} \mathrm{~F}-\partial_{\mathrm{r}} \mathrm{~F}\right), \quad \mathrm{F}=\frac{\mathrm{L}^{2}}{2}
$$

Especially for an (α, β - -metric, the results of [4] may be applied to G^{\prime}. In case of the Randers metric $L=\alpha+\beta$, however, using the arc-length τ (Riemannian parameter) in the associated Riemannian space $\mathrm{R}^{\mathrm{n}}=\left(\mathrm{M}^{\mathrm{n}}, \alpha\right)$, the equations of a geodesic have been simply written by Randers himself ([1], (1.3.2. 2)). So, in this section, using the parameter τ, we shall give the equations of a geodesic of F^{n}.

Using the parameter τ, (2.1) is written as

$$
\frac{\mathrm{d}^{2} \mathrm{x}^{1}}{\mathrm{~d} \tau^{2}}+2 \mathrm{G}^{\prime}\left(\mathrm{x}, \frac{\mathrm{dx}}{\mathrm{~d} \tau}\right)=-\frac{\tau^{\prime \prime}}{\left(\tau^{\prime}\right)^{2}} \frac{\mathrm{dx}}{\mathrm{~d}} \mathrm{~d}^{1}
$$

where $\tau^{\prime}=\mathrm{d} \tau / \mathrm{ds}$. Since $\mathrm{d} \tau=\alpha(\mathrm{x}, \mathrm{dx})$ and $\mathrm{ds}=\mathrm{L}(\mathrm{x}, \mathrm{dx})$, we obtain.

$$
\frac{\mathrm{d} \tau}{\mathrm{ds}}=\frac{1}{\mathrm{~L}(\mathrm{x}, \dot{\mathrm{x}})}, \quad \frac{\mathrm{d}^{2} \tau}{\mathrm{ds}^{2}}=-\frac{1}{(\mathrm{~L})^{3}}\left(\mathrm{~L}_{1} \frac{\mathrm{~d} \alpha}{\mathrm{~d} \tau}+\mathrm{L}_{2} \frac{\mathrm{~d} \beta}{\mathrm{~d} \tau}\right)
$$

where $\dot{\mathrm{x}}^{1}=\mathrm{dx} / \mathrm{d} \tau$. Paying attention to $\alpha(\mathrm{x}, \dot{\mathrm{x}})=1$ along a geodesic, we get

$$
\frac{\mathrm{d}^{2} \tau}{\mathrm{ds}^{2}}=\frac{-\mathrm{L}_{2}}{(\mathrm{~L})^{3}} \frac{\mathrm{~d} \beta}{\mathrm{~d} \tau}=-\frac{\mathrm{L}^{2}}{(\mathrm{~L})^{3}}\left\{\mathrm{~b}_{i} \ddot{\mathrm{x}}^{1}+\left(\mathrm{b}_{\mathrm{i} ; \mathrm{j}}+\mathrm{b}_{\mathrm{r}}{\gamma_{1}^{\mathrm{r}}}^{\mathrm{j}}\right) \dot{\mathrm{x}}^{1} \dot{\mathrm{x}}^{\mathrm{J}}\right\}
$$

where $b_{1 ; s}$ are the covariant derivatives of b_{i} with respect to Levi-Civita connection $\left\{\gamma_{j k}^{j}(x)\right\}$ of the associated Riemannian space.
In the following we shall employ the symbols used in [4].
We put

Then we obtain

$$
\frac{\mathrm{d}^{2} \tau}{\mathrm{ds}^{2}}=-\frac{\mathrm{L}_{2}}{(\mathrm{~L})^{3}}\left(\mathrm{G}+\mathrm{r}_{00}+\mathrm{br}_{\mathrm{r}} \gamma_{0}{ }^{\mathrm{r}}\right), \quad \mathrm{G}=\mathrm{b}_{0} \ddot{\mathrm{x}}^{1}
$$

Thus, as it was shown in [4], we put

$$
2 \mathrm{G}^{\mathrm{I}}=\gamma_{0}^{1}{ }_{0}^{1}+2 \mathrm{~B}^{\mathrm{I}}
$$

and (2.1') becomes

$$
\frac{\mathrm{d}^{2} \mathrm{x}^{1}}{\mathrm{~d} \tau^{2}}+\gamma_{0}^{1}{ }_{0}+2 \mathrm{~B}^{1}=\frac{\mathrm{L}_{2}}{\mathrm{~L}}\left(\mathrm{G}+\mathrm{r}_{00}+\mathrm{b}_{\mathrm{r}} \gamma_{0}^{\mathrm{r}}{ }_{0}\right) \frac{\mathrm{dx}^{1}}{\mathrm{~d} \tau}
$$

Now, it follows from [4] that B^{1} are

$$
\begin{equation*}
\mathrm{B}^{1}=\frac{\mathrm{E}}{\alpha} \mathrm{y}^{1}+\frac{\alpha \mathrm{L}_{2}}{\mathrm{~L}_{1}} \mathrm{~s}_{0}^{1}-\frac{\alpha \mathrm{L}_{11}}{\mathrm{~L}_{1}}\left(\mathrm{C}+\frac{\alpha}{2 \beta} \mathrm{r}_{00}\right) \mathrm{c}^{1} \tag{2.3}
\end{equation*}
$$

where C, E and c^{1} are given by

$$
\begin{equation*}
\mathrm{C}=-\frac{\alpha^{2} \mathrm{~L}_{2}}{\beta \mathrm{~L}_{1}} \mathrm{~S}_{0}-\frac{\alpha \mathrm{L}_{11}}{\beta^{2} \mathrm{~L}_{1}} \gamma^{2}\left(\mathrm{C}+\frac{\alpha}{2 \beta} \mathrm{r}_{00}\right) \tag{2.4}
\end{equation*}
$$

$$
\begin{equation*}
\frac{2 \mathrm{~L}}{\alpha} \mathrm{E}=\mathrm{L}_{2}\left(\mathrm{r}_{00}+\frac{2 \beta}{\alpha} \mathrm{C}\right), \tag{2.5}
\end{equation*}
$$

and

$$
\mathrm{c}_{1}=\frac{1}{\alpha} \mathrm{y}_{1}-\frac{\alpha}{\beta} \mathrm{b}_{1}
$$

We now obtain

$$
\mathrm{B}^{\prime} \mathrm{b}_{1}=\frac{\beta}{\alpha}(\mathrm{E}-\mathrm{C}),
$$

because of $C^{\prime}=B^{\prime} c_{1}$ and $B^{\prime} b_{1}=\frac{\beta}{\alpha} B^{\prime}\left(\frac{1}{\alpha} y_{1}-c_{1}\right)$.
On eliminating C from this and (2.5), we get

$$
\begin{equation*}
2 \mathrm{~B}^{\prime} \mathrm{b}_{1}=\mathrm{r}_{00}-\frac{2 \mathrm{~L}_{1}}{\mathrm{~L}_{2}} \mathrm{E} . \tag{2.6}
\end{equation*}
$$

Consequently, transvecting (2.1") by bi and substituting (2.6) we have

$$
\begin{equation*}
\mathrm{G}+\mathrm{b}_{\mathrm{r}} \gamma_{0}{ }_{\mathrm{r}}^{\mathrm{r}}{ }_{0}+\mathrm{r}_{00}=\frac{2 \mathrm{LE}}{\alpha \mathrm{~L} 2} . \tag{2.7}
\end{equation*}
$$

Also, eliminating C by means of (2.3) and (2.5) we have

$$
\mathrm{B}^{1}=\frac{\mathrm{E}}{\alpha} \mathrm{y}^{\prime}+\frac{\alpha \mathrm{L}_{2}}{\mathrm{~L}_{1}} \mathrm{~s}_{0}^{1}-\frac{\alpha \mathrm{LL}_{11} \mathrm{E}}{\beta \mathrm{~L}_{1} 2} \mathrm{c}^{\prime} .
$$

Thus, putting $\mathrm{p}^{\mathrm{d}}=\mathrm{b}^{\mathrm{d}}-\frac{\beta}{\alpha^{2}}{ }^{\mathrm{y}}$, we have

$$
\begin{equation*}
\mathrm{B}^{\prime}=\frac{\mathrm{E}}{\alpha^{\prime}} \mathrm{y}^{\prime}+\frac{\alpha \mathrm{L}_{2}}{\mathrm{~L}_{1}} s_{0}^{\prime}+\frac{\mathrm{LL}_{11} \mathrm{E} \alpha^{2}}{\mathrm{~L}_{1} \mathrm{~L}_{2} \beta^{2}} p^{\prime} \tag{2.8}
\end{equation*}
$$

Therefore, by means of (2.7) and (2.8), (2.1") is rewritten as

$$
\begin{equation*}
\frac{\mathrm{d}^{2} \mathrm{x}^{1}}{\mathrm{~d} \tau^{2}}+\gamma_{0}^{1} 0+\frac{2 \mathrm{~L}_{2}}{\mathrm{~L}_{1}} \mathrm{~s}_{0}^{1}+\frac{2 L_{11} \mathrm{~L}}{\mathrm{~L}_{1} \mathrm{~L}_{2} \beta^{2}} \mathrm{p}^{1}=0 \tag{2.9}
\end{equation*}
$$

Theorem 2. In terms of arc-length τ in the associated Riemannian space $R^{n}=\left(M^{n}, \alpha\right)$, the equations of a geodesic of a Finsler space $F^{\mathrm{n}}=\left(M^{\mathrm{n}}, L(\alpha, \beta)\right)$ with (α, β)-metric are written as (2.9), where $\gamma_{j k}^{1}(x)$ are the Christoffel symbols of $R^{\mathrm{n}}, p^{1}=b^{1}-\beta \dot{x}^{1}, E$ is given by (2.4) and (2.5), and y^{1} of each points (x, y) is $\dot{x}^{1}=d x^{1} / d \tau$.

Remark. From (2.4) C is uniquely determined and E from (2.5), provided that $1+\left(\alpha \mathrm{L}_{11} \gamma^{2} / \beta^{2} \mathrm{~L}_{1}\right)$ does not vanish. When this is zero, $\mathrm{L}(\alpha, \beta)$ is irregular from (1.4).
The vector p^{1} was often used by C. Shibata: [7], (2.7) and [8] (2.4)1).
Example 2: We shall consider a Randers metric $\mathrm{L}=\alpha+\beta$.
Because of $\mathrm{L}_{11}=0$, the equations of a geodesic are given by

$$
\frac{\mathrm{d}^{2} \mathrm{x}^{1}}{\mathrm{~d} \tau^{2}}+\gamma_{0}^{1}+2 \mathrm{~s}_{0}^{1}=0
$$

This coincides with the result of G. Randers ([1], (1.3.2, 2)).
Example 3: Secondly we shall consider a generalized Kropina metric $L=\alpha^{t} \beta^{1-t}(t \neq 0,1)$. From (2.4) we have

$$
\mathrm{r}_{00}+\frac{2 \beta}{\alpha} \mathrm{C}=\frac{\mathrm{r}_{00} \beta^{2}+2 \mathrm{~s}_{\mathrm{s}} \alpha^{2} \beta(\mathrm{t}-1) / \mathrm{t}}{\beta^{2}+(\mathrm{t}-1) \gamma^{2}}
$$

and (2.5) is written as

$$
\mathrm{E}=\frac{\alpha}{2 \beta}(1-\mathrm{t})\left(\text { roo }+\frac{2 \beta}{\alpha} \mathrm{C}\right)
$$

Therefore the equations of a geodesic are given by

$$
\frac{\mathrm{d}^{2} \mathrm{x}^{1}}{\mathrm{~d} \tau^{2}}+\gamma_{0}^{1}+\frac{2(1-\mathrm{t})}{\beta \mathrm{t}} \mathrm{~s}_{0}^{1}+\frac{(\mathrm{t}-1)\left\{\mathrm{rroo}_{0} \beta+2 \mathrm{~s}_{0}(\mathrm{t}-1) / \mathrm{t}\right\}}{\beta\left\{\beta^{2}+(\mathrm{t}-1) \gamma^{2}\right\}} \mathrm{p}^{1}=0
$$

Especially, in case of a Kropina metric $(t=2)$, we obtain

$$
\frac{\mathrm{d}^{2} \mathrm{x}^{1}}{\mathrm{~d} \tau^{2}}+\gamma_{0}^{1}-\frac{1}{\beta} \mathrm{~s}_{0}^{1}+\frac{\mathrm{r}_{00} \beta+\mathrm{s}_{0}}{\beta \mathrm{~b}^{2}} \mathrm{p}^{1}=0
$$

§ 3 . Berwald frames.

In the theory of Finsler spaces the so-called C-tensor, defined by

$$
\mathrm{C}_{\mathrm{jjk}}=\dot{\partial}_{\mathrm{k}}\left(\mathrm{~g} \mathrm{~g}_{\mathrm{ij}} / 2\right)=\dot{\partial}_{\mathrm{l}} \dot{\partial}_{\mathrm{j}} \dot{\partial}_{\mathrm{k}}\left(\mathrm{~L}^{2} / 4\right)
$$

plays an important role : For instance, a Finsler space is a Riemannian space, a Berwald space and a Landsberg space, if and only if $\mathrm{C}_{\mathrm{ijk}}=0, \mathrm{C}_{\mathrm{ljk} \mid \mathrm{h}}=0$ and $\mathrm{C}_{\mathrm{ljk} \mid 0}=0$ respectively ([1], [3]).

Throughout the present and the next sections we restrict our consideration to two-dimensional Finsler spaces. Then the C-tensor can be written as

$$
\begin{equation*}
\mathrm{L}_{\mathrm{ljk}}=\mathrm{I} \mathrm{mim}_{\mathrm{j}} \mathrm{~m}_{\mathrm{k}}, \tag{3.1}
\end{equation*}
$$

in the Berwald frame $(1, m)$, where $I=I(x, y)$ is a scalar field, called the main scalar. The formula of I for a Finsler space with (α, β)-metric has been given in the paper [2]. It is, however, written in an isothermal coordinate system of the associated Riemannian space for the sake of computation and, as a consequence, it is not easy to put in practice.

The purpose of the present section is to establish the relation between the Berwald frames of a Finsler space $\mathrm{F}^{2}=\left(\mathrm{M}^{2}, \mathrm{~L}(\alpha, \beta)\right)$ with (α, β)-metric and its associated Riemannian space $\mathrm{R}^{2}=\left(\mathrm{M}^{2}, \alpha\right)$, and, in the next section, we shall find the formula of the main scalar of F^{2} as an application of the relation.

Now the Berwald frame $(1, \mathrm{~m})$ has been defined in $([3], \S 28)$ but we shall here consider it without the assumption of positive-definiteness of the metric.

The contravariant components 1^{1} and the covariant components 1 of the first vector 1 of $(1, \mathrm{~m})$ are given by
(3.2)
(1) $1^{\prime}=y^{\prime} / L(x, y)$,
(2) $1_{1}=\dot{\partial}_{\mathrm{i}} \mathrm{L}(\mathrm{x}, \mathrm{y})$.

Then, in terms of 1_{i} and the angular metric tensor $h_{j j}=L\left(\dot{\partial}_{1} \dot{\partial}_{j} L\right)$ the fundamental tensor $g_{j j}=$ $\dot{\partial}_{1} \dot{\partial}_{j}\left(\mathrm{~L}^{2} / 2\right)$ is written as

$$
\begin{equation*}
g_{1 j}=1_{11}+h_{1 j} \tag{3.3}
\end{equation*}
$$

Since the rank of the symmetric matrix (his) of order two is equal to one, we get a sign $\varepsilon= \pm 1$ and ($\mathrm{m}_{1}, \mathrm{~m}_{2}$) satisfying

$$
\begin{equation*}
\mathrm{h}_{1 \mathrm{j}}=\varepsilon \operatorname{mim}_{\mathrm{j}}, \quad \mathrm{i}, \mathrm{j}=1,2 \tag{3.4}
\end{equation*}
$$

It is noted that the covariant vector m_{1} is determined by (3.4) up to the orientation, while ε is uniquely determined. ε is called the signature of the space. Thus (3.3) can be rewritten as

$$
\begin{equation*}
\mathrm{g}_{\mathrm{IJ}}=1_{1} 1_{\mathrm{j}}+\varepsilon \mathrm{mim}_{\mathrm{j}} \tag{3.3'}
\end{equation*}
$$

The equation $h_{1 j y}{ }^{j}=0$ yields $m_{s} 1^{j}=0$ from (3.4). The contravariant components $m^{1}=g^{\prime \prime} m_{j}$ satisfies

$$
\mathrm{m}_{\mathrm{l}}=\mathrm{g}_{1} \mathrm{~m}^{\mathrm{j}}=\left(1_{i} 1_{j}+\varepsilon \mathrm{mım}_{j}\right) \mathrm{m}^{\mathrm{j}}=\left(\varepsilon_{\mathrm{m}} \mathrm{~m}^{j}\right) \mathrm{mi}_{\mathrm{i}}
$$

which implies $m_{3} m^{j}=\varepsilon$. Thus m^{1} are given by
(3.5)
(1) $\mathrm{m}^{\mathrm{l}} 1_{1}=0$,
(2) $m^{\prime} m_{1}=\varepsilon$.

It follows from (3.3) that we have

$$
\begin{equation*}
\mathrm{g}=\operatorname{det}\left(\mathrm{g}_{\mathrm{ij}}\right)=\varepsilon\left(1_{\mathrm{im}}-1_{2} \mathrm{~m}_{1}\right)^{2} \tag{3.6}
\end{equation*}
$$

Hence ε is the sign of g.
We consider the derivatives of $(1, m)$ by y^{1}. From (3.2) we get immediately
(3.7)
(1) $L \dot{\partial}_{\mathrm{j}} \mathrm{l}^{\prime}=\varepsilon \mathrm{m}^{\prime} \mathrm{m}_{\mathrm{j}}$,
(2) $\mathrm{L} \dot{\partial}_{\mathrm{j}} \mathrm{l}_{\mathrm{i}}=\varepsilon \mathrm{mim}_{\mathrm{j}}$.

Next we differentiate $m_{1} 1^{1}=0$ by y^{k} and get $\left(L \dot{\partial}_{\mathrm{k}} \mathrm{m}_{\mathrm{i}}\right) 1^{1}=-\mathrm{m}_{\mathrm{k}}$ from (3.7). From (3.3) we get similarly

$$
2 \mathrm{LC}_{\mathrm{ljk}}=\varepsilon\left(\mathrm{m}_{1} 1_{\mathrm{j}}+1 \mathrm{~m}_{\mathrm{j}}\right) \mathrm{m}_{\mathrm{k}}+\varepsilon\left(\dot{\partial}_{\mathrm{k} \mathrm{~m}_{\mathrm{i}}}\right) \mathrm{m}_{\mathrm{j}}+\varepsilon \mathrm{m}_{\mathrm{l}}\left(\dot{\partial}_{\mathrm{k} \mathrm{~m}_{\mathrm{j}}}\right) .
$$

Transvecting this by $\mathrm{m}^{\mathrm{i}} \mathrm{m}^{\mathrm{j}}$ and using (3.1) and (3.5), we have ($\mathrm{L} \dot{\partial}_{\mathrm{k}} \mathrm{m}_{1}$) $\mathrm{m}^{1}=I \mathrm{~m}_{\mathrm{k}}$. Consequently we obtain (3.8) (2). Further we differentiate $m_{I}=g_{1} m^{j}$ by y^{k} and using (3.8)(2), we get (3.8) (1). Therefore we obtain
(3.8)
(1) $\mathrm{L} \dot{\partial}_{\mathrm{j}} \mathrm{m}^{\mathrm{t}}=-\left(1^{1}+\varepsilon \mathrm{Im}^{1}\right) \mathrm{m}_{\mathrm{j}}$,
(2) $L \dot{\partial}_{\mathrm{jmi}}=-\left(1_{\mathrm{I}}-\varepsilon \mathrm{mII}\right) \mathrm{m}_{\mathrm{j}}$.

Proposition 1. The contravariant and covariant components of the Bervald frame (l, m) are given by (3.2), (3.4) and (3.5), where the signature ε is the sign of $g:(3.6)$. Their derivatives by y^{\prime} are given by (3.7) and (3.8), where I is the main scalar.

Now we are concerned with a two-dimensional Finsler space $\mathrm{F}^{2}=\left(\mathrm{M}^{2}, \mathrm{~L}(\alpha, \beta)\right)$ with (α, β). metric and its associated Riemannian space $\mathrm{R}^{2}=\left(\mathrm{M}^{2}, \alpha\right)$. We shall denote by $(1, \mathrm{~m})$ and (u , v) the Berwald frames of F^{2} and R^{2} respectively. ($1, m$) is found as above. As for (u, v) we have first from (3.2).
(3.9)
(1) $\mathrm{u}^{\mathrm{I}}=\mathrm{y}^{1 / \alpha}(\mathrm{x}, \mathrm{y})$,
(2) $\mathrm{u}_{1}=\dot{\partial}_{1} \alpha(\mathrm{x}, \mathrm{y})$.

Next, if we denote by $k_{i j}$ the angular metric tensor of R^{2}, then we have $\mathrm{k}_{1 j}=\alpha\left(\dot{\partial}_{1} \dot{\partial}_{j} \alpha\right)$ and, similarly to (3.3), (3.4), (3.5) and (3.6)
(1) $a_{i j}=u_{i} u_{j}+e v_{i v j}, \quad e= \pm 1$,
(2) $\mathrm{k}_{1 \mathrm{j}}=$ evivj,
(3) $v^{1} u_{1}=0, \quad v^{1} v_{1}=e$,
(4) $\quad \mathrm{a}=\operatorname{det}\left(\mathrm{a}_{1 \mathrm{j}}\right)=\mathrm{e}\left(\mathrm{u}_{1 \mathrm{~V}_{2}}-\mathrm{u}_{2} \mathrm{~V}_{1}\right)^{2}$.

Further, similarly to (3.7) and (3.8), we have
(1) $\alpha \dot{\partial}_{j} u^{1}=e v^{1} v_{j}, \quad \alpha \dot{\partial}_{j} u_{1}=$ evivs,
(2) $\alpha \dot{\partial}_{\mathrm{j}} \mathrm{v}^{1}=-\mathrm{u}^{\mathrm{t}} \mathrm{v}_{\mathrm{j}}, \quad \alpha \dot{\partial}_{\mathrm{j}} \mathrm{V}=-\mathrm{u}_{\mathrm{l}} \mathrm{v}_{\mathrm{J}}$,
where (2) are obtained from $I=0$ of R^{2}.
We consider b_{1} of $\beta=b_{1}(x) y^{1}$ in the frame (u, v). Putting $b_{1}=B_{1} u_{1}+B v_{1}$, we transvect it by $y^{1}=$ αu^{1} and $b^{1}=a^{1 j} b_{j}$. Then we get $\beta=B_{1} \alpha$ and $b^{2}=\left(B_{1}\right)^{2}+e(B)^{2}$. Hence we obtain

$$
\begin{equation*}
\mathrm{b}_{1}=\frac{\beta}{\alpha} \mathrm{u}_{1}+\mathrm{Bv}_{1} \tag{3.12}
\end{equation*}
$$

$$
\begin{equation*}
(B)^{2}=e\left(b^{2}-\frac{\beta^{2}}{\alpha^{2}}\right)=e \frac{\gamma^{2}}{\alpha^{2}} \tag{3.12a}
\end{equation*}
$$

Now we deal with the main purpose of the present section, finding the expression of $(1, m)$ in (u, v). First (3.2) and (3.9) give $L 1^{1}=\alpha u^{\prime}$ and $I_{1}=L_{1} u_{1}+L_{2} b_{1}$. Hence (3.12) leads to
(1) $1^{1}=\frac{\alpha}{\mathrm{L}} \mathrm{u}^{\mathrm{i}}$,
(2) $\mathrm{I}_{1}=\frac{\mathrm{L}}{\alpha} \mathrm{u}_{1}+\mathrm{L}_{2} B v_{1}$.

Next (3.11) (1) gives

$$
\begin{aligned}
h_{1 j} & =\dot{L} \dot{\partial}_{j}\left(L_{11} u_{1}+L_{2} b_{1}\right) \\
& =L L_{11} u_{1} u_{j}+L_{L_{12}}\left(u_{u} b_{j}+u_{j} b_{1}\right)+L_{22} b_{i} b_{j}+e \frac{L L_{1}}{\alpha} v_{1 v} v_{j} .
\end{aligned}
$$

Since we have $\mathrm{L}_{11} \alpha+\mathrm{L}_{12} \beta=\mathrm{L}_{21} \alpha+\mathrm{L}_{22} \beta=0$ from the homogeneity, the Weierstrass invariant $\mathrm{w}(\alpha, \beta)$ of the space, similarly to the case of a two-dimensional Finsler space ([1], 1.1.3), can be defined by

$$
\begin{equation*}
\frac{\mathrm{L}_{11}}{\beta^{2}}=\frac{-\mathrm{L}_{12}}{\alpha \beta}=\frac{\mathrm{L}_{22}}{\alpha^{2}}=\mathrm{w}(\alpha, \beta) \tag{3.14}
\end{equation*}
$$

Then we have $h_{i j}=\mathrm{eL}\left(\mathrm{L}_{1} / \alpha+\mathrm{w} \gamma^{2}\right)_{\mathrm{V}_{i} \mathrm{v}_{\mathrm{j}}}$ by virtue of (3.12). Thus (3.4) leads to

$$
\begin{equation*}
\mathrm{m}_{\mathrm{I}}=\mathrm{mvi}, \tag{3.15}
\end{equation*}
$$

$$
\begin{equation*}
(\mathrm{m})^{2}=\mathrm{e} \varepsilon \mathrm{~L}\left(\frac{\mathrm{~L}_{1}}{\alpha}+\mathrm{w} \gamma^{2}\right) . \tag{3.15a}
\end{equation*}
$$

Finally we put $\mathrm{m}^{1}=\mathrm{ru}^{1}+\mathrm{sv}^{1}$. Transvecting this by 1_{l} and $\mathrm{mı}$, (3.13) and (3.15) lead to $\mathrm{Lr} / \alpha+$ $\mathrm{eL}_{2} \mathrm{Bs}=0$ and ems $=\varepsilon$. Hence we get

$$
\begin{equation*}
\mathrm{m}^{\prime}=-\frac{\varepsilon}{\mathrm{Lm}}\left(\mathrm{~L}_{2} \alpha \mathrm{Bu}^{\prime}-\mathrm{eLv}^{\prime}\right) . \tag{3.16}
\end{equation*}
$$

Proposition 2. In the Berwald frame (u, v) of its associated Riemannian space R^{2} of a twodimensional Finsler space F^{2} with (α, β)-metric, the Berwald frame (l, m) of F^{2} is written as (3.13), (3.15) and (3.16), where B and m are given by (3.12a) and (3.15a) respectively, w by (3.14), and ε and e are signatures of F^{2} and R^{2} respectively. The vector b_{1} is written as (3.12).

Example 4 : For a Kropina metric $\mathrm{L}=\alpha^{2} / \beta$ we have

$$
\begin{aligned}
& 1^{1}=\frac{\beta}{\alpha} \mathrm{u}^{1}, \quad 1_{1}=\frac{\alpha}{\beta} \mathrm{u}_{\mathrm{i}}-\left(\frac{\alpha}{\beta}\right)^{2} B v_{1}, \\
& \mathrm{~m}^{1}=\varepsilon \frac{\mathrm{B} \alpha}{\mathrm{~m} \beta} \mathrm{u}^{1}+\frac{\mathrm{e} \varepsilon}{\mathrm{~m}} \mathrm{v}^{1}, \quad \mathrm{~m}_{\mathrm{l}}=\mathrm{mvi}_{1}, \\
& \mathrm{~b}_{\mathrm{l}}=\frac{\beta}{\alpha} \mathrm{u}_{1}+\mathrm{Bvi}_{1}, \quad(\mathrm{~B})^{2}=\mathrm{e} \frac{\gamma^{2}}{\alpha^{2}}, \quad(\mathrm{~m})^{2}=\mathrm{e} \varepsilon \frac{2 \alpha^{4}}{\beta^{4}} \mathrm{~b}^{2} .
\end{aligned}
$$

C. Shibata gives in [7]

$$
\begin{equation*}
h_{1 J}=\left(\frac{\alpha}{\beta}\right)^{2}\left(2 a_{1 j}-1_{1} b_{j}-1_{j b_{1}}\right) . \tag{2.2}
\end{equation*}
$$

It is observed that this $h_{i j}$ is written as $h_{i j}=\mathrm{e}\left(2 \mathrm{~b}^{2} \alpha^{4} / \beta^{4}\right)_{V I V j}$, which is equal to $h_{i j}=\varepsilon \mathrm{mim}_{j}$.

§ 4 . Main scalar.

We shall consider the main scalar I of a two-dimensional Finsler space with (α, β)-metric. If we write (3.6) in the Berwald frame (u, v), then we have from (3.10) (4)

$$
\frac{\varepsilon \mathrm{g}}{\mathrm{ea}}=\left(\frac{\mathrm{Lm}}{\alpha}\right)^{2}=\mathrm{e} \varepsilon\left(\frac{\mathrm{~L}}{\alpha}\right)^{3}\left(\mathrm{~L}_{1}+\mathrm{w} \alpha \gamma^{2}\right) .
$$

Since (1.2) reduces to $g / a=T$ in the two-dimensional case, the above can be written as

$$
\begin{equation*}
\frac{\mathrm{g}}{\mathrm{a}}=\mathrm{T}=\mathrm{e} \varepsilon\left(\frac{\mathrm{Lm}}{\alpha}\right)^{2}=\left(\frac{\mathrm{L}}{\alpha}\right)^{3}\left(\mathrm{~L}_{1}+\mathrm{w} \alpha \gamma^{2}\right), \tag{4.1}
\end{equation*}
$$

which yields $\mathrm{T}_{2}=\partial \mathrm{T} / \partial \beta$ of the form

$$
\begin{equation*}
\mathrm{T}_{2}=2 \mathrm{e} \varepsilon \frac{\mathrm{Lm}}{\alpha^{2}}(\mathrm{Lm})_{2} \tag{4.2}
\end{equation*}
$$

Now (3.15) and (3.11) give

$$
\dot{\partial}_{\mathrm{j}} \mathrm{~m}_{\mathrm{I}}=\left(\mathrm{m}_{\mathrm{i}} \mathrm{u}_{\mathrm{J}}+\mathrm{m}_{2} \mathrm{~b}_{\mathrm{j}}\right)_{\mathrm{v}_{1}}-\frac{\mathrm{m}}{\alpha} \mathrm{u}_{\mathrm{iv}}
$$

Substituting (3.12), we have

$$
\dot{\partial}_{\mathrm{s}} \mathrm{~m}_{1}=\frac{1}{\alpha}\left(\mathrm{~m}_{1} \alpha+\mathrm{m}_{2} \beta\right)_{\mathrm{viu}_{\mathrm{j}}}-\left(\frac{\mathrm{m}}{\alpha} \mathrm{u}_{1}-\mathrm{m}_{2} B \mathrm{v}_{1}\right)_{\mathrm{v}_{\mathrm{s}}}
$$

Since $\mathrm{m}(\alpha, \beta)$ is positively homogeneous of degree zero in (α, β), the first term of the right-hand side of the above vanishes. On the other hand, (3.8) together with (3.13) and (3.15) yields

$$
\dot{\partial}_{\mathrm{i} \mathrm{~m}_{\mathrm{l}}}=-\frac{\mathrm{m}}{\alpha} \mathrm{u}_{\mathrm{ivj}}+\frac{\mathrm{m}}{\mathrm{~L}}\left(\varepsilon \operatorname{Im}-\mathrm{L}_{2} \mathrm{~B}\right)_{\mathrm{vivj}_{\mathrm{J}}}
$$

Comparing these two expressions of $\dot{\partial}_{3} \mathrm{~m}$, we obtain $\mathrm{I}=\varepsilon \mathrm{B}(\mathrm{Lm})_{2} /(\mathrm{m})^{2}$ and (4.2) yields $\mathrm{I}=\mathrm{eBT}_{2} \alpha^{2} /$ $2 \mathrm{~L}(\mathrm{~m})^{3}$. Since the sign of I depends on the orientation of mı, it is enough to deal with I^{2}. Thus (3.12a) and (4.1) lead to

$$
\begin{equation*}
\varepsilon I^{2}=\frac{\mathrm{L}^{4} \gamma^{2}}{4 \alpha^{4}} \frac{\left(\mathrm{~T}_{2}\right)^{2}}{(\mathrm{~T})^{3}} . \tag{4.3}
\end{equation*}
$$

Theorem 3. The main scalar I of a two-dimensional Finsler space with (α, β)-metric is given by (4.3), where T is given by (4.1) and $T_{2}=\partial T / \partial \beta$.

Example 5 : (1) We consider a two-dimensional Randers metric $\mathrm{L}=\alpha+\beta$. Then we have $\mathrm{w}=$ 0 and $T=(L / \alpha)^{3}$, so that

$$
\varepsilon \mathrm{I}^{2}=\frac{9 \gamma^{2}}{4(\alpha+\beta) \alpha}, \quad \text { Cf. } \quad[1], \text { p. } 127 ; \quad[2]
$$

(2) We deal with a two-dimensional generalized Kropina metric $L=\alpha^{r} \beta^{s}, r+s=1$. We have

$$
\mathrm{w}=-\mathrm{rs} \alpha^{\mathrm{r}-2} \beta^{\mathrm{s}-2}, \quad \mathrm{~T}=\mathrm{r} \alpha^{4 \mathrm{r}-4} \beta^{4 \mathrm{~s}-2}\left\{(1+\mathrm{s}) \beta^{2}-\mathrm{sb}^{2} \alpha^{2}\right\} .
$$

Hence we obtain

$$
\varepsilon I^{2}=\frac{\mathrm{s}^{2}\left\{2(1+\mathrm{s}) \beta^{2}+(1-2 \mathrm{~s}) \mathrm{b}^{2} \alpha^{2}\right\}^{2} \gamma^{2}}{\mathrm{r}\left((1+\mathrm{s}) \beta^{2}-\mathrm{sb}^{2} \alpha^{2}\right\}^{3}}, \quad \text { Cf. } \quad \text { [2] }
$$

In particular, for a Kropina metric $(\mathrm{r}=2, \mathrm{~s}=-1)$ we have

$$
\varepsilon I^{2}=\frac{9 \gamma^{2}}{2 \mathrm{~b}^{2} \alpha^{2}} .
$$

References

[1] P. L. Antonelli, R. S. Ingarden and M. Matsumoto : The Theory of Sprays and Finsler Spaces with Applications in Physics and Biology, Kluwer Academic Publishers, FTPH 58, Dordrecht/ Boston/ London, 1993.
[2] M. Hashiguchi, S. Hōjō and M. Matsumoto : On Landsberg spaces of two dimensions, J. Korean Math. Soc., 10 (1973), 17-26.
[3] M. Matsumoto : Foundations of Finsler Geometry and Special Finsler Spaces, Kaiseisha Press, Saikawa, Ötsu, Japan, 1986.
[4] M. Matsumoto : The Berwald connection on a Finsler space with an (α, β)-metric, Tensor, N.S., 50 (1991), 18-21.
[5] M. Matsumoto : Theory of Finsler spaces with (α, β)-metric, Reports on Math. Phys., 31 (1992), 43-83.
[6] S. Numata : On the curvature tensor Smjk and the tensor Thisk of generalized Randers spaces, Tensor, N.S., 29 (1975), 35-39.
[7] C. Shibata: On Finsler spaces with Kropina metric, Reports on Math. Phys., 13 (1978), 117-128.
[8] C. Shibata : On Finsler spaces with an (α, β)-metric, J. Hokkaido Univ. Education, (A) 35 (1984), 1-16.

