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Abstract 

Ever since Professor Dr. C. Shibata started on the course of studying the differential geometry of Finsler 
spaces, he had been especially interested in Finsler spaces with (a ,  fi)-metric, which have been paid special 
attention in the theoretical physics. We have a comprehensive survey [5] of the theory of Finsler spaces 
with (a ,  ,6)-metric written by the third author in 1991, in which ten papers of C. Shibata were quoted. We 
dedicate to his memory the present paper consisting of basic and important remarks on the theory of Finsler 
spaces with (a ,  .3)-metric. 

彗 ー ・ Irregular ( a ,  B)—metrics. 

We shall consider an n—dimensional Finsler space F"=(M", L(〟, 爛) with (0!, 燭)-metric L(〟「輝) 
([3], §30 ; [1], 1.4.2). As usual, we suppose the following conditions ‥ 

(ー) The associated Riemannian space R"‥(M", の ([7]) is quasi-Riemannian. That is, the 
Riemannian metric ‥ ' ' ' 

(12(x, dx) ‥ au(x)dx‘dxj 
is not-always positive-definite, but is regular (aZdet(au) キ 0) ([1], 1.1.2). 

(2) Throughout the paper we except the points (x, y) which B(x, y)=bi(x)'yl vanishes. 

( 1 )  



2) * Masashi KーTAYAMA, Masay。shi AZUMA and Makoto MATSUM。T。 
In the following, (a"(x))1=(1au(x))fl, and the raising and lowering of indices are done by means 

of a” and an respectively. ' 【 ' 【 
For instance, 

b'=a”b‘1, 〝 yx=a11y’. 
Further, for a function f(a/, 輝) of a and ,8 such as L(a', 〝) and F(a, I3)=L2(a, B)/2, we use the 
following partial differential symbols : 

f1 = (if/(9a, ~ f2ニ (if/616'. 
Lemma 1. If we put  b2=1115‘ and 72=洸縄 ⼗ 洸, then 72, asémlzdi'hitz'c form of 31', does not vanish. 

In fact, if 9'2 = (bzau — b1b1)y'yJ vanishes, then we have b2a11= b1b1. If b2 =\= 0 (resp. b2 : 0), then 
we get the determinant a = 0 (resp. B = 0). Both of them ーead us to a contradiction. 

Now, as it was shown in (〔3], §30) the fundamental tensor g11(x, y ) =  8131F of Fn and its 
determinant 9】 【 det(g囁) are given by 〝 " 〝 ' 

(1.1) gu— — pan + pob1b1 + p— —1(b1y1 + b1y1) + D—ZYIyi, 
(1.2) g一 ~ (p"_ 2T)a, ' 

where, using L or F, coefficients p, p。, p—1,p—2 are written as 
p = LL1/a = F1/a, -' p。 = LL22 ⼗ (L2)z = Fzz' 

(1.1a) p-ー = (LL12 + L1L2)/a = F12/ a, 
pー2 = {LL" ⼗ (L1)z 一 LL1/a'}/a'2 = (F11 — F1/a)/a2. 

Further T of (1.2) is written as (1.2a) T = p(p + 岬 十 11.13) + {pop—2 — (p—ow. 
From the homogeneity property of F we have 

--F1a + F213 = 2F, Fua + F1213 =FL, '  Fz1az+ F2213 = F2, . _ 
S。 that we=obtain~ ) '‥  ・〔' 〝 ′ 『=・‥〕 ・ 〝ーー 

-(1.3) ‥ ・ --F11F22— (F1z)2={2FF11*(F1)2}/B2:V=77L3‘~Li1/132~ 萱萱鱒〝` ? . 萱~… パ〝 
〝〝 ~* ' ~ * ' ~ = 「(2FFm 一 F1F2)/ dB 平 —=-L3L1z/a15’ -- 

=… {2FF22 ~— (F2)拷}/“2 = L“L22/靡拷・ 
Consequently T is rewritten as 

(1.2’a) T = 2FF1/ “〝 ⼗ {F11F22 一 (Fー)z}ア〝/〟2 
= (L/a')3(L1 + Lum’z/ 132). 

Therefore this IS the same T as ([1], 3 5 1). ~ 
Now, in the theory of Finsler spaces with (a, B)- metric, the regularity (g i 0) of the metric is a 

1very important assumption, but it has never been discussed Accordingly, we shall find L(a, 輝) 
being irregular. By (1. 2) and (1.2a) it is Mel, B) which satisfies 〝 ' (L 4) 〝 L幟2 + L{{〟(b2〟拷ー 閃 = o 
The coefficient 1.113 of b2 is zero whenever L11 vanishes, which leads us to a contradiction, because 
(1.4) gives L1: 0. Therefore from (1.4) b2 1s expressed as b21= f(a, B) being a function of a and I3. 
Since b2 does not depend on y',1fr1om 81011—- — 111y1/a and 1913:1111, differentlatlon this by y' yields 

1f1y1/a ⼗ f2b11= dL ' 
Transvecting this by y and b' We have 

' ( 2 )  



On Finsler Spaces with ( a ,  fl)-metric ' 3 
f… + fzfi = 0, fifl/a’ 千 fzb2 = 0. 

Thus from bzaz  一 濁2 = 72 キ 0 (Lemma ー) i t  fOIlOWS that f l  = f 2  = 0 ,  Which implies bz being constant. 
SO that (1.4) is rewritten as ” ~ 

典 L1 
a n d  integrating this by a 

b叛 ` 〝 上 -  
十b 2 〟2 _ 灣2  ( I ‘ D ,  

L1 = — c ° a  , ~/|bzoz2 — 例 _ _ . 
Where Co being a function of B should be non-zero constant from the homogeneity of L1. Further 
integrating this by a once more, we get ` 〝 

b2キ0 : L=c]呵⼗c佃,  bz = o : _ L = claw + cw), ` ー 
where C1 is non-zero constant, and C(B) being a function of 3 must be c(/3) = C2輝 (CZ = constant), 
because L is (])  p-homogeneous With respect to ぴ and  fl .  

summarizing u p  the above we have the following theorem. 

Theorem 1. A n  ((1, '盧丿_matr乞c Lt“, 熾 ts irregular, if and only if みぞ ts constant and Llhas  tta 
following foi’m ‥ ‥ ~ ' 

(ー) b 2 キ。 :  L =と]陶 + m t  
(2) b2 = 0 : L = m洸/召 十 cz澤, 

where 61 {キ 0) and 鰯 are constants. 

Remark. Thus a Kropina metric L = ぴ2/輝 is irregular When b2 vanishes. In  the celebrated 
paper  [7] 。f C. Shibata concerned With Kropina metrics, Wehave p ( =  b2) in  the denominator of (2.4) 
giving g”. 

Example ー : F。r a Randers metric L = “ 十 盧, f rom (ー.2′a) 鼓e get T = (L/〟)鱒 キ 0 ,  so that i t  is 
regular .  AS to a generalized Kropz'na metric L : a tBl_ t  ( t  5F 0,1) ( [8] ,  (3.19)l)), We obtain ' 

T = t““一〝輝2一“{(2 __ t)輝『 ⼗ (t- [ ー)b2皮2}] 
Hence T Z 0 gives 

( 2 — t ) b 1 b 1 + ( t — 1 ) b z a u = 0 .  , _ 
consequently We Obtain b2 ニ 。 and t = 2', so that  this case reduces to the aboire remark. Therefore 
a generalized Kropina metric Which is not a Kropina metric is all regular; 

彗 2 ・ Geodesic equations in the Riemannian parameter. 

By the arc-length s (Finslerz'an parameter) the equations of a geodesic of F“ = (M", L(a', 3)) is 
written in the well-known form ' ' ' 

dzxl dx (2.1) W + 2G'(x, 扇) = 0, 
Where functions G'(X, y) are given by 

( 3 )  



4 Masashi KITAYAMA, Masayoshi AZUMA and Makoto MATSUM。T。 
ー = ' L2 2G = g (y】arゐF 一 arF), F = す. 

Especially for an  (a, 13)“metric, the results of [4] may be applied to G〝. I n  case of the Randers 
metric L = 〝 十 輝, however, using the arc-length T (Riemanm'tm parameter) in the associated 
Riemannian space Rn = (Mn, (1’), the equations of a geodesic have been simply written by Randers 
himself (〔ー], (ー.3.2' 2)). S。, in this section, using the parameter T, we shall give the equations Of a 
geodesic Of Fn. 

Using the parameter 1', (2. ー) is written as 
′ d X ー( dx = 一 2‘” d_X' (2.1) d r  2 十 2G d—r) (オ′)2 dz" 

where t' = dt/ds. Since (it = a/(x, dx) and ds = L(x, dx ) , d  we obtain. 
i = ー d 2 r _  ー / L  d嬢 ds L(X, X) ’ ds2 (L)3\L 「 十  L2 d t  ) '  

where 文〝 = dX'/d〔 Paying attention to a(x, X) = ー along a geodesic, we get 
dzt _ —L2 d3 】 2 d壁 一 (L)髏 dz 一 (萱)a {b]素' + (b〟 + b川~)剥剥}' 

Where b… are the covariant derivatives of bl With respect to Levi-Civita connection {アj〝k(X)} 。f the 
associated Riemannian space. ' ~ 
I n  the following We Shall employ the symbols used in  [4]. 
we pu t  

(2.2) n} = 畳化m 十 bm), su = 萱〈b… 一 bm), ぎ] = a”s縄 sー = brs「】. _ 
Then we Obtain 

d22' _ 十 十 一 "ー d S 2 _  _ 一(置2 3 (G r00 br7’o 0), G 一 bーx ・ 
Thus, as i t  was shown i n  [4] ,  we pu t  _ 2Gー = 航 十 2B', 
and  (2.1,) becomes 

(2・ー〝) 萱鳶 十 ァ。。 十 2 B ' =  蓋 (G ⼗ m 十 brッ。 嶋 
NOW, i t  f。ーー。ws f rom [4] that BI are (2.3) B] = 鶏} 十 砦 ぎ“ 一 “L“ —(c + fig—me, 

Where C, E and C1 are  given by 
61/s _ “LU 2 (2.4) C = 〝L s。 縄 , (C + 262100), 

(2.5) 2 L E =  Lz(r。。 + _C)' 
and  . . Cl : %Yl _ % I .  

We now Obtain =讐鮑ーC% 
( 4 )  



0n Finsler Spaces with (a,  m-metric 〟 5 

because 。f C=B'm and B'bー = 畜B'(静ー 一 c'). 
On eliminating C from this and (2.5), we get 

(2.6) 2B'b】 = m 一 2畳] E. 2 

Consequently, transvecting (2.1”) by b: and substituting (2.6) we have 
(2.7) G + b 捌。十 m = 體.  

Aーs。, eliminating C by means 。f (2・3) and (2.5) we have 
ー_ E  ー '〟Lz [ 一 〝L L n E '  

B輛 煎 十  Ll S O  B L I L Z C I  

Thus, butting p' = bー 一 〟z ' ,  we have 
I . . .  E I “L2 1 _L—L11Ea2 p l  (2.8) B一誰十了ー  s ”十 LL13.-—rp' 

Therefore, by means of (2. 7) and (2.8), (2.1”) 18 rewritten as 
d xI _ 】 2Lzs-10 2LLuE ー 一 (2・9) drぞ + 7’00 + L1 r t m  一0 '  

Theorem 2. In terms of arc-length T in the associated Riemanm'an space R" = (M “, a), the 
equations of a '  geodesic of a Finsler space F “ = (M ", L(a, 3)) with (a, l3)-metric are written as 
(2.9), where 71'k(x) are the Christoffel symbols of R", p" = bI ー'嬢墾', E is given by (2.4) and (2.5); 
and y' of each points (x, y) is 剃 = 滋驚〉d〔 〝〝 * ′ 〝 _~ ・ 

Remark. From (2.4) C is uniquely determined and E from (2.5), provided that 1 + (aLurz/fll) 
does not vanish. When this is zero, L(a. 嬢) is irregular from (1.4). 
The *vect。r p{ was often used by C〔Sbibata : [7], (2.7) and [8ー (2.4)1). 

Example 2 .  ・ We shaーー c。nsider a Randers metric L _  一 〝 十 癬・_ 
Because 。f L n 一 一 0, the equatlons Of a geodesm are given by 

dz'x dz’2 
This coincides with the result of G. Randers ([1], (1.3.2, 2)). 

十ァ。。十2s'。=0. 

Exampーe 3 .  ・ Secondly we shaーー c。nsider a generaーized Kr。pina metric L =  〆燭峡 一〝 (t キ 0 ,  ー). 
From (2. 4) we have “ 

213 _ root?2 + ZSoazB t — l  / t  岬瀞 「 髑  臍 + (t⼀ー)ッ璽 ー ' 
and (2.5) is written as 

爺。 ー t)(r。。 + 塑C) 
Therefore the equations of a geodesic are given by 

d_2x'~ 2(1—t): (t— ー){r 〝 十2蜘(t一 ー)/t} d r  縄 + 畑〝十 焼 〝“十 厭鰐+ (t—1)7’2} p _  一" 
Espec1ally, 111 case Of a Kropma metric ( t _  _ 2), W6 obtaln 

( 5 )  



6 ・ Masashi KITAYAMA, Masayoshi AZUMA and Makoto MATSUMOTO 
2x1 
譚 十 71'1—%s'1+fl%3;—S°p‘=0. 

§ 3  - Berwald frames. 

In the theory of Finsler spaces the so- -called 0- tensor, defined by " " 
C11k= ak(g】}/ 2) = aー a]  ak(L2/ 4) ^ 〝〟 _ ^` 〝 

plays an important role ‥ For instance, a Finsler space is a Riemannian space, a Berwald space and 
a Landsberg space, if and only if C1111— — 0, Cum:  0 and Cum:  0 respectively ([1], [3]). 

Throughout the present and the next sections we restrict our consideration to twoedimensional 
Finsler spaces. Then the C-tensor can be written as _ 

(3.1) L Cllk— ー I m】mjmk, ' ' " 
in the Berwald frame (1, m), where I =  —I(x, y ) '  ーS a scalar field, called the main scalar. The formula 
of I for a Finsler space with (a, fi)~metric has beengiven 1n the paper [2]: It 1s, however, written 
in an isothermal coordinate system of the associated Riemannian space for the sake of computation 
and, as a consequence, it is not easy to put in practice. _ 

__. The _purpose of the present section is to establish the relation between the Berwald frames of a 
Finsler space F2 :  (M2 L(a, 〝》 with (a, B)- metric and its associated Riemannian space R2_= (M2, 0), 
and, in the next section, we shall find the formula of the main scalar 9n as an application of the 
relation. 

Now the Berwald frame (1, 111) has been defined in ([3], §28) but we shall here consider it 
without the assumption of positive- defimteness of the metric 

The contravariant components 1 and the covariant c。mp。nents]!二 bf the first vector 1" of (1, m) 
are given by (3.2) (ー) ー〝ー ー y'/L(x, y) " (2) 11— — 1.111, y). 〝 ^^^ _ ~_ __ 
Then, in terms of 11 and the angular metric tensor hu— — L(0161L) the fundamental tensor g u =  
3131(L/2) is written as 

(3. 3) g" = 1111 + hu. 
Since the rank of the symmetrlc matrix (1111) of order two is equal to one, we get a sign 8— — VVViV1V and 
(m1, m2) satisfying ブブブブブ 

(3.4) h" = emーmj, i , j⼀ ー ー, 2. 〝 . 
I t  IS noted that the covariant vector In: is determined by (3.4) up to the orientation, while $ is uniquely 
determined. $ is called the signature of the space. Thus (3.3) can be rewritten as 

(3.3,) gu = 1111 + €m1m1._ . . 
The equation huy’ = 0 yields milj = 0 from (3.4). The contravariant components m' g=”m1 satisfies 

=gurn=(1111+ €m1m1)m= (15m )m1, ** **〝〝 ' “〝 "〝 
which implies mjm = $ Thus m' are given by 〝 

(3.5) (1) m ーー= 0, (2)〕m mー = e_._] 
I t  follows from (3.3') that we have 

( 6 )  



On Finsler Spaces with ( a ,  fi)-metric 7 
(3. 6) g = det(gu) = 6(11m2 一 12m1)2. 

Hence $ is the sign of g. 
We consider the derivatives of (1, m) by y .  From (3. 2) we get immediately 

(3 7) ` (1) L811‘ — e"m m1, :(2) L8111— ー sm1m1. ` 
Next we differentiate m11l = 0 by' y" and'get (L 61.11101 = —'m11 from (3.7). From (3.3,) we get 
similarly ' ` 芒 〝 〝= 

2LC仙 = 庄(m山 十 LmDm〟 +-'€(3km1)m1 十『 8m1(3km1). 〟 
Transvecting this by _m'mj and using (3.1) and (3.5), we have (L 311m1)m' = Imk. Consequently we 
obtain (3.8) (2). Further we differentiate m'=g【jm] by y“ and using (3.8) (2), we get (3.8)(1). 
Therefore we obtain 〝 

(3.8) (1) L31m' = 一(ーー 十 eーm【)m], (2) L融m〕 = =(ー' ー smーー)m」.〝' ・ 
Proposition 1.1i‘he'cont1avarz'aht and covariant components of the Bervala fraine (l, m) are 

gwen by (32), (3.4) and (3. 5), where the szgnature 芒 23 the szgn of g (3. 6‘). Their derivatives by 
y are given by (3. 7) and (3. 8), where I is the main scalar. ' 

Now we are concerned with a two-dimensional Finsler space F2 = (M2, L(a, 峨) with ((1,3)- 
metric and its associated Riemannian space R2_= (M2, a)_,_. We shall denote by (1, m) and (u, v) the 
Berwald frames of F and R2 respectively. (1, m) is found as above. As for ('u, v) we have first from 
(3.2). _ . ~ ~ 一 , {一 〝 〟 一 

(3・9) (ー) u' = y'/〟(x, y), (2) m = 副〟(x, y). 
Next, if we denote by k“ the angular metric tensorE of R2, then we‘haveiku = “( 31 由縁) and, 

similarly to (3.3'), (3.4), (3.5) and (3.6) 〝 ′ 
(ー) au = mu] 十 evm, e=  土ー,_ 

(3 m) (2) 仙 = evm, "' ' 
〝 (3) vu1= 0, _ VVー= e, 

(4) a _  ー det(a【』) = e(uーvz 一 uzv】). 
Further, similarly to (3.7) and (3.8), we have 

- (1) ”あぜ = eV'Vj, “ぁ… = eVl,' (3.11) . 1 1 . 
」 (2) ぴゐv = ' _ u  V1, ー ”am = 一…y~ 

where (2) are obtained from I = 0  of R2. 
We consider b1 of 嬢 = b1(x)yI in the frame (u, v). Putting b1=B1u1+BV1, we transvect it by y = 

a'u' and b' = a”b1. Then we get 13=B1a and b 2 :  (B1)2 + e(B)2. Hence we obtain 
(3.12) b1=  fiw + BV1, 

~ ` * z = z 」 墜 」 旦 `〝' * (3.ー2a) (B) e(b . 誰) e 砕 ^ 
Now we deal with the main purpose of the present Section, finding the expression of (1, m) in 

(u, v). First (3. 2) and (3.9) g1ve L11 = au and 11=L1u1 + Lzb1. Hence (3.12) leads to 
(3.13) (1) ー'一 】 —uI , (2) 11= Lu1 十 LzBV1. L 

Next (3.11) (1) gives 
- ( 7 )  



8 Masashi KーTAYAMA, Masay。shi AZUMA and Mak。t。 MATSUM。T。 
h= = L凄KL…ー 十 L2bー) 

LL1 = L L 1 1 U 1 U J  + LL12(uibJ + ujbl)  + LLZZbIbJ + e VIVI- 

Since we have Lua + L128 = Lzla+L226 = 0 from the homogeneity, the Weierstrass invariant 
W(a, 〝) of the space, similarly to the case of a two-dimensional Finsler space ([1], 1.1.3), can be 
defined by ' 

稔饗 = 〕瑳ーz = L_____22_2 = W ( a  I3) 
0’2 (3 . 14) 

Then we have hi] : eL(L1/0'+W7 2)VIVJ by Virtue 。f (3.12). Thus (3.4) leads t。 
(3.15) m【= mv', 《 
(3.15a) (m)2— eeSL(—I~‘l~ + W7 2). 

Finally we put  m' : ru 十 SV . Transvecting this by ー! and mi, (3'ー3) and (3.ー5) lead to Lr/a/ 十 
eLZBS : 0 and  ems = 8. Hence we get 

(3.16) m‘ = 一孟(LzびBu' _ eLV‘). 
Proposition 2. In the Berwala’ frame (a, v) of its associated Riemanniari space R2 of a two- 

dimensional Finsler space F 2 with (a, .3)—metric, the Berwald frame (I, m) of F 2 is written as (3.13), 
(3.15) and (3.16), where B and m are given by (3.12a) and (3.]5a) respectively, w by (3.14), and 8 
and e are signatures 0f F2 and R 2  respectively. The vector bl is written as (3.12). 

Example 4 I For a Kropina metric L :- “ 2 / 6  we have 
2 1 :  一旦u', ーー = %u: — (葺) BVー, 

m‘—- 一 $童蓬u  ' ⼗ 青V', mー:  mm, 
b =旦u  十B  (B)2=e l :  (m)2=e€2—b2. l a I V] ,  a 2 ,  34 

C. Shibata gives in [7] 
2 

(2.2) h u  = (%> (23.11 _ 11b} — l j b l ) .  

I t  is observed that this hu  is written as hi] = e(2b2〝4/輝〝)WVj, Which is equal to hu  = 6mーmL 

藝4 ・ Main scalar. 

We shall consider the main scalar ー 。f a two-dimensional Finsler Space With (皮 , m-metric. I f  w e  
write (3・6) in  the Berwaーd frame (u ,  v),  then we have f rom (3.ー0) (4) ~ 

篭‥ (Lg—>2 = e…(琶)〝(L] + ww- 
Since (1.2) reduces t。 g /  a Z T i n  the two-dimensional case, the above can be written as (4」) §=T=eee5my=grmlWe), 

( 8 )  



On Finsler Spaces with (a,  [En-metric ^ 【 9 
which yields Tz = '8T/耶 of the form (4.2) T2 = aka—Wm». 

Now (3.15) and (3.11) give: ”" 〝 
彡]mー 2' (mill! ⼗ m2b5)Vl 一 %UIVJ. 

substituting (3.12), We have 
35m; = %(m1a + mzfl)vm1 一 (lg—u: 一 m2BW〉vL 

Since m(a, 〝) is positively homogeneous of degree zero in (a, 〝), the first term of the right-hand side 
of the above vanishes. On the other hand, (3.8) together with (3.13) and (3.15) yields 

3.11111 = "%fll + %(€Im 一 L2B)VIVJ. 
Comparing these two expressions of 31m, we obtain I=¢':‘B(Lm)2/(m)z and (4.2) yields I=eBT202/ 
2L(m)3. Since the sign of I depends on the orientation of m:, it is enough to deal with ー〝. Thus 
(3.12a) and (4.1) lead to 

2 = L4zz s f  (4.3) Gー 4〟( (T)$ ・ 

Theorem 3. The main scalar I of a two-dimensional Finsler space with (a, 13)-met1’ic is given by 
(4.3), where T is given by (4.1) and 乃 = aT/a溪 

Example 5 : (ー) We consider a two-dimensional Randers metric L=a+/3. Then we have w= 
0 and T=(L/a)3, so that 

2 一 gz2 ・ Gー 【 4(a+,8)a’ Cf. [1], p.127, [2]. 
(2) We deal with a two-dimensional generalized Kropina metric L = air/38, r + s = 1. We have 

w = ー mar—2.35"”, T=ra"“/3‘5'2{(1 + s)I32 一 sb”麟}・ 
Hence we obtain 

a z = s〝{2(ー 十 s)娯2 十 (ー ー 2s)b2酵}”辻 I r{(ー + S) 32 ~ sb2〟2}3 , .611: [2]. 
I n  particular, for a Kropina metric (r = 2, S = _ー)  we have 

2 一 97’2 
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