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Abstract 
 
Completion of required mathematics courses in a community college program of study 

can be a critical factor in a student’s academic success and degree completion. 

Underprepared, nontraditional students who take mathematics courses online in a 

community college face barriers to success that are different from those found in 

traditional face-to-face courses in four-year universities. Research suggests that 

motivation and self-regulated learning skills are potentially related to student success in 

online learning. The preponderance of research on student academic success in online 

courses is predominantly conducted with traditional, better-prepared students in four-year 

universities. Yet, there is little research on the effectiveness of online mathematics 

courses in community college settings with underprepared, nontraditional students. This 

study examines the relationship of self-regulated learning and academic risk factors to 

academic performance in community college online mathematics courses. The results of 

this study indicated that the self-regulation measures of Self-Efficacy for Learning and 

Performance and Task Value had a statistically significant relationship to academic 

performance as measured by mathematics final examination scores. Academic risk 

factors were not found to be predictors of academic performance. The results also 

indicated that self-regulated learning did not appear to moderate the strength of the 

relationship of academic risk factors to academic performance. Implications for 

practitioners are discussed.  
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Chapter 1: Introduction 
 
Background  
 

Higher education institutions have historically employed a variety of technologies 

to deliver instruction in innovative ways. Technological capacity for integrating new 

media systems has evolved over the years and schools have experimented with a variety 

of technologies such as correspondence, teleconferencing, radio, film, television, digital 

media, and online learning to provide access, content, and instruction to students 

(Garrison, 1985).   

The promise of many of these new technologies to revolutionize education often 

faded as technological advances rendered certain innovations obsolete; or in some cases, 

the educational benefits were simply less than desired (Cuban, 2001). However, online 

learning, defined in the present study as 80% of course content provided electronically, is 

firmly established as a recognized instructional delivery format. Indeed, over 28% of all 

students in public and private higher education institutions now take at least one course 

online, representing nearly six million students (Allen & Seaman, 2016). Public 

institutions have consistently maintained that online course offerings are critical to their 

long-term strategy (Allen & Seaman, 2016).   

Within the field of higher education, community colleges are particularly 

invested in online learning to serve the needs of low-income, immigrant, first-generation, 

and ethnic minority students (Bailey, Jaggars, & Jenkins, 2015). In 2007, community 

college students at public institutions participated in online courses relatively more often 

than those attending other institutions. Twenty-two percent did so, compared with 19% at 

for-profit two-year institutions, 16% at public four-year, and 12% at private non-profit 



 

 

3 

four-year institutions (Walton, 2011). Considering the total enrollment of all 

postsecondary students in all higher education institutions, according to a 2011 report, 

public two-year institutions account for 34.7% of all students enrolled in online learning 

courses (Walton, 2011). Despite the growing number of online students in community 

colleges, research on the effectiveness of online learning in community college 

environments is inconclusive (Shea & Bidjerano, 2016).  

Studies evaluating the effectiveness of online learning are often focused on four-

year university students who are typically better prepared academically than 

nontraditional students typically found in community colleges (Jaggars & Bailey, 2010). 

Proponents of online learning point to a meta-analysis commissioned by the U.S. 

Department of Education that found student outcomes in hybrid or online courses to be 

equal to or better than traditional face-to-face courses (Means, Toyama, Murphy, Bakia, 

& Jones, 2009). However, others argue that such an interpretation is not warranted or 

applicable to community colleges with traditionally underserved populations (Jaggers & 

Bailey, 2010). Jaggars and Bailey (2010) pointed out that the meta-analysis included 

courses that were particularly well-suited to online teaching, for example, computer 

programming or courses that had additional instructional supports typically provided in 

face-to-face classes. Understanding the factors that need to be considered for students to 

be successful in online environments is particularly important for least-advantaged 

students in community colleges (Cox, 2005). 

Among the many critical factors for student success in school, and especially 

important in the context of online courses, is the ability of students to self-regulate their 

learning (Bailey et al., 2015; Hodges, 2008). Several theories have been proposed to 
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describe the various elements related to self-regulation in learning environments. 

Zimmerman (1989) proposed a theory of self-regulation based on Bandura’s (1986) 

developmental social cognition theory. Zimmerman and Martinez-Pons (1990) suggested 

student efforts to regulate their learning involve three processes: personal, environmental, 

and behavioral. Moreover, Pintrich and De Groot (1990) argued that self-regulation of 

cognition and behavior are important aspects of student learning and academic 

performance. Additionally, motivation plays a critical role in promoting student 

achievement in that students must actively use their strategies to self-regulate their 

learning (Pintrich & De Groot, 1990). Self-efficacy, defined as one’s belief in one’s 

capabilities, typically with regard to specific tasks, also provides a foundational theory of 

self-regulation (Bandura, 1977).   

The importance of self-regulation as an indicator of academic success in online 

courses has been sufficiently explored in higher education settings (Agustiani, Cahyad, & 

Musa, 2016; Barnard-Brak, Lan, & Paton, 2010; Cazan, 2014; Pardo, Han, & Ellis, 2016; 

Puzziferro, 2008; Xu & Jaggars, 2014). However, there is a dearth of academic research 

focused on the linkage of self-regulated learning to academic performance in online 

courses in the community college setting, particularly in mathematics courses.  

The present study examines the relationship of self-regulated learning beliefs to 

academic performance in online mathematics courses in the community college setting. 

The investigation also explores academic risk factors such as ethnicity, gender, high 

school graduation status, and age as potential predictor variables to academic 

success. Finally, the potential for the moderating effect of self-regulated learning on 

academic risk factors to academic performance is explored.   
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Statement of the Problem  
 

The ability of students to self-regulate their learning is particularly important in 

online learning environments where high levels of motivation, self-efficacy, and 

persistence are thought to be required for success (Jaggars & Bailey,2010; 

Wijekumar, Ferguson, & Wagoner, 2006). However, a review of literature suggests that 

self-regulation skills are rarely taught or required as a prerequisite for online courses in 

community colleges.   

Research on the relationship of self-regulated learning beliefs to academic 

performance with community college students is limited and inconclusive (Cho & Heron, 

2015; Puzziferro, 2008). Moreover, some recent research has shown that providing 

training to students on self-regulated learning strategies potentially improves the 

academic performance of underprepared students (Bol, Campbell, Perez, & Yen, 2016; 

Hu & Driscoll, 2013). 

College and pre-college mathematics competencies are typical requirements in a 

community college academic program as conditions of advancement towards a degree or 

to meet credit requirements to transfer to a four-year institution (Bailey et al., 

2015). Online mathematics courses present a particularly challenging barrier for 

underprepared community college students due to the lack of structure typically found in 

face-to-face courses such as teacher support and immediate formative feedback (Jaggars 

& Bailey, 2010). Therefore, the ability to self-regulate potentially plays a key role in 

online learning success. Understanding the relationship of self-regulated learning and 

academic risk factors to academic performance can provide teachers and administrators 

with knowledge to potentially improve student academic success.  
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Purpose of the Study  
 
       The purpose of this study is to examine the relationship of student self-regulated 

learning beliefs and academic risk factors to academic performance in three community 

college online mathematics courses: Algebra I, Algebra II, and College Algebra. Students 

in the present study completed a questionnaire of self-regulated learning beliefs to 

measure their motivation and self-regulated learning skills. The course final examination 

mathematics achievement score was the measure of academic performance for each 

participant. Correlational analyses were conducted to evaluate the relationship of 

academic risk factors and self-regulated learning factors to academic performance. The 

study identified the extent to which certain self-regulated learning beliefs moderate the 

relationship of academic risk factors to academic achievement. Implications for 

community college administrators and educational researchers are discussed. The study 

includes a review and critical analysis of research on student academic success in online 

settings in both community colleges and four-year colleges. 

Significance of the Study  
 

Advances in technology and the globalization of the economy are driving the 

demand for a more skilled and educated workforce (Friedman, 2016). Simultaneously, 

the current cost (e.g., tuition, fees, room and board) of attending a four-

year public university is over $16,000 per year (National Center for Education Statistics 

[NCES], 2015a). Furthermore, the National Center for Education Statistics (NCES, 

2015b) reported a 33% increase in the cost of an undergraduate degree over that past 

decade making public higher education significantly more difficult to access for 

nontraditional students. Community college costs are approximately 40% less than public 
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four-year universities (NCES, 2015). Therefore, community colleges serve as an 

affordable opportunity for nontraditional students to develop the necessary academic 

skills and knowledge to acquire a degree. 

Completing basic mathematics courses is a common prerequisite for qualifying to 

enter community college career pathways leading to a degree or transfer to a four-year 

institution (Bailey et al., 2015). Taking online mathematics courses is attractive to 

nontraditional students who often work or have family obligations requiring a more 

flexible, accessible learning environment. However, research has shown that the student 

withdrawal/failure rate in introductory online mathematics classes in community colleges 

is 25% compared to 12% in face-to-face courses (Jaggars, Edgecombe, & Stacey, 

2013). Moreover, students who take online courses compared to face-to-face courses are 

less likely to persist and attain a degree (Jaggars et al., 2013). Additionally, the 

performance gap between online and face-to-face courses in community colleges affects 

a disproportionally number of younger, black males (Xu & Jaggars, 2014). Therefore, 

students who need to complete mathematics prerequisites in an online setting are 

significantly disadvantaged compared to students in face-to-face courses. Moreover, the 

failure to meet mathematics requirements potentially ends their academic career and 

severely limits their opportunities for good jobs that pay more than $35,000 per year. 

Research shows that since 1991 the number of good jobs requiring high school diplomas 

decreased, but the number of good jobs for associate degree holders increased by more 

than three million (Carnevale, Strohl, & Ridley, 2017). 

       This study is intended to contribute to the empirical research related to 

understanding the relationship of student self-regulated learning beliefs to academic 
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performance with community college students taking online mathematics courses. A 

majority of the research in measuring the effectiveness of online learning is 

conducted with four-year, better-prepared, traditional university students (Jaggers & 

Bailey, 2010. This research will focus on nontraditional, often underprepared students 

and provide new empirical evidence regarding the relationship, or extent of it, of self-

regulated learning beliefs to academic performance with community college students. 

Secondly, a large number of research studies of online learning 

evaluate outcomes of short, discrete subjects that are well suited to an online context such 

as computer science, topic-specific educational interventions, and technology 

courses. The present study investigates a traditional educational subject (mathematics) 

conducted over a typical 10-week college course schedule, thus making the results 

potentially more generalizable to a typical community college setting.  

Third, many prior studies evaluating the relationship of self-regulated learning 

beliefs to academic performance do not consider how self-regulated learning beliefs 

potentially moderate academic risk factors (Bol et al., 2016; Cho & Heron, 2015; Wang, 

Shannon, & Ross, 2013). This study considers self-regulated learning beliefs as a 

potential moderating influence on academic risk factors thus providing a more 

comprehensive picture of the complexities associated with community college student 

academic success in online mathematics courses.   

Limitations of the Study  
 

Several limitations should be considered when interpreting the results of this 

study. First, the Motivational Strategies for Learning Questionnaire (MSLQ) is based on 

self-reported measures in that participants are reporting what they believe to be true of 
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themselves. These responses may be influenced by the desire to provide answers that are 

deemed favorable by the researcher (Gall, Gall, & Borg, 2015). Second, students self-

select in registering to take online courses. This introduces a potential bias in the sample 

population of the study. Students who choose to take a course online may have more 

positive predispositions towards online learning and potentially possess more self-

efficacy in their beliefs for success in this learning environment. Third, the 

study includes only two teachers and three different intact classes at one urban 

community college. Due to the highly-contextualized nature of online learning, the 

results of this study should be interpreted with caution and cannot necessarily be 

generalized to all community college online mathematics courses or any other discipline 

of study. Finally, the desire to conduct this research in an authentic setting limited the 

ability to recruit a large number of participants required to obtain statistically significant 

findings needed to reliably discriminate between alternative hypotheses (Faul, Erdfelder, 

Lang, & Buchner, 2007).  

Definition of Terms  
 
Academic risk factors are demographic characteristics of a student such as gender, 

ethnicity, age, and high school graduation status that have been associated with 

potentially influencing academic success. 

Community colleges are public or private two-year postsecondary institutions that   

primarily award associate degrees and certificates and offer a wide range of services  

in their local communities (Allen & Seaman, 2016). 
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Effort regulation is a student’s ability to control focused effort and attention to avoid 

distractions or uninteresting activities or tasks (Pintrich, Smith, Garcia, & McKeachie, 

1991). 

Face-to-face typically refers to academic learning environments where the predominant 

interaction between students and a teacher takes place in-person and in the same room 

(Allen & Seaman, 2016). 

First generation college student is a student whose parents have never attended a 

postsecondary institution (Peterman, 2000).   

Help seeking is seeking help from peers or instructors when needed with a focus on the 

use of others in learning (Pintrich et al., 1991). 

Metacognitive self-regulation is the awareness, knowledge, and control of cognition 

including planning, monitoring, and regulating activities (Pintrich et al., 1991).  

Motivation is comprised of three components: belief about one’s ability to perform a task, 

goals and beliefs about the importance and interest in the task, and emotional reaction to 

the task (Pintrich et al., 1991).   

Nontraditional students are students with demographic characteristics different from 

typical college students entering postsecondary education directly from high school. They 

tend to be older, potentially working full-time or part-time, possibly with family 

responsibilities, may require financial support, and potentially lacking success in 

high school (Bailey et al., 2015).    

Online learning is a course where most (more than 80%) or all of the content is delivered 

online. Typically, there are no face-to-face meetings (Allen & Seaman, 2016, p. 7).  
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Self-efficacy is the belief in one’s capabilities to organize and execute the courses of 

action required to manage prospective situations. Self-efficacy is derived from four 

principle sources: performance accomplishments, vicarious experience, verbal 

persuasion, and psychological and affective states (Bandura, 1986).  

Self-efficacy for learning and performance refers to a student’s expectations of 

performance and the judgment about one’s ability and confidence to accomplish a task 

(Pintrich et al., 1991).  

Self-regulated learning refers to the self-directed processes and self-beliefs that enable 

learners to transform their mental abilities into an academic performance skill. It is a 

proactive process that students use to acquire an academic skill such as setting goals, 

selecting and deploying a strategy, and self-monitoring their effectiveness (Zimmerman, 

2008).  

Task value is the student’s evaluation of a task in terms of how interesting, important, or 

useful it is (Pintrich et al., 1991).  

Time management is using time well and having an appropriate place to study (Pintrich et 

al., 1991).  

Underprepared students are students who fail to meet an institution’s standards for 

college readiness (Bailey et al., 2015).   

Research Questions  
 
1. What is the relationship of self-reported, self-regulated learning beliefs to academic 

performance, as measured by final examination score, in an online learning 

environment?  
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2. What is the relationship of selected academic risk factors to academic performance, as 

measured by final examination score, in an online learning environment?  

3. To what extent do self-regulated learning beliefs moderate the relationship of academic 

risk factors to academic performance?  

Research Hypotheses  
 
H1. Students with higher self-regulated learning beliefs will achieve significantly 

higher academic performance, as measured by final examination score, than students with 

lower self-regulated learning beliefs.  

H2. Students with personal characteristics associated with academic risk factors will 

achieve significantly lower academic performance, as measured by final examination 

score, than students with personal characteristics not associated with academic risk 

factors.   

H3. Self-regulated learning beliefs will significantly moderate the relationship of 

academic risk factors to academic performance. 
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Chapter 2: Literature Review 
 
Introduction 
 

This literature review presents research related to the topics, relevant theoretical 

constructs, and the specific questions posed in this study. The topics covered are: 

historical perspective and theories associated with distance education, trends and growth 

of online learning in higher education, theoretical constructs of self-regulated learning 

and its relationship to academic performance, the community college learning 

environment, and the role of remedial mathematics in community colleges. 

Distance Education 
 
Historical Beginnings and Theories 
 
       The concept of distance education is fundamentally defined by the separation of 

students and teachers by distance and sometimes by time (Moore & Kearsley, 1996). This 

separation necessitates an artificial communication medium to deliver information and 

provide for interaction between teacher and students (Moore & Kearsley, 1996). Distance 

education was initially dependent on print-based materials to deliver course content. 

Today, distance education is dependent on electronic media as the primary means of 

communication and content delivery.    

Charles Wedemeyer, considered by many to be the “father of modern distance 

education” (Diehl, 2013), described distance education in terms of a student’s ability to 

study independently apart from the instructor’s presence. Wedemeyer’s definition was 

centered on the teaching-learning arrangement where the teacher and learner carry out 

their tasks and responsibilities apart from one another. Wedemeyer founded the 

Articulated Instructional Media (AIM) project, which created an integrated approach to 
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the use of media for educating mature learners (Saba, 2013). Wedemeyer created a 

systems approach to course design made up of instructional designers, technology 

specialists, and content experts (Diehl, 2013). Wedemeyer’s work influenced the 

emergence of the British Open University, a fully autonomous, degree-granting 

institution, and a worldwide leader in distance learning (British Open University, 2017; 

Moore & Kearsley, 1996).  

Moore (1972), building on Wedemeyer’s independent learning theory, 

introduced the “Theory of Transactional Distance” which included learning 

attitudes, psychological characteristics, and independence of the learner. Moore’s 

(1972) theory was stated as:  

distance education is not simply a geographic separation of learners and 

teachers, but importantly, is a pedagogical concept. It is a concept 

describing the universe of teacher-learner relationships that exists when 

the learners and instructors are separated by space and/or time. (Moore, 

1972, p. 22) 

 Moore (1972) set forth the key constructs of distance education as structure, 

dialogue, autonomy, and transactional distance. Saba and Shearer (1994) eventually 

demonstrated the validity of the relationship between dialogue and structure related to 

transactional distance. The theory can be summarized as: when structure increases, 

transactional distance increases and dialogue decreases (Saba & Shearer, 1994).   

Saba (2013) pointed out that many researchers in the field of distance education 

are not familiar with foundational theories associated with distance education and 

therefore lack a holistic approach to an understanding of this field of study. The 
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following summarizes the development of the original constructs and theories that were 

empirically verified for describing distance education.   

The term “distance” in education was originally defined as the construct of 

transactional distance measured by dialogue and structure (Saba, 2013). Saba (2013) 

argued that modern distance education modes such as online learning or web-based 

learning require similar, rigorous validation in order to be taken as serious constructs. 

Saba (2013) pointed out that practitioners face three challenges required to grow the 

theoretical base of distance education. First, the need for consistent terminology. The 

proliferation of acceptance of poorly defined terms and phrases in the current literature 

impedes the ability of researchers to build a consistent base of a unified paradigm. 

Second, the lack of historical perspective. Saba (2013) argued that for some researchers 

the historical perspective on distance education begins when they become interested. 

Third, the absence of construct validity. Terms such as e-learning or online learning lack 

the empirical test of validity. These challenges illuminated by Saba (2013) are evident in 

the current approach of implementing online learning in community colleges. Cox (2005) 

argued that the proliferation of online learning in community colleges lacks empirical 

evidence and is often driven by myths and the perceived need to stay competitive. A 

detailed analysis of the research conducted by Cox (2005) regarding these myths is 

included in this literature review. Defining distance education as a construct is an 

important step in developing an empirical basis for this instructional strategy.  

Keegan (1980) defined six components of distance education as: 1) separation of 

teacher and student, 2) influence of the educational institution, 3) use of technical media, 

4) provisions for two-way communication, 5) the possibility of occasional seminars, and 



 

 

16 

6) participation in the most industrial form of education. These early descriptions of 

distance education sufficed to define this teaching-learning relationship given the 

technologies and affordances of the time. As technology advanced the definition of 

distance education required updating, but the foundational premise of this mode of 

learning remained constant.  

The important constructs in distance education that are relevant to this research 

paper are the concepts of control and independence. Garrison and Baynton (1987) 

developed the idea that the greater degree of student self-direction in deciding what to 

learn, how to learn, or to what extent to learn, the less the instructor has control. They 

posited: “Control is not achieved by simply providing independence or freedom from 

outside influence. It is the dynamic balance among these three components that enables 

the student to develop and maintain control over the learning process” (Garrison and 

Baynton, 1987, p. 5). 

 
Control, as defined by self-regulated learning, will be explored in greater depth in the 

present study. Keegan (1980) and Sumner (2000) posited that technology plays an 

important role in the evolution of distance learning. I will next discuss how technology 

has influenced and changed distance learning. 

The Technical Evolution of Distance Education 
 

Technology plays a significant role in distance education in that it mediates the 

separation between the teacher and student using a variety of print, electronic, and 

audiovisual mediums (Sumner, 2000). Garrison (1985) described the evolution of 

distance education as having three distinct generations of technological innovations: 

correspondence, telecommunications, and computers. Each generation provided new 
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affordances to improve upon the two-way communication between teacher and student as 

well as student to student. 

Correspondence education consisted of print-based materials sent through the 

U.S. Postal Service, dating back to 1833 (Baath, 1985). This method of delivery provided 

educational opportunities for generations of people at a very low cost and served as the 

primary medium of distance education in postsecondary institutions in the United States 

(Pittman, 2013). However, the delay in response between teacher and student placed a 

large burden on the student to be self-sufficient and motivated to complete the course 

requirements (Garrison, 1985). 

Telecommunications, typically wire, telephone, television, or radio electronic 

communication, were built upon the print-based system of correspondence and improved 

upon the model with some mediums such as telephones providing more immediate two-

way communication between teacher and student (Garrison, 1985). However, the 

scalability of such a system to provide access to great numbers of students was 

significantly constrained. Moreover, the flexibility of time was further constrained 

requiring students and teachers to communicate during defined times. The limitations of 

these communications systems were transformed with the introduction of the personal 

computer in the 1980s.  

Computers, when introduced as a new means of distance education 

communication in the 1980s, offered potential to increase both interaction and 

independence for students. “Computer Assisted Learning” was a promising technology 

that could potentially efficiently mediate the interaction between human and machine 
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(Kearsley, Hunter, & Seidel, 1983). Garrison (1985) posited that learners could maintain 

complete independence while maximizing two-way communication with the teacher.  

Adding to the promise of computer-assisted learning and aligning with social 

learning theory, Grice (1989) developed the cooperative principle. This principle stated 

that the listener and speaker in a social context have an implicit agreement of interest 

given the speaker is trying to make sense by being informative, accurate, relevant, and 

concise. The “speaker,” in the context of a computer-assisted learning environment, is the 

multimedia messages delivered by the computer. Activating a social response in a 

computer-assisted learning environment increases the desire of the learner to make 

meaning by selecting, organizing, and integrating the content (Mayer, 2014). 

Additionally, technology made possible student-to-student interaction in learning 

environments, which further increased the potential for social interaction. 

Computer-assisted-learning, while holding promise, was not accepted by all 

researchers. Daniel (1983) expressed deep concerns about the opportunities and threats 

these “stand-alone systems” presented. Daniel (1983) argued that the political and 

technological trends in the 1980s would decrease government spending on education and 

increase autonomous learning. Daniel (1983) also noted the increased interest in 

education as a means for training for employment, rather than university-level academic 

work. However, distance education in the modern era has advanced well beyond “stand-

alone systems” and now provides new methods and means to deliver instructional content 

via connected computers on the Internet.  
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Distance Education in the Modern Era 

 
In 1994, the National Research Council released a report that set the parameters 

for privatization of the Internet (Internet Society, 2013). This led directly to the advent of 

the modern Internet and the World Wide Web and opened the floodgates for education 

institutions and private enterprises to begin building educational platforms accessible to 

vast numbers of students. Public higher education institutions, primarily community 

colleges, also took advantage of grants from the Alfred P. Sloan Foundation to begin 

building online course offerings in 1992 (Online Learning Consortium, 2017). The Sloan 

Foundation, recently renamed the Online Learning Consortium, has continued to fund 

and promote research into the effectiveness of distance education for over two decades 

(Online Learning Consortium, 2017). While distance education is still fundamentally 

defined by the two-way communication between a teacher and student, innovations in 

technologies to produce, organize, communicate, and distribute instructional content 

radically changed this relationship and enabled new ways for interactivity such as 

videoconferencing, screen-sharing, and adaptive learning systems. As these new 

computer affordances continue to evolve, researchers need common terms to define and 

analyze varying contexts of how distance education is applied to instructional practices.  

A common set of definitions to define and describe distance learning has been 

elusive (Saba, 2013). Saba (2013) pointed out that education researchers poorly defined 

or under-defined the permutations of distance education modes. A survey conducted in 

2010 identified “conflicting responses” to the wide variety of terms used to describe 

distance education (Moore, Dickson-Dean, & Gaylen, 2010). Allen and Seaman (2016), 

in their annual report card on online learning, provided a useful working definition of 
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four common modes of learning: traditional or face-to-face, web-facilitated, 

blended/hybrid, and online. For the purposes of this paper, and to provide clarity, Allen 

and Seaman’s (2016) working definitions will be used: 

Traditional or face-to-face: A course where no online technology is used and content is 

delivered in person, in writing, or orally (Allen & Seaman, 2016, p. 7).  

Web-facilitated: The proportion of content delivered online ranges from 1 to 29%. A 

course that uses web-based technology to facilitate, what is essentially, a face-to-face 

course. It may use a learning management system (LMS) or webpages to post the 

syllabus and assignments (Allen & Seaman, 2016, p. 7). 

Blended/hybrid: The proportion of content delivered online ranges from 30-79%. A 

course that blends online and face-to-face delivery. A substantial proportion of the 

content is delivered online, typically uses online discussions, and typically has a reduced 

number of face-to-face meetings (Allen & Seaman, 2016, p. 7). 

Online: The proportion of content delivered online is greater than 80%. A course where 

most or all of the content is delivered online either synchronous or asynchronous. 

Typically, no face-to-face meetings (Allen & Seaman, 2016, p. 7).  

  As the Internet began growing at a rapid pace, institutions of higher education saw 

opportunities to provide students with flexible, affordable course offerings. The publicity 

and promise around “Massive Online Open Courses” (MOOCs) compelled major 

education institutions to consider offering online courses to stay relevant and competitive 

(Pappano, 2012). While the enthusiasm for the promise of MOOCs has waned, online 

courses continue to play a strategic role in standard course offerings in higher education 

(Allen & Seaman, 2016). 
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Online Learning 
 
Trends in Growth and Enrollment 
 

The proliferation of connected digital devices, combined with universal access to 

educational content on the Internet, has made possible new platforms with respect to how 

education is delivered and consumed. Online learning, previously defined as having at 

least 80% of content delivered online, some materials provided in hardcopy, and with no 

face-to-face meetings now utilizes newer technologies to deliver content for teaching and 

learning (Allen & Seaman, 2016). 

A recent study tracking online course usage in higher education in the United 

States reported that 31.6% of all college students, over six million students, are presently 

taking at least one course online, which is a significant increase in enrollment from 2014 

with 14.5% taking at least one online course (Seaman, Allen, & Seaman, 2018; NCES, 

2014). Of the students taking online courses, 67% do so at a public institution (Allen & 

Seaman, 2017). Importantly, online education enrollments remain highly concentrated in 

a relatively small number of institutions comprising almost half the students in just five 

percent of the institutions (Seaman et al., 2018). The University of Phoenix-Arizona is by 

far the largest private for-profit institution with 131,629 total enrollments (Seaman et al., 

2018). 

There are important differences between large and small institutions of higher 

education regarding the attitudes and practices of online learning. In 2015 only 46% of 

small institutions (less than 3,000 students) responded that online learning is a critical 

part of their long-term strategy, a drop from 70.2% in 2014 (Allen & Seaman, 2016). 

However, these institutions only represent 2.1% of all college students. Additionally, 
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public institutions, which began offering online courses and programs sooner than private 

institutions, have consistently maintained that online learning is critical to their long-term 

strategy (Allen & Seaman, 2016). However, recent trends in total student enrollment at 

U.S. higher education institutions has declined by 3.8% between 2012 and 2016 (Seaman 

et al., 2018). Moreover, the enrollment declines have been uneven with private for-profit 

institutions accounting for all of the loss of students, while private non-profit and public 

institutions both had slight increases in enrollment during the four-year time period 

(Seaman et al., 2018). The reasons for enrollment declines could be related to the cost of 

attending college, potentially putting more pressure on colleges to reduce overhead by 

providing more cost-effective online courses. Given that these larger public institutions 

serve different populations of students, the pattern of shifting the emphasis towards 

online courses from face-to-face courses could have implications for the academic 

success of certain students. These institutions might potentially assume that online 

learning is equally as effective as face-to-face learning based on the U.S. Department of 

Education meta-analysis which found that “students who took all or part of their classes 

online performed better, on average, than those taking the same courses through 

traditional face-to-face instruction” (Means et al., 2009, p. xiv).  

Effectiveness of Online Learning in Higher Education 
 

As online learning continues to grow as a mode of instructional delivery, 

administrators and teachers seek to understand the effectiveness of online or 

hybrid/blended learning courses compared to traditional, face-to-face learning. The 

research on the effectiveness of these various modes of content delivery generally 

measures student academic achievement as the primary dependent variable. Researchers 
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have investigated the effectiveness of online learning compared to face-to-face learning 

and found inconclusive outcomes or little difference in student achievement (Bernard et 

al., 2004; Jaggars & Bailey, 2010; Xu & Jaggars, 2014). 

Bernard et al. (2004) conducted a meta-analysis of 232 studies between 1989-

2002 and looked at achievement, attitude, and retention outcomes of online courses 

compared to face-to-face courses and found no meaningful differences in effect sizes 

with wide variability with all three measures. The investigators concluded that the most 

important finding was the wide range in effect sizes in achievement outcomes with effect 

sizes ranging from -1.31 to +1.41 (Bernard et al., 2004). However, the mean achievement 

effect sizes comparing online synchronous courses favored face-to-face courses, while 

the asynchronous online course outcome favored online courses over face-to-face 

courses. Bernard et al. (2004) surmised that synchronous learning is a poor-quality 

replication of traditional classroom learning in that it lacks the flexibility in scheduling 

and also lacks the individual attention generally available in asynchronous courses. 

Additionally, while prior studies compared various media to face-to-face courses, 

Bernard et al. (2004) compared only general distance education course outcomes to face-

to-face outcomes. This research appears to support Keegan’s (1980) defining notion of 

proximity of teacher and student as the primary independent variable assuming media use 

is consistent in both settings.  

Conversely, proponents of online learning were encouraged by a meta-analysis 

commissioned by the U.S. Department of Education that found, on average, students 

performed better in online learning conditions than students in face-to-face classes 

(Means et al., 2009). The study considered more than one thousand empirical studies of 
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online learning student outcomes compared to face-to-face conditions. A screened set of 

51 independent effects was analyzed and found showing that students in online courses 

performed better than those in face-to-face instructional settings, with an average modest 

effect size of +0.24, p < .01. However, the study noted numerous limitations such as: 

small sample sizes, failure to report retention rates, and in many cases, potential author 

biases. Despite the evidence that online learning can be effective, the meta-analysis did 

not clearly demonstrate that online learning is superior as an instructional mode over 

face-to-face instruction (Means et al., 2009). The researchers pointed out that online 

courses often included additional learning time, more materials, and extended 

opportunities for collaboration which likely produced the observed learning advantages 

of online courses (Means et al., 2009).  

Similar support for online learning was found in a subsequent meta-analysis 

commissioned by the U.S. Department of Education in 2013, which considered 50 studies 

contrasting online or hybrid courses with face-to-face courses. This study differed from 

the prior U.S. Department of Education meta-analysis of the effectiveness of online 

learning in that it only considered web-based learning, eliminating audio, telecourses, and 

stand-alone computer-based instruction (Means, Toyama, Murphy, & Bakia, 2013). The 

finding of this meta-analysis was that purely online and hybrid courses produce stronger 

student learning outcomes compared to learning in traditional, face-to-face learning 

environments. The mean effect size for all 50 studies was .20, p < .001 (Means et al., 

2013). However, the mean effect size for 27 purely online studies compared to face-to-

face conditions was not statistically significant. The mean effect size for the 23 hybrid 
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courses versus face-to-face instructional settings was statistically significantly different, 

with an effect size of +0.35, p < .000 (Means et al., 2013).  

Another study comparing online learning to face-to-face learning outcomes 

addressed the inherent selection bias associated with online learning enrollment. Stack 

(2015) conducted a quasi-randomized experiment comparing online learning outcomes 

with face-to-face courses and found no statistically significant differences in 

achievement. The study was unique in that it took advantage of an administrative error 

which failed to list a section of a course as being online. The students who discovered 

they were in the online class remained as did the students who were registered in the 

face-to-face section. This allowed the study to address two recurring limitations of 

research in online versus face-to-face environments: selection bias of course delivery 

mode and exam proctoring (Stack, 2015). Both courses were taught by the same 

instructor, utilized the same materials, and all examinations were proctored, in person, by 

the same instructor. Stack (2015) found no significant difference in academic 

performance between online and face-to-face instructional modes (.147, p > .05). 

Additionally, the students’ perception of instruction quality did not differ by instructional 

mode. However, the relatively small sample size (64) and the non-random assignment of 

students raises a potential threat to external validity.  

The research comparing the effectiveness of online learning and face-to-face 

learning is dominated by “media comparisons” and often ignores other factors that 

potentially influence the effectiveness of online learning (Means et al., 2009, 2013 Stack, 

2015). Seeking to expand on the research on the effectiveness of online learning, Zhao, 

Lei, Yan, Lai, and Tan (2005) examined 51 journal articles and evaluated pedagogical 
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and technological factors that potentially differentiate student learning outcomes in online 

learning courses. This meta-analysis conducted by Zhao et al. (2005 found that not all 

online learning education programs are equal. In fact, Zhao et al. (2005 found the 

following factors to be significant moderators of student academic outcomes: studies 

published after 1998 found online learning to be significantly more effective than face-to-

face learning (d = .20, p < .001); studies where the author of the article was also the 

online instructor found the outcome significantly favored online learning (d = .33, p < 

.001); high instructor involvement in an online course was the most significant moderator 

to student outcomes (d = .21, p < .001); computer science courses showed a significant 

difference in favor of online learning student outcomes compared to face-to-face (d = .50, 

p < .01); the type of interaction online between the instructor and the student 

(synchronous and asynchronous) was a significant predictor of academic performance if 

both means of interaction were employed (d = .49, p < .01). However, instructor 

involvement as a researcher in the study carries with it conflict of interest potential.  

While the empirical evidence analyzing the effectiveness of online learning 

appears to be inconclusive, Zhao et al.’s (2005) research suggests that specific elements 

in course design, instructor presence, technology integration, and context can be critical 

factors in student academic success in online learning. Another important consideration 

of the present study is the relationship of self-regulation and academic performance in 

online learning. The next section will explore the theoretical foundations of self-regulated 

learning, the empirical research on the role of self-regulated learning in online 

environments, and research related to the teaching of self-regulation skills.  
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Self-Regulated Learning 
 
Theoretical Foundations 
 

Self-regulated learning is a term used to describe the degree to which students are 

metacognitively, motivationally, and behaviorally active participants in their own 

learning process (Zimmerman, 1989). Self-regulated learning involves the self-directive 

processes and self-beliefs that enable learners to transform their mental abilities into 

academic skill performance (Zimmerman, 2008).  

Cognition and behavior are important aspects of self-regulation with respect to 

student academic performance (Pintrich & De Groot, 1990). Pintrich and De Groot 

(1990) described self-regulated learning as consisting of three important components for 

classroom performance: metacognitive strategies for planning, modifying, and 

monitoring cognition, students’ management and control of their efforts on academic 

tasks, and cognitive strategies students use to learn, remember, and understand academic 

material.  

Self-regulation is rooted in social cognitive theory in that behavior is motivated 

and regulated by self-influence (Bandura, 1991). Bandura (1991) further posited that self-

regulation is also linked to self-efficacy, which plays an important role in one’s belief in 

one’s thoughts, motivation, and actions. Bandura’s (1991) self-efficacy theory is derived 

from four principles that guide beliefs in one’s capacity to organize and execute a 

successful course of action required for a particular situation. First, prior success in 

performance accomplishments. Second, observation of a role model through a vicarious 

experience. Third, encouragement of a credible and competent other through verbal 
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persuasion. Finally, a psychological and affective arousal state that impacts one’s belief 

in turning self-efficacy thoughts into action - a key to self-regulation.  

While knowledge of cognitive and metacognitive strategies is often required for 

student success, students must be motivated to act. Motivational theory is adapted from 

the general expectancy-value model of motivation (Wigfield & Eccles, 2000). Motivation 

plays a significant role in self-regulated learning. Three components of motivation are 

linked to self-regulated learning: a) expectancy in the belief to perform a task, b) a value 

component related to the importance or interest in the task, and c) an affective component 

which includes a student’s emotional reaction to a task (Pintrich & DeGroot, 1990). The 

next section will examine the empirical research associated with the relationship of self-

regulation with academic performance in online learning environments. 

Self-Regulation and Academic Performance in Online Learning  
 

Self-regulated learning is regarded as an important competency mediating the 

academic success of students in most learning environments (Zimmerman, 2008). Online 

learning environments are significantly different from conventional learning 

environments in that students and teachers are not physically present together and 

students are more responsible for their own learning (McMahon & Oliver, 2001). 

Numerous researchers have investigated the relationship of various self-regulated 

learning beliefs to academic performance and found that self-regulation does have a 

relationship to academic performance (Pintrich et al., 1991; Puzziferro, 2008; Wang et 

al., 2013). However, the empirical research on the relationship between self-regulated 

learning and academic performance in online environments often includes other variables 

such as course satisfaction, previous experience with online learning, and technology 
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self-efficacy as additional variables to consider in developing a comprehensive 

understanding of the factors attributed to student academic performance (Cho & Heron, 

2015; Wang et al., 2013). While there is evidence that self-regulated learning beliefs do 

influence academic performance, the evidence suggests that only certain self-regulated 

learning beliefs, in limited contexts, can explain a statistically significant amount of the 

relationship to academic performance.   

Puzziferro (2008) analyzed the academic performance of 815 community college 

students enrolled in a random sample of 163 liberal arts online courses. The study 

examined performance as a function of grade and course satisfaction as well as measured 

self-efficacy for online technologies and self-regulated learning strategies. Puzziferro 

(2008) found that time and study environment and Effort Regulation were significantly 

related to academic performance in online undergraduate courses. Using Pintrich and 

DeGroot’s (1990) theory of self-regulated learning, Puzziferro (2008) measured cognitive 

learning strategies using the Motivated Strategies for Learning Questionnaire (MSLQ). 

The study revealed significant differences in mean scores by final grade for time and 

study environment F(4, 810) = 4.41, p = .00 and for Effort Regulation F(4,810) = 5.46, p 

= 0.00. Additionally, the self-regulation learning beliefs of rehearsal, elaboration, 

Metacognitive Self-Regulation, and time and study environment were found to be 

significantly positively correlated with course satisfaction. The study also included a 

measure of online technologies self-efficacy but found no significant correlation with 

student academic performance. A limitation of this study was the use of grades as the 

measurement of academic performance, which can be inconsistent and unreliable as a 

measure of actual learning in a course. The unique contribution of this research was the 
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inclusion of course satisfaction and the role of online technology self-efficacy as 

variables to further explain academic performance along with the relationship of self-

regulation beliefs. 

Wang, Shannon, and Ross (2013) conducted a similar study as Puzziferro (2008) 

but with a very different student population. They simultaneously measured personal 

characteristics, technology self-efficacy, and self-regulation beliefs to understand the 

relationship to course academic outcomes and satisfaction. They examined 256 

undergraduate students taking online courses at a major university. Results of the study 

confirmed Puzziferro’s (2008) findings that self-regulated learning is a significant 

predictor of course satisfaction and performance. Wang et al. (2013) also considered 

technology self-efficacy, course satisfaction, and previous experience with taking online 

courses in their study. The researchers found that students with more prior online learning 

experience tended to demonstrate more effective learning strategies and report stronger 

levels of motivation resulting in higher grades. However, this finding might suggest that 

the self-selection process bias, where students who are successful in an online course(s) 

continue, while those who have disappointing experiences early on do not, plays a role. 

The results of this study further confirm that numerous factors combine to predict 

academic performance in online learning environments.  

In research germane to the present study, Cho and Heron (2015) measured the 

motivation and learning strategies of 229 college students enrolled in online remedial 

mathematics courses. The students used the courseware ALEKS as their primary source 

to learn the course material. In addition, the students were offered twice a week in-person 

class sessions as additional support. They found that Self-Efficacy for Learning and 
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Performance was the only motivational variable that significantly predicted final grades 

as measured by a comprehensive final examination 𝛽𝛽 = .36, p < .01 (Cho & Heron, 

2015). However, the study found that the learning strategies of metacognition, self-

regulation, and critical thinking were not predictors for academic success. The study 

included measuring emotional variables along with motivational variables and predicted 

63.1% of the variance in course satisfaction. This finding is consistent with Wang et al.’s 

(2013) finding that course satisfaction is related to course achievement. However, it is 

important to note that Cho and Heron (2015) measured achievement with a final 

examination score while Wang et al. (2013) used course grades to measure achievement. 

Using course grades does not always reflect true achievement due to the potential for 

subjective bias in grading. Moreover, the study concluded that only Self-Efficacy for 

Learning and Performance was a significant predictor of achievement, thus supporting 

Bandura’s (1986) and Zimmerman’s (2000) social cognitive view of learning. The 

finding that emotion played a significant role in an online course setting further supports 

the notion that understanding success in online courses is multidimensional.  

Augustiani, Cahyad, and Musa (2016) also found evidence of the positive 

relationship between Self-Efficacy for Learning and Performance and academic 

performance. Augustiani et al. (2016) conducted a correlational study with 101 students 

in an undergraduate psychology course to examine the relationship between self-efficacy, 

self-regulation of learning, and academic achievement. Academic achievement was 

measured using end of semester grades. The students completed two self-report surveys 

to measure: 1) academic self-efficacy and 2) self-regulation using selected subscales of 

the MSLQ questionnaire (metacognition, Effort Regulation, time management, and peer 
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learning). Agustiani, Cahyad, and Musa (2016) found that self-efficacy, self-regulated 

learning, and academic achievement were positively and significantly correlated. Self-

efficacy had a small but significant positive relationship with academic performance with 

a Pearson’s correlation coefficient, 0.263, p  <  0.01 and self-regulated learning had a 

small, positive significant relationship with academic performance 0.394, p < 0.01. The 

hypotheses that better self-regulation and stronger self-efficacy would lead to higher 

academic achievement were supported.  

Lynch and Dembo (2004) investigated the relationship of self-regulation skills as 

predictors of academic success in a blended learning context. Prior research reviewed in 

this paper was contextualized in fully online courses. Additionally, this research used the 

independent variable of verbal ability as a covariate. The research included 94 students in 

an undergraduate marketing class at a four-year university. Four self-regulation subscales 

from the MSLQ questionnaire were selected as independent variables to predict academic 

success: intrinsic goal orientation, Self-Efficacy for Learning and Performance, time and 

study environment management, and help seeking. The self-belief of Internet self-

efficacy was also measured. The researchers found that only Self-Efficacy for Learning 

and Performance and verbal ability made significant contributions to predicting variance 

on grades (Adjusted R Square value = .115, F (2,91) 7.06, p < 0.05). The blended 

instructional mode of the course and the inclusion of embedded self-regulation enhancing 

elements also contributed to the findings that self-regulation was not problematic for this 

population. As will be discussed later in this paper, community college students face 

considerable disadvantages in most online learning environments due to their lack of self-

regulation learning skills and low self-efficacy for learning. This study exemplifies the 
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bias in research measuring self-regulated learning in that the students were highly self-

regulated, attended a well-regarded university, and underwent a rigorous selection 

process for inclusion in the study. The results of this study also supports prior research 

findings that Self-Efficacy for Learning and Performance is a significant predictor of 

academic performance (Cho & Heron, 2015; Pintrich et al., 1991). The positive 

correlation of verbal ability to academic performance is an important consideration given 

that online courses are generally text-based and require verbal skills to read and 

comprehend material to be successful. Lynch and Dembo’s (2004) findings suggest that 

nontraditional students lacking verbal skills are potentially disadvantaged in online 

courses. The next study in this literature review considers the effects of providing 

students with support for self-regulation in an online developmental mathematics course.  

McClain (2015), in a dissertation employing a quasi-experimental design with 

661 students, investigated the effects of using a self-monitoring instrument on academic 

achievement, self-regulated learning levels, and course grade in an online postsecondary 

developmental mathematics course. The results indicated a small but statistically 

significant increase in self-regulation for those students who utilized the self-monitoring 

instrument. A significant interaction effect was found and a subsequent t-test found that 

the experimental group exhibited significantly higher levels of self-regulated learning 

t(218) = -2.96, p = .003, indicating that having at least one experience of completing a 

self-monitoring record significantly increased the students’ level of self-regulated 

learning over time. When considering mathematics achievement, the data showed that the 

experimental group, as a whole, had higher mean examination scores than the control 

group. The transformed and adjusted mean scores and results of the ANCOVA revealed 
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that this difference was statistically significant at the level p <.01 when comparing the 

control group and experimental group as a whole. However, there was a very small effect 

size of .01 (McClain, 2015). McClain also documented a correlation between self-

reported self-regulation levels and final course grade. While the McClain (2015) study 

did show promise of the positive relationship of using a self-monitoring tool to self-

regulated learning levels and academic achievement, the Online Self-Regulated Learning 

Questionnaire (QOSL) survey instrument used was modified for this particular study, 

calling into question the validity and reliability of the instrument, neither of which was 

reported by the author. Moreover, while differences were found to be significant, effect 

sizes were very small and likely not impactful. Research suggests that self-regulated 

learning beliefs are potentially significantly and positively related to academic 

performance (Agustiani et al., 2016; Cho & Heron, 2015; Lynch & Dembo, 2004; 

Puzziferro, 2008). 

A common measure of student self-regulation is based on self-reports using the 

MSLQ questionnaire survey. Some researchers, rather than survey existing self-

regulation beliefs, have conducted quasi-experimental studies to investigate if self-

regulation skills can be taught and the subsequent relationship to academic outcomes. 

This next section will explore empirical research related to the effectiveness of teaching 

and supporting self-regulation.  

The Effectiveness of Teaching Self-Regulation 
 

Research suggests that self-regulation potentially plays a role in academic success 

(Pintrich et al., 1993; Puzziferro, 2008). Empirical studies measuring the effect of self-

regulation learning interventions suggest that providing support for self-regulation skills 
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fosters statistically significant higher academic outcomes (Rowe & Rafferty, 2013). 

Rowe and Rafferty (2013) identified two categories of self-regulation interventions that 

have been researched: prompting and training. Prompting is guiding and supporting 

students in self-regulation activities, such as metacognition, while in the process of 

learning. Training is explicit instruction on the skills of self-regulation such as help 

seeking, time management, and goal setting.  

Zheng (2016) conducted a meta-analysis in which he examined 26 research 

papers and 2,648 students on the effects of self-regulated learning scaffolds on academic 

performance in computer-based learning environments. The analysis indicated that self-

regulated learning scaffolds generally produced moderately significant positive effects on 

academic performance (ES = 0.438). Scaffolds can be categorized based on different 

functionalities such as conceptual, metacognitive, procedural, and strategic 

considerations (Hannafin, Land, & Oliver, 1999). Scaffolds such as tools, strategies, 

prompts, metacognitive feedback, or guides were analyzed. The findings suggest that 

scaffolds must support the whole process of self-regulated learning from defining tasks, 

setting goals, making plans, enacting tactics, and adapting metacognition. Studies that 

measured multiple scaffolds had the highest effect size (ES = .5777). Additionally, 

domain specific scaffolds and adaptive scaffolds that adjust based on students’ learning 

needs can lead to better academic performance.   

Bol, Campbell, Perez, and Yen (2016) conducted a quasi-experimental study 

investigating the effects of training in self-regulation on metacognition and math 

achievement. The participants were 116 community college students enrolled in 16 intact 

face-to-face instruction courses. Students were randomly assigned to the treatment and 
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control groups. Participants in the treatment group completed four self-regulated learning 

exercises based on Zimmerman’s (2002) cyclical model. The MSLQ questionnaire 

survey was used to measure pre and post self-regulation beliefs of Metacognitive Self-

Regulation and time/study environment skills. Bol et al. (2016) found significant 

differences between the two groups suggesting that training in self-regulation can 

improve self-regulation beliefs. Additionally, t-tests indicated significant improvements 

in mathematics achievement scores between the two groups as measured by final 

examination results using the MyMathLab software t(70,90) = -2.60, p = .011 (Bol et al., 

2016).  

In a related study to investigate the role of metacognition in learning, Kauffman, 

Ge, Xui, and Chen (2008) conducted a quasi-experiment to explore the self-regulation 

processes of metacognition and reflection to understand how automated instructional 

support using prompts influenced problem solving and writing. The sample included 54 

undergraduate students in an intact educational psychology course at a large university. 

Students were randomly assigned to a 2x2 design with students in one group receiving 

scaffold prompts to assist with problem solving, while another group received prompts 

associated with reflective practice. A pre-test of academic self-efficacy and self-reported 

metacognitive self-awareness was also conducted. Students were assessed on their 

written responses to problems in a case study. Results indicated that students provided 

with prompts for problem solving scored higher on their case study evaluation and wrote 

with more clarity than those students who did not receive prompts. However, students 

prompted to reflect on their work produced better outcomes only if they were also 

prompted during the problem-solving period of their assessment (Kauffman, Ge, Xui, & 
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Chen, 2008). The researchers surmised that the problem-solving prompts served to clarify 

the assignment goals and promoted self-monitoring - both important skills of self-

regulated learning.  

Chang (2007) conducted a quasi-experiment to investigate the effects of a self-

monitoring strategy and motivational beliefs in an online language course. Participants 

were 99 college freshmen enrolled in an intact English class at a university in Taiwan. 

The intervention included a self-monitoring recording form where students were asked to 

record their starting time, place they studied, and persons they studied with. They were 

also asked to predict their after-lesson quiz score. Following the quiz, they were asked to 

record their quiz score, logout time, and note any distractions they encountered during 

their study time. Motivational beliefs were measured with the MSLQ questionnaire 

utilizing the subscales of Self-Efficacy for Learning and Performance and learning 

beliefs. Chang (2007) found that students who employed the self-monitoring strategy 

scored higher on the course tests and motivational beliefs than those in the control group. 

Higher-level English proficiency groups obtained higher scores on both measures, but the 

difference was not statistically significant. However, the lower-level English proficiency 

group students performed statistically significantly higher than a control group on both 

academic performance and motivational beliefs. The results of the study revealed a 

significant main effect of self-monitoring on academic performance. This study also 

demonstrated that when providing tools or prompts that foster self-regulation, these tools 

can potentially play an important role in academic outcomes. The specific context of this 

study has limited generalizability but nevertheless provides more empirical support for 

self-regulated learning interventions. The empirical evidence suggests self-regulation has 
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a relationship to academic outcomes. I will next examine the specific learning 

environment of community colleges to examine the empirical evidence of self-regulation 

in online learning, and in particular, with online remedial mathematics courses.    

Community College Learning Environment 
 
Role in Higher Education 
 

In 2015 there were over 17 million undergraduate students enrolled in degree-

granting postsecondary institutions in the United States (NCES, 2015b). Of those 

students, 10.5 million (62%) attended four-year universities while 6.5 million (38%) 

attended two-year institutions. The two-year institutions, commonly referred to as 

“community colleges,” play a significant role in educating postsecondary students in the 

United States. There are currently 1,563 two-year institutions with more than 80% of 

those representing public colleges (NCES, 2015b).  

The distinction between four-year universities and community colleges lies in the 

mission of the schools, programs offered, tuition costs, and degrees granted. Community 

colleges generally focus on providing a narrow range of career-oriented programs at the 

certificate and associate's degree levels and courses which prepare students for transfer to 

four-year institutions. Four-year institutions offer a broad range of academic programs 

leading to bachelor's degrees (Carnegie, 2015). 

Another key distinction of community colleges is with admissions policies. In 

2015, 98% of public two-year institutions offered open admissions, meaning they 

accepted all applicants. This is contrasted with 19% of public four-year institutions that 

offered open admissions and 16% of private non-profit institutions that offered open 

admissions. Open admissions is a critical factor in providing access and equity to 
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education regardless of economic status, ethnicity, or academic records (NCES, 2015b). 

Open admissions is certainly a critical consideration for many nontraditional students 

seeking to enter higher education. However, the cost of the education is also a paramount 

consideration.   

Costs to attend a community college are significantly less than public or private 

four-year universities. Average cost (tuition, fees, books, supplies, room & board) in 

2015 to attend a community college full-time and live on campus was $9,337 annually 

compared to $19,217 for a public four-year institution and $45,951 at a private four-year 

institution (NCES, 2017). 

Characteristics of Community College Students 
 
   Community colleges serve a disproportionate number of older, low-income 

students representing non-white, often first-generation students (Provasnik & Planty, 

2008). Compared to their counterparts at four-year universities, community college 

students are less likely to be prepared for their academic studies and less likely to aspire 

to or earn a degree (Yu, 2017). In 2004, nearly 40% of community college students were 

financially dependent (i.e., under 24 years old and financially dependent on their parents), 

26% were financially independent of their parents, 20% were independent and married 

with children, and 15% were independent, single parents (Horn & Nevill, 2006). 

Compared to students attending four-year universities, community college students tend 

to be older, female, and lower-income, as well as comprise larger proportions of students 

of color (American Association of Community Colleges [AACC], 2018; Horn & Nevill, 

2006). Hispanics are the fastest-growing population in community colleges representing 

22% of total enrollments (AACC, 2016). While there is an abundance of empirical 



 

 

40 

research on the effectiveness of online learning in four-year institutions with capable 

students, the limited research on the effectiveness of online learning in community 

colleges suggests this mode of instruction presents challenges to nontraditional students. 

Effectiveness of Online Learning in a Community College Setting 
 

Many of the studies measuring the effectiveness of online learning have been 

conducted with traditional students in four-year universities (Means et al., 2009, 2013). 

Students enrolled in a four-year university are more likely to attain a degree and come 

from homes with higher incomes and have parents who attended college than students in 

community college (NCES, 2002). Moreover, measuring the effectiveness of online 

learning with well-prepared, mostly white, traditional students in four-year universities is 

not generalizable to students enrolled in community colleges (Jaggars & Bailey, 2010). 

Community colleges have expanded on and promoted online courses with the 

intent to provide more access, flexibility, and reduced costs to students. In 2008, 97% of 

two-year colleges offered online courses (Allen & Seaman, 2016). Barbules and Callister 

(2000) claimed that online courses are playing a growing role in reconfiguring 

postsecondary education due to demand, economics, and competition in the education 

market. Critics argued that the proliferation of online courses will serve to stratify higher 

education leading to more inequality and inferior educational offerings (Jaggars & 

Bailey, 2010; Noble, 2001). Despite the lack of strong empirical evidence that online 

learning is as effective or superior to face-to-face learning, online courses continue to 

expand at community colleges (Allen & Seaman, 2016).   

Cox (2005) examined the institutional myths legitimizing the expansion of online 

courses in community colleges. Using extensive data from the Community College 
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Research Center at Teachers College, Cox (2005) conducted in-depth interviews at 15 

community colleges in six states, and together, these states account for over one-third of 

the public community colleges in the United States. Over 600 administrators, faculty, and 

students were interviewed for the study. Cox (2005) contended that community college 

actors are “responding to a set of taken-for-granted ideas about online education” (p. 

1756). The following are highlights from Cox’s (2005) findings: Administrators believed 

they must offer online courses to remain competitive and to increase student accessibility 

while faculty contested the viability of this mode of instructional delivery. Thus, the drive 

to increase online courses was influenced by organizational desires versus faculty-driven 

ideas around best practice. Moreover, community college administrators’ attempt to “fit 

in” as legitimate colleges drove them to adopt organizational structures of other high-

status colleges - which includes promoting online learning, which may not be suitable for 

the nontraditional students they serve (Cox, 2005). Additionally, the myth that students 

must acquire technology-related skills required in the workplace has potentially justified 

the need for more online courses and perpetuates the myth of the need of providing 

technological literacy.  

Research on community college student success in online courses is replete with 

cautionary tales of student failures (Jaggars et al., 2013). A comprehensive research 

overview of online course outcomes completed by the Community College Research 

Center at Columbia University found that, “Despite this rapid growth in online education, 

little is known about the effectiveness of online courses for community college students” 

(Jaggars et al., 2013, p. 1). Jaggars, Edgecombe, and Stacey (2013) conducted a 

longitudinal study from 2004-2008 and reported that online course failure/withdrawal 
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rates were 32% in online courses versus 19% in face-to-face courses in 24 community 

colleges comprising over 185,000 students in the U.S. southern state system (Jaggars et 

al., 2013). In required mathematics courses the online failure/withdrawal rate was 25% 

versus 12% in face-to-face courses (Jaggars et al., 2013). Developmental mathematics 

courses had a failure/withdrawal rate of 62% in online courses versus 43% in face-to-face 

courses. Moreover, the research revealed that black males with lower prior GPAs had 

three times the failure/withdrawal rate than students with higher GPAs. 

  The aforementioned Means, Toyama, Murphy, Bakia, and Jones (2009) meta-

analysis showed positive effects on student academic outcomes in online courses 

compared to face-to-face courses. Jaggars and Bailey (2010) analyzed those results and 

argued that the Means et al. (2009) findings do not hold for fully online, semester-length 

courses. Moreover, they contended the results are not generalizable to underprepared, 

nontraditional students typically found in community colleges (Jaggars & Bailey, 2010). 

Among the factors they deemed made the Means et al. (2009) study less generalizable 

included small sample sizes, traditional four-year university students, a bias towards non-

typical college courses, and short duration courses. Jaggars and Bailey (2010) examined 

28 studies (of 51 total) from the Means et al. (2009) study to compare results of online 

and face-to-face learning environments. They argued that the majority of the studies 

included in the Means et al. (2009) research were not relevant to the context of typical 

community college courses or typical community college students. They found that over 

half the studies concerned short (15 minute modules), topic-specific courses well-suited 

to the online learning context and not similar to semester-long, general education courses 

typically found in higher education courses (Jaggars & Bailey, 2010). Moreover, they 
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pointed out selection bias in that the results were applicable only to higher-performing, 

motivated students. Additionally, no studies examined included low-income, 

underprepared students typically found in the community college setting.   

 Xu and Jaggars (2014) conducted extensive research on the performance gaps of 

students taking online and face-to-face courses in Washington State. Using a dataset 

containing 500,000 courses taken by over 40,000 community college students, the 

researchers examined the academic performance gaps in online learning performance 

among subgroups and academic subjects. They found that younger students, males, black 

students, and students with lower GPAs suffered the largest “decrements” in academic 

performance in online courses. Average persistence rates were 91.17% in online courses 

and noticeably lower than persistence rates of 94.45% in face-to-face courses. Average 

standardized grades were lower (-0.054) in online courses versus average standardized 

grades of 0.006 face-to-face courses. In terms of age, older students had lower persistence 

rates in face-to-face courses of 94% compared to 95% in face-to-face courses but 

surprisingly higher persistence rates in online courses of 91% compared to 90% 

persistence rates of younger students. Performance gaps were also found in academic 

subject areas between online and face-to-face courses. The results of this comprehensive 

study indicated that the typical community college student performed less well in online 

courses compared to face-to-face courses (Xu & Jaggars, 2014). It was suggested that 

screening, early warning, and scaffolding should be considered as potential interventions. 

 Mathematics Achievement and Remediation in Community Colleges 
 

In 2012, over two million students were enrolled in two-year mathematics and 

statistics programs in two-year colleges. However, 57% of the students were enrolled in 
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pre-college, noncredit courses (Olson & Labov, 2012). Moreover, research suggests that 

many of these students never reach college-level mathematics (Bailey et al., 2015 Olson 

& Labov, 2012; Xu & Dadgar, 2018). A known gap in mathematics instruction is the lack 

of understanding of how to integrate technologies to deliver instruction both in the 

classroom and online (Bragg, 2012). 

The subject of remediation and developmental education in community colleges is 

of great interest to administrators and practitioners in community colleges. Over the past 

decade, community college personnel have reformed their traditional course offerings to 

accommodate students who need remedial support in all subjects, mathematics in 

particular (Bailey et al., 2015). However, proficiency in procedural algebra skills in 

remedial mathematics courses may not be adequate enough for preparing students for 

college-level mathematics (Quarles & Davis, 2017). Additionally, only 20% of students 

referred to developmental mathematics courses in community colleges continue on to 

pass the entry-level college course (Bailey et al., 2010; Xu & Dadgar, 2018). Online 

remedial mathematics courses hold the promise to address the need to provide a more 

flexible and effective way to deliver mathematics instruction to students in community 

colleges.  However, the research on the effectiveness of teaching remedial mathematics 

online is inconclusive, and while some students can benefit from this instructional 

modality, many do not.  

Ashby, Sadera, and McNary (2011) compared 167 students’ academic outcomes 

in three different learning environments of an intermediate algebra course: fully online, 

blended, and face-to-face and found significant differences with student academic 

success. Their findings contradicted current research, which shows learning environments 
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are equally effective. Completion rates for face-to-face students was 93%, blended 

students 70%, and online students 76%. In this study, online and blended students 

performed significantly lower on the Algebra Competency Examination than students in 

face-to-face classes when not taking attrition into account (Ashby, Sadera, & McNary, 

2011). However, when taking attrition into account face-to-face students performed 

worse. With only three-quarters of the online students completing all assignments 

attrition clearly had an impact on student outcomes. Online students who did complete all 

assignments had the highest (85%) success rate in the course. While this study did not 

measure self-regulated learning, it can be posited that self-regulation and persistence 

likely had a large impact on student outcomes.  

Zavarella (2008), in a similar study of community college students taking 

remedial mathematics courses, compared the success of 192 students registered in same 

course with different instructional delivery modes: face-to-face, blended, and online. 

Success was measured by withdrawal and completion rates. The study found withdrawal 

rates in computer-based courses to be double that of face-to-face courses. Data collected 

from students who withdrew indicated that they encountered challenges they did not 

expect. Additionally, the online students reported a lack of available tutorial services 

despite regular virtual office hours available from instructors. Help-seeking is a 

component of self-regulation skills that can be associated with academic success or 

retention.  

Wladis, Conway, and Hachey (2015) investigated how ethnicity, gender, and 

other nontraditional student characteristics related to online learning outcomes in STEM 

courses in a community college setting. The study included 3,600 students from an urban 
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community college in the Northeastern United States registered in online or face-to-face 

STEM classes. Learning outcomes were measured by completion of the course with a 

grade of C- (the minimum transfer credit) or higher. Results indicated that older males 

performed better online than in face-to-face courses. There was no interaction effect with 

regard to ethnicity in both online and face-to-face courses. Moreover, Wladis et al. (2015) 

pointed out that there may be factors other than the online learning environment 

associated with female failure rates in online STEM courses. Finally, 

mathematics/computer courses had larger gaps in course completion rates than 

science/computer courses, but the difference was not statistically significant. This 

research is useful to inform the hypothesis of the present study that age and gender are 

potential factors in determining online academic success.  

  Bahr (2008) investigated the long-term academic success of community college 

students who received remedial assistance in mathematics and achieved college-level 

mathematical skills. Academic success was defined as credential attainment or transfer to 

a four-year institution (Bahr, 2008). The study included over 85,000 community college 

students enrolled in 107 community colleges in California. Bahr (2008) concluded that 

remedial mathematics programs are highly effective at resolving skill deficiencies with 

community college students. Bahr (2008) found achievement outcomes of some students 

who completed remedial math courses comparable to the students who took college level 

mathematics. Unfortunately, Bahr (2008) also found that 75.4% of the students did not 

remediate successfully resulting in 81.5% of these students not completing a credential 

and not transferring to a four-year university. The study suggests that remediation can be 

very effective but only works for some students. Bahr (2008) further suggested that a 
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strong predictor of mathematics success is a student’s first mathematics grade (see also 

Wang, Wang, Wickersham, Sun, & Chan, 2017). Bahr (2008) posited that academic self-

efficacy plays a role in academic performance and poor performance in a first math class 

would discourage further pursuit of mathematical competency.  

Summary 

  As online learning continues to grow and expand in community colleges it is 

critical that educators understand the effectiveness of this instructional mode. The 

empirical evidence of the effectiveness of online learning is inconclusive. Moreover, 

there is a dearth of research with nontraditional students in community colleges. The 

proliferation of the acceptance of poorly defined terms, rapidly evolving technology, and 

a lack of rigorous validation has exacerbated the challenges of growing the theoretical 

and empirical research base of online learning.   

  Self-regulated learning skills potentially play an important role in student success 

in online learning contexts. The theoretical foundations of self-regulation are well-

established. However, the empirical evidence of the role that self-regulation plays in 

student success is inconclusive and lacks a thorough understanding. While there is some 

evidence that self-regulation has a relationship to academic performance, simply teaching 

or supporting self-regulation in an educational setting may not be enough.  

  Success in mathematics in community colleges is essential for students to enter 

degree programs and earn credentials necessary for employment or credits to transfer to 

four-year universities. A significant number of students enter community college lacking 

the necessary preparation in mathematics required to begin taking college-level 

mathematics. Consequently, community colleges have had to reform traditional 
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mathematics course offerings to accommodate students who need remedial support. 

Empirical evidence of student success in remedial mathematics, particularly in online 

settings, reveals poor academic success and low retention rates. Self-regulation skills 

potentially play a role in academic success in online mathematics courses in community 

college settings. However, more research is needed. 
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Chapter 3: Methodology 

Introduction 
 
  The purpose of this study was to examine the relationship of students’ self-

regulated learning beliefs and academic risk factors to academic performance in three 

community college online mathematics courses. Final mathematics examination scores 

were the measure of students’ academic performance. Students’ self-regulated learning 

beliefs were measured using four subcomponents of the Motivated Strategies for 

Learning Questionnaire (MSLQ) (see Appendix B). Four academic risk factors – age, 

ethnicity, gender, and high school graduation status – were obtained from college 

records. The MSLQ questionnaire measures student beliefs related to the constructs of 

motivation and self-regulated learning skills. Results from the questionnaire responses 

were integrated with selected students’ demographic records and final mathematics exam 

scores to analyze the relationship of self-regulated learning beliefs and academic risk 

factors to academic performance. Additionally, the moderating effects of self-regulation 

beliefs on academic risk factors were examined. This chapter describes the data 

collection methodology, participants in the study, procedures, sources of data, and ethical 

considerations. 

Research Design and Rationale 
 

Self-regulated learning, motivation, and skills can influence academic success in 

online learning courses (Cho & Heron, 2015). Additionally, certain demographic 

characteristics of students are considered risk factors associated with academic 

performance (Jost, Rude-Parkins, & Githens, 2012; Wang et al., 2013). The present study 

utilized statistical quantitative methods to examine the relationship of self-regulated 
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learning beliefs and academic risk factors to academic performance. The study also 

investigated the strength of the moderating relationship of self-regulated learning beliefs 

on the relationship between academic risk factors and academic performance. The study 

utilized a subset of the MSLQ questionnaire to measure four subcomponents of 

motivation and learning skills: Task Value, Self-Efficacy for Learning and Performance, 

Metacognition Self-Regulation, and Effort Regulation. The statistical methods of 

correlation and multiple regression were used to evaluate the relationship of academic 

risk factors and self-regulated learning beliefs as independent variables to the dependent 

variable of academic performance. The interaction effect of self-regulated learning 

beliefs and academic risk factors was calculated to determine any moderating effects to 

academic performance.  

Participants 
 
  Participants were enrolled in one of three online mathematics courses at an urban 

community college in Washington state in the fall quarter of 2017. The students 

represented a convenience sample comprised of three intact online mathematics classes: 

Algebra I, Algebra II, and College Algebra. The Algebra I and II courses were taught by 

one instructor and the College Algebra course was taught by a different instructor. It was 

projected that each course would have 30 students enrolled for a total population 

recruitment size of 90 students. It was estimated that 70% of the students would respond 

to the MSLQ self-regulated beliefs questionnaire for a total potential sample size of 63 

respondents. The following demographic information was collected for each student who 

responded to the survey: gender, high school graduation status, ethnicity, and age.   
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The optimal sample size was calculated using the G*Power3 software version 

3.1.9.3. The G*Power3 software calculates an optimal sample size using various inputs 

including effect size, number of variables, and desired level of significance (Faul et al., 

2007). For the purposes of this study, the optimal sample size was calculated using a 

model comprising of two predictor variables, an effect size of .20, and a 0.95 confidence 

interval. The optimal sample size was computed as 81. In a priory power analysis, 

sample size n is computed as a function of the required power, the pre-specified 

significance level, and the population effect size to be detected with probability (Cohen, 

1983. The power of a statistical test is the probability that the hypotheses will be rejected 

given that it is false. The null hypothesis is that self-regulation has no significant 

relationship to academic performance and does not moderate the relationship of academic 

risk factors to academic performance. Significance tests that have statistical power can 

more reliably discriminate between alternative hypotheses (Faul et al., 2007).  

Instruments 
 

The Motivated Strategies for Learning Questionnaire (MSLQ) was used for the 

present study. The MSLQ is a widely-used self-report instrument used to measure college 

student motivational beliefs and assess beliefs of specific self-regulation learning 

strategies (Duncan & McKeachie, 2005). The instrument was designed and developed in 

1986 by a team of researchers from the National Center for Research to Improve 

Postsecondary Teaching and Learning (NCRIPTAL) and the School of Education at the 

University of Michigan (Duncan & McKeachie, 2005). Prior to the development of the 

MSLQ questionnaire, research on college student learning was often focused on learning 
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styles or learning differences and criticized for the lack of theoretical and empirical 

evidence (Weinstein & Underwood, 1985).  

Theoretical Framework 
 

The development of the MSLQ questionnaire was based on the social-cognitive 

theory of motivation and the general cognitive model of learning and information 

processing theory (Pintrich et al., 1993). The social-cognitive theoretical framework 

model of motivation is comprised of three constructs: 1) expectancy, 2) value, and 3) 

effect (Pintrich et al., 1993). Expectancy refers to a student’s belief in accomplishing a 

task, value focuses on why students engage in academic tasks, and the construct of effect 

is operational as a response to test anxiety (Pintrich et al., 1993). The cognitive model of 

learning and information processing theory is comprised of three constructs: 1) cognition, 

2) metacognition, and 3) resource management (Weinstein & Mayer, 1986). Basic and 

complex cognitive strategies relate to processing information textually or orally, 

metacognition refers to one’s ability to control and regulate one’s own cognition, and 

resource management is related to one’s control of other resources besides cognition 

(Pintrich et al., 1993). Using this theoretical framework, the MSLQ questionnaire 

includes 15 subscales, which measure each of the constructs of motivation and learning 

strategies (Pintrich et al., 1993). 

Instrument Components 
 

The MSLQ questionnaire measures college students’ motivation and learning 

strategy skills using 15 subscales comprising 81 items scored on a 7-point Likert-like 

scale (1 = not at all true of me to 7 = very true of me). The questionnaire is designed to be 

modular and can be used in part or in its entirety (Duncan & McKeachie, 2005).  
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The motivation section comprises 31 items that assess one’s goals and value 

beliefs, one’s beliefs about one’s skills to succeed, and one’s anxiety about tests. 

Motivation is measured using six subscales: Intrinsic Goal Orientation, Extrinsic Goal 

Orientation, Task Value, Control of Learning Beliefs, Self-Efficacy for Learning and 

Performance, and Text Anxiety. The learning strategies section is comprised of 31 items 

that assess students’ cognitive and metacognitive strategies and 19 items that assess 

students’ management of different resources. Learning strategies are measured using nine 

subscales: Rehearsal, Elaboration, Organization, Critical Thinking, Metacognitive Self-

Regulation, Time/Study Environmental Management, Effort Regulation, Peer Learning, 

and Help Seeking.  

Use of Instrument for Present Study 
 

For the purposes of this study the subscales of Task Value and Self-Efficacy for 

Learning and Performance were used to measure motivation, and the subscales of 

Metacognition Self-Regulation and Effort Regulation were used to measure self-

regulated learning strategies. A total of 30 questions were included in the survey 

allocated as follows: Task Value (6), Self-Efficacy for Learning and Performance (8), 

Metacognitive Self-Regulation (12), and Effort Regulation (4). All questions were used 

verbatim from the MSLQ questionnaire (see Appendix B). 

The four MSLQ subscales selected for the present study represented the subscales 

with the highest correlation to academic performance. All four subscales had moderate 

correlations to academic performance: Task Value (r = .22), Self-Efficacy for Learning 

and Performance (r = .41), Metacognitive Self-Regulation (r = .30), and Effort 

Regulation (r = .32) (Pintrich et al., 1993). Test Anxiety had a moderate correlation (r = -
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.27) but was not selected for the study since it measures a distinct construct outside the 

scope of this study.  

Instrument Validity and Reliability 
 

The MSLQ questionnaire is a valid and reliable self-report instrument designed to 

assess motivation and use of learning strategies by college students (Duncan & 

McKeachie, 2005). The MSLQ questionnaire authors completed two confirmatory factor 

analyses to determine the utility of the model and the operationalization of each of the 

MSLQ subscales (Pintrich et al., 1993). A sample of college students (n = 356) consisting 

of thirty-seven classrooms, spanning fourteen subject domains, and five disciplines was 

used for the analyses (Pintrich et al., 1993). 

The results of the confirmatory analyses for the motivational subscales indicated 

the lambda-ksi estimates ranging from .38 - .89 with an average value of .68. The test’s 

authors note that “the Lambda-ksi estimates are analogues to factor loadings in an 

exploratory factor analysis and values of .8 or higher indicate well-defined latent 

constructs” (Pintrich et al., 1993, p. 807). Omnibus fit statistics constraining the 31 items 

to fall into the six subscales generated a x2/df ratio of 3.49, a GFI of .77, and AGFI of .73, 

and an RMR of .07 indicating a best fit of the input data. The coefficient alphas of the 

motivational subscales are generally strong, indicating good internal consistency. 

Intrinsic goal orientation was strong at (.74) alpha, extrinsic goal orientation had more 

variability (.62) alpha, Task Value was very high (.90) alpha, control of learning beliefs 

had more variability (.68) alpha, Self-Efficacy for Learning and Performance had a very 

high (.93) alpha, and the text anxiety (.80) alpha indicated good internal consistency 

(Pintrich et al., 1993) (see Table 1). 
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The results of the confirmatory factor analysis for the learning strategies subscales 

of 50 items fell onto nine correlated latent factors and generated a x2/df ratio of 2.26, a 

GFI of .78, and AGFI of .75, and an RMR of .08 indicating a best fit of the input data. 

The coefficient alphas of the learning strategies subscales were reasonable with most 

coefficient alphas above .70 (Pintrich et al., 1993). Rehearsal and Effort Regulation had 

coefficient alphas of (.69), organization strategies somewhat lower at (.64), and help-

seeking low at (.52) alpha (Pintrich et al., 1993).  

Based on the results from both confirmatory factor analyses it suggests the MSLQ 

has a relatively good reliability in terms of internal consistency (Gall et al., 2015; Pintrich 

et al., 1993). The instrument appears to be a valid framework for assessing student 

motivation and learning strategies of college students.  

Instrument Predictive Validity Analysis 
 

A primary reason for selecting the MSLQ questionnaire instrument for the present 

study was its reasonable predictive validity to academic performance. To determine 

predictive validity, the MSLQ subscales were correlated by its developers with students’ 

final course grades. A majority of the subscales were significantly and positively 

correlated and in the expected direction to final grades demonstrating predictive validity 

(Pintrich et al., 1993). Peer learning was the only subscale not positively correlated to 

final grades.  

Pintrich et al. (1993) found correlations with final course grades for motivation 

scales as follows: intrinsic goal orientation moderate correlation (r = .25), extrinsic goal 

orientation weak correlation (r = .02), Task Value moderate correlation (r = .22), control 

of learning beliefs weak correlation (r = .13), Self-Efficacy for Learning and Performance 
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strong correlation (r = .41), and text anxiety negatively moderate correlation (r = -.27). 

Correlations with final course grades for the learning strategy scales were as follows: 

rehearsal weak correlation (r = .05), elaboration moderate correlation (r = .22), 

organization weak correlation (r = .17), critical thinking weak correlation (r = .15), 

Metacognitive Self-Regulation moderate correlation (r = .30), time/study environmental 

management moderate correlation (r = .28), Effort Regulation moderate correlation (r = 

.32), peer learning weak correlation (r = -.06), and help seeking weak correlation (r = .02) 

(see Table 1). 

Table 1  
 
Internal Reliability Coefficients and Correlations with Final Course Grades for 
Motivation and Learning Strategies Scales 
 
 
Scale 

Coefficient 
Alpha 

Correlation with 
Final Course Grade 

Motivation Scales 
Intrinsic Goal Orientation 
Extrinsic Goal Orientation 
Task Value 
Control of Learning Beliefs 
Self-Efficacy for Learning and Performance 
Test Anxiety 
 
Learning Strategies Scales 
Rehearsal 
Elaboration 
Organization 
Critical Thinking 
Metacognitive Self-Regulation 
Time & Study Environment Management 
Effort Regulation 
Peer Learning 
Help-Seeking 

 
.74 
.62 
.90 
.68 
.93 
.80 

 
 

.69 

.75 

.64 

.80 

.79 

.76 

.69 

.76 

.52 

 
.25 
.02 
.22 
.13 
.41 
-.27 

 
 

.05 

.22 

.17 

.15 

.30 

.28 

.32 
-.06 
.02 

 

The predictive validity of the scales shows the correlations to academic 

performance and in the expected direction, adding to the validity of the scales (Pintrich et 
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al., 1993). The results of this study suggested that the MSLQ questionnaire had relatively 

good internal consistency and was an appropriate instrument for the present study.  

Procedures and Data Sources 
 

Students enrolled in one of three online mathematics courses at an urban 

community college were asked to voluntarily complete the MSLQ questionnaire. A 

modest amount of course credit, defined by the instructors, was offered as an incentive to 

participate in the study. The questionnaire consisted of thirty questions regarding self-

reported beliefs about motivation and learning strategies related to the particular course. 

The email invitation to participate in the study was posted on the course website and 

included a statement indicating that all responses were anonymous and confidential (see 

Appendix C). A link to the questionnaire was provided on the course website. 

The survey was created and hosted by a secure, commercial survey company 

called surveymonkey.com. The survey was available to students during weeks two 

through four of the academic quarter. Results of the questionnaire were initially exported 

from surveymonkey.com and imported into Microsoft Excel spreadsheet program. Each 

set of questions related to a specific subscale was summarized as a single score for each 

respondent. 

The Microsoft Excel spreadsheet was encrypted and sent to the Executive 

Director of Institutional Effectiveness at the community college. Confidential student 

identification numbers were removed and the following demographic data for each 

respondent was added to the spreadsheet: gender, ethnicity, high school graduation status, 

and age. The spreadsheet was returned to the researcher and uploaded into IBM SPSS 

version 25 for analysis. At the end of the quarter, final mathematics examination scores 
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were added to the original spreadsheet and sent to the researcher. The final examination 

scores were added to the IBM SPSS dataset for final analysis.  

Ethical Considerations 
 

An Internal Review Board (IRB) at Seattle Pacific University (SPU) reviewed the 

research procedures and the study was approved on September 5, 2017, under exempt 

review as meeting the requirement of “no more than minimal risk” as stated in the SPU 

IRB User Guide (Seattle Pacific University, 2012, p. 5). The community college in this 

study completed an IRB and approved the study on October 11, 2017 (see Appendix D). 

It was assumed there was a minimal risk to the students participating in the study 

answering questions related to their motivational and learning strategies beliefs. Students 

were explicitly assured their responses were anonymous and confidential providing 

further confidence that the students faced minimal academic or personal risk by 

participating in the study.  

Data Analysis 
 
Descriptive and Inferential Statistics 
 

Descriptive statistics including mean, median, mode, and standard deviation were 

calculated for all demographic data and for each subscale and individual questions 

measured in the MSLQ questionnaire. Final exam scores were converted to z-scores for 

each class to reduce any bias or variability in grading scales used by the instructors. 

Bivariate Pearson correlation coefficients were calculated to investigate the linearity 

between the indicator variables and their latent variables. Inferential analysis, using 

multiple regression, was conducted to determine relative contributions of predictor 

variables to the dependent variable of academic performance.   
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Comparison of Self-Regulated Learning Subscales and Academic Risk Factors 
 

Reliability analysis was conducted on all self-regulation subscales to determine 

internal consistency reliabilities using the Cronbach Alpha scale (Vogt & Johnson, 2016). 

Simple Pearson correlations were conducted to determine relationships between all 

independent variables and to the dependent variable of academic performance. A test of 

statistical significance was performed with a probability significance level of .95 

confidence (Gall et al., 2015). Only independent variables that were statistically 

significant were selected for further analysis. 

Inferential Analysis of Self-Regulated Learning Variables and Academic Risk 

Factors  

Correlational analyses were conducted to evaluate the relationship of academic 

risk factors and self-regulated learning factors to academic performance. Hierarchical 

regression analysis was conducted to measure the relative contribution of each self-

regulated learning subscale and academic risk factors to academic performance. Beta 

values were analyzed to determine each interdependent variable contribution.  

Analysis of Academic Risk Factors as Moderators to Predicting Academic 

Performance  

The interaction effect of the subscales Self-Efficacy for Learning and 

Performance and Task Value was calculated for each risk factor predictor variable. The 

interaction effect was measured to determine the magnitude or sense of the relationship 

between these variables to academic performance. The level of significance used for the 

analyses was set at α = .05.   
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Chapter 4: Results 

Introduction 

This chapter summarizes the results of the present study and analyzes the extent 

of the relationship of self-regulated learning and academic risk factors to academic 

performance using inferential statistics. Descriptive statistics were computed for each 

independent variable, the criterion variable, and for each question response on the MSLQ 

questionnaire to confirm normal distribution of the data. Reliability analysis of each 

MSLQ subscale set of questions was computed using Cronbach’s alpha. 

Inferential statistical analysis was conducted using multi-step hierarchical 

multiple regression with IBM SPSS version 25 statistical program. The level of 

significance for this analysis was < .05 (Gall et al., 2015). Moderating effects of the 

independent variables were computed using hierarchical multiple regression analysis. 

The purpose of this study was to examine the relationship of self-regulated 

learning and academic risk factors to academic performance in three community college 

online mathematics courses. The study was designed to answer the following research 

questions:  

1. What is the relationship of self-reported, self-regulated learning beliefs to academic 

performance, as measured by final exam score, in an online learning environment?  

2. What is the relationship of selected academic risk factors to academic performance, as 

measured by final exam score, in an online learning environment?  

3. To what extent do self-regulated learning beliefs moderate the relationship of academic 

risk factors to academic performance?  

Sample Size Analysis 
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Participants were recruited from a community college located in a large 

metropolitan city. A total of 82 students from three intact online mathematics courses 

received an offer to participate in the study. Participation required responding to 30 items 

on the MSLQ questionnaire. A total of 52 students responded to the survey representing a 

63% response rate. A response rate greater than 60% can be considered adequate to 

minimize the effect of nonresponse rate bias (Fincham, 2008; Fink, 1995).  

An analysis of optimal sample size of the study was calculated prior to identifying 

the target courses for inclusion in the study. The optimal sample size for the study was 

calculated using the G*Power3 software. The present study originally considered four 

online mathematics courses but one course was dropped from the schedule, thus, 

reducing the potential size of the sample. 

The optimal n size was calculated using the following parameters: an effect size 

estimate of .20, a desired significance level of p <  .05, and two predictor variables in the 

model. The optimal sample size was calculated at 81 participants (Faul et al., 2007). 

Based on the above calculation of an optimal sample n size, the final number of 52 

student participants in the present study was less than optimal and is noted in the research 

limitations section of this study. Due to missing student identification information, three 

responses were eliminated from the dataset resulting in 49 valid responses.  

Descriptive Statistics of Course Enrollment and Participant Demographics  
 

Each mathematics course was taught fully online with no face-to-face component. 

Table 2 shows a majority (59.2%) of the students in the sample were enrolled in Algebra 

I or II taught by the same instructor. A total of 20 students in the sample were enrolled in 

College Algebra, taught by a different instructor. 
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Table 2   

Frequency of Participant Enrollment in Online Mathematics Courses 

Course Frequency Valid Percent 
Mathematics 094 (Algebra I) 18 36.7 

Mathematics 095 (Algebra II) 11 22.5 

Mathematics 102 (College Algebra) 20 40.8 

 

Table 3 represents the gender distribution of the sample. Females represented a 

majority (61.2%) of the participants in the study accounting for a much higher percentage 

than the overall representation (49%) of females in the college’s current enrollment. 

Table 3   

Frequency of Participant Gender  

 
Gender Frequency Valid Percent 

Female 30 61.2 

Male 19 38.8 

 

Figure 1 represents the age and frequency distribution of the convenience sample 

in the study. Student ages ranged from 17 to 54 years. The average participant age was 

27.94 (SD = 8.29) years, which is consistent with the median age (28 years) of students in 

this college’s current enrollment. The largest concentration of participants is between the 

ages of 20-30 years old representing 57.1% of the convenience sample. The age 

distribution is within normal limits. Descriptive statistics can be found in Table 4. 
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Figure 1. Age frequency and distribution of participants. 

 

Table 4   

Participant Age Descriptive Statistics 

 
 

Minimum Maximum M Skewness Kurtosis 
Age 17 54 27.94 .951 .688 

 

Table 5 represents the ethnic breakdown of the convenience sample. A majority 

(53.1%) of the students in the convenience sample were students of color representing a 

slightly higher percentage of students of color (45%) than found in the general population 

of the college.  
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Table 5  

Ethnic Backgrounds of Participants 

 
Ethnicity Frequency Valid Percent 

African American 4 8.2 

Asian/Pacific Islander 7 14.3 

International 3 6.1 

Latino/Hispanic 10 20.4 

No Response 5 10.2 

Other Race 2 4.1 

White 18 36.7 

 

Table 6 represents the high school graduation status of the participants. A 

majority (85.7%) of the students indicated they had graduated from high school. Data 

were also collected on the amount of post-high school education of the participants. Of 

the respondents, 20 students (40.8%) indicated they had taken some post-high school 

higher education courses. Some students enrolled in the College Algebra course indicated 

that they had earned an associate’s or bachelor’s degree. This independent variable lacks 

sufficient frequency distribution to provide a meaningful contribution to the analysis and 

thus was not included in the regression analysis.   

Table 6 

High School Graduation Status  

 
High School  

Graduate Frequency Valid Percent 
Yes 42 85.7 

No  3 6.1 

No Response 4 8.2 
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Descriptive Statistics of Final Examination Mathematics Scores 
 

Mathematics final examination scores were obtained at the end of the quarter 

from each instructor. Mathematics final examination scores represent academic 

performance on mathematics assessments aligned to curriculum content. The scores do 

not necessarily represent the final grade in the course. Two students withdrew from their 

respective courses. One student who withdrew did have a mathematics score and it was 

included in the dataset. Eight students received a score of zero on their final mathematics 

exam due to not taking the final examination. Exploratory analysis was conducted 

removing the participants who had a zero score to determine any significant effect on the 

results. Standardized z-scores were computed for all mathematics final examination 

scores to account for the potential variability of instructor scoring in the three intact 

courses (Gall et al., 2015). The data suggest a normal distribution. However, Algebra I 

scores did exhibit a negative skewness indicating a concentration towards lower scores. 

College Algebra exhibited slight kurtosis but within normal distribution levels. 

Descriptive statistics for mathematics final exam scores can be found in Table 7.  

Table 7  

Descriptive Statistics for All Mathematics Final Exam Scores in each Online 
Mathematics Course 
 

 n 
 

Min Max M SD Skewness Kurtosis 
Algebra I 18 10 102 80.94 24.05 -1.778 1.038 

Algebra II 11 0 99 62.73 36.07 -.886 -.856 

College Algebra 19 0 96 56.32 40.79 -0.639 -.1.512 

 
 
Descriptive Statistics of Self-Regulated Learning MSLQ Questionnaire Subscale 
Responses 
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Average response scores were calculated for the sum of all scores for each set of 

questions associated with each subscale on the questionnaire. The average scores ranged 

from 4.87 to 5.53. Average scores of 3 and below are considered weak and scores in the 

range of 4 to 7 are considered moderate or strong levels of self-regulated beliefs (Pintrich 

et al., 1993). The average scores indicate participants in the study exhibited an overall 

moderate to high level of self-regulated learning beliefs in all four subscales.  

All subscales were analyzed to determine normality of the distribution of all 

responses. All four subscales’ descriptive statistics exhibited a normal skewness range (-

.004 to -.804) and normal kurtosis range (.051 to -.765) indicating normal distribution of 

data (Gall et al., 2015) (see Table 8).  

Table 8  
 
Descriptive Statistics for MSLQ Questionnaire Subscales 
 

 
Item 

No. 
of 

Items Min Max M SD 
Ave 

Score  Skewness Kurtosis 
Task Value 
 

6 13 
 

42 33.22 7.16 5.53 -.804 .171 

Self-Efficacy for 
Learning and 
Performance 
 

8 14 56 38.96 11.25 4.87 -.341 -.765 

Metacognitive 
Self-Regulation 
 

12 33 82 58.61 10.77 4.88 -.004 -.311 

Effort Regulation 
 

4 9 28 22.02 4.45 5.50 -.597 .051 
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Internal Reliability Analysis of Self-Regulated Learning MSLQ Questionnaire 

Responses 

  Internal reliability tests were conducted to confirm construct consistency of the 

item responses to the MSLQ questionnaire. Cronbach’s alpha scores in the present study 

indicated strong internal consistency. The scores were consistent with previous research 

by Pintrich et al.’s (1993) reporting of Cronbach’s alpha for each subscale: Task Value 

(.90), Self-Efficacy for Learning and Performance (.93), Metacognitive Self-Regulation 

(.79), and Effort Regulation (.69) (see Table 9). 

Table 9   

Cronbach’s Alpha Internal Reliability Measures for each MSLQ Subscale 

Subscale 
No. of 
Items Cronbach’s Alpha 

Task Value 6 0.87 

Self-Efficacy for Learning and Performance 8 0.95 

Metacognitive Self-Regulation 12 0.75 

Effort Regulation 4 0.74 

 
MSLQ Questionnaire Subscale Correlations  
 
  Subscale items were analyzed revealing moderate and significant correlations 

between items. Positive correlations were expected between subscales measuring 

motivation (Task Value and Self-Efficacy for Learning and Performance) and subscales 

measuring learning skills (Metacognitive Self-Regulation and Effort Regulation). 

However, subscales Self-Efficacy for Learning and Performance and Metacognitive Self-

Regulation, while measuring different attributes of self-regulated learning, had a higher 

than expected statistically significant correlation (.570) (see Table 10). 
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Table 10   

MSLQ Questionnaire Subscale Pearson’s Correlations Matrix 

 
Task 
Value 

Self-Efficacy for 
Learning and 
Performance 

Metacognitive 
Self-

Regulation 
Effort 

Regulation 
Task Value 1 .543** .461** .402** 
Self-Efficacy for 
Learning and 
Performance 

.543** 1 .570** .307* 

Metacognitive Self-
Regulation 

.461** .570** 1 .592** 

Effort Regulation .402** .307* .592** 1 
 

*p < .05. **p < .01. 

Descriptive Statistics for Self-Regulated Learning Subscale Responses 
 

Each participant answered 30 items on the MSLQ questionnaire. The responses 

indicate self-reported measures ranking each question on a 7-point Likert-like scale (1 = 

not at all true of me to 7 = very true of me). Descriptive statistics were analyzed for each 

question response to determine the measure of self-regulation strength and dispersion of 

scores (see Appendix A). Following is a summary of the descriptive statistics for all 

questions on each subscale.  

Task Value Subscale 
 

Descriptive statistics for the Task Value subscale individual questions indicate a 

moderate to strong strength of Task Value (M = 4.65 – 6.49). The question related to the 

importance of learning the course material indicated the highest mean score (M = 6.49). 

Scores of 3 and below are considered weak and scores in the range of 4 to 7 are 

considered moderate or strong (Pintrich et al., 1993).  

All questions were analyzed to determine normality of the distribution of 

responses with four questions exhibiting a normal skewness range (-.461 to -.913) and 
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normal kurtosis range (-.087 to -.833) (Gall et al., 2015). However, the question related to 

the measuring of the importance of learning course material exhibited high negative 

skewness (-2.175) and high positive kurtosis (4.793). The question related to the 

importance of understanding course material exhibited a slightly high negative skewness 

(-1.134) (see Appendix A). 

Internal consistency and reliability of the responses to the subscale for Task Value 

questions in the present study was strong (α = 0.87). Pintrich et al. (1993) determined 

reliability estimates for the Task Value subscale of the MSLQ questionnaire to be α = 

0.90. The results of the present study indicate strong alignment to internal reliability 

found by Pintrich et al. (1993).   

Self-Efficacy for Learning and Performance Subscale 
 

Descriptive statistics for the Self-Efficacy for Learning and Performance subscale 

individual questions indicate a moderate strength of Self-Efficacy for Learning and 

Performance (M = 4.31 – 5.73). Scores of 3 and below are considered weak and scores in 

the range of 4 to 7 are considered moderate or strong (Pintrich et al., 1993). The question 

related to confidence of learning basic concepts in the course indicated the highest mean 

score (M = 5.73).  

All questions were analyzed to determine normality of the distribution of 

responses with all questions exhibiting a negative skewness range (-.113 to -.794) and a 

negative kurtosis range (-.329 to -1.055). The ranges are all within normal limits (Gall et 

al., 2015) (see Appendix A).  

Internal consistency and reliability of the responses to the subscale for Self-

Efficacy for Learning and Performance questions in the present study were strong (α = 
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0.95). Pintrich et al. (1993) determined reliability estimates for Self-Efficacy for Learning 

and Performance subscale of the MLSQ questionnaire to be α = 0.93. The results of the 

present study indicate strong alignment to internal reliability found by Pintrich et al. 

(1993).   

Metacognitive Self-Regulation Subscale 
 

Descriptive statistics for the Metacognitive Self-Regulation subscale individual 

questions indicate a moderate strength of metacognitive self-regulation (M = 3.33 – 6.22). 

Scores of 3 and below are considered weak and scores in the range of 4 to 7 are 

considered moderate or strong (Pintrich et al., 1993). The question related to the strategy 

to resolve confusion indicated the highest mean score (M = 6.22).  

All questions were analyzed to determine normality of the distribution of 

responses with the majority of questions exhibiting a negative skewness range (-.329 to -

1.055) and a positive kurtosis range (-.023 to 2.244). The question related to 

understanding concepts exhibited high kurtosis (2.244) and high skewness (-1.218). A 

majority of the questions exhibited ranges within normal limits (Gall et al., 2015) (see 

Appendix A).  

Internal consistency and reliability of the responses to the subscale for 

Metacognitive Self-Regulation questions in the present study were strong (α = 0.75). 

Pintrich et al. (1993) determined reliability estimates for Metacognitive Self-Regulation 

subscale of the MLSQ questionnaire to be α = 0.79. The results of the present study 

indicate strong alignment to internal reliability found by Pintrich et al. (1993).   

Effort Regulation Subscale 
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Descriptive statistics for the Effort Regulation subscale individual questions 

indicate a moderate strength of Effort Regulation (M = 5.37 – 5.63). Scores of 3 and 

below are considered weak and scores in the range of 4 to 7 are considered moderate or 

strong (Pintrich et al., 1993).  

All questions were analyzed to determine normality of the distribution of 

responses with the majority of questions exhibiting a negative skewness range (-.364 to -

1.097) and a kurtosis range (-.890 to 1.051). The questions exhibited ranges within 

normal limits (Gall et al., 2015) (see Appendix A).  

Internal consistency and reliability of the responses to the subscale for Effort 

Regulation questions in the present study were strong (α = 0.74). Pintrich et al. (1993) 

determined reliability estimates for Effort Regulation subscale of the MLSQ 

questionnaire to be α = 0.69. The results of the present study indicate strong alignment to 

internal reliability found by Pintrich et al. (1993).   

Inferential Analysis using Correlation and Multiple Regression  
 

Correlational analyses were conducted to evaluate the relationship of academic 

risk factors and self-regulated learning factors to academic performance. Prior to the 

analyses, all independent variables were evaluated for normality. The criterion variable of 

academic scores was computed as z-scores to account for the potential variability of 

instructor scoring in three different courses. Moderating influences of self-regulation 

factors to academic risk factors were analyzed using multiple regression. 
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Research Question 1: What is the relationship of self-reported, self-regulated 

learning beliefs to academic performance, as measured by final exam score, in an 

online learning environment?  

The total score for each group of items on each subscale of the MSLQ 

questionnaire was computed for each participant. The score was correlated to final exam 

mathematics scores using a z-score calculation as the criterion variable. Each self-

regulation variable was analyzed for correlation to academic performance. The variable 

Task Value had a statistically significant correlation to academic performance (.330, p = 

.011). The variable Self-Efficacy for Learning and Performance also had a significant 

correlation (.430, p = .001). Metacognitive Self-Regulation and Effort Regulation did not 

show significant correlations to academic performance (see Table 11). 

  Some of the results were similar to prior research by Pintrich et al. (1991), which 

found the following correlations to academic performance: Task Value (.22), Self-

Efficacy for Learning and Performance (.41), Metacognitive Self-Regulation (.30), and 

Effort Regulation (.32). The subscales Self-Efficacy for Learning and Performance and 

Task Value did have statistically significant positive correlations to academic 

performance greater than Pintrich et al.’s (1993) prior research findings.  

Table 11  
 
Correlation of Predictors of Self-Regulation to Academic Performance  
 

 
Self-Regulation Variable 

Correlation to Academic 
Performance Sig. 

Task Value .330 .011* 

Self-Efficacy for Learning and 
Performance 

.430 .001** 

Metacognitive Self-Regulation .198 .089 
Effort Regulation .130 .189 
*p < .05. **p < .01. 
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Exploratory analysis was conducted to account for eight students who had an 

academic score of zero. Removing these from the dataset resulted in an increased 

statistically significant positive correlation to academic performance for Task Value 

(.385, p = .006) and a slightly less statistically significant positive correlation for Self-

Efficacy for Learning and Performance (.397, p = .005). Metacognitive Self-Regulation 

had an increased correlation to academic performance (.257, p = .053) and Effort 

Regulation had a slightly increased correlation to academic performance (.149, p = .177) 

(see Table 12). The hypothesis that students with high self-regulated learning beliefs will 

achieve significantly higher academic performance, as measured by final exam score, 

than students with lower self-regulated learning beliefs was supported for the subscales of 

Self-Efficacy for Learning and Performance and Task Value.  

Table 12  
 
Correlation of Predictors of Self-Regulation to Academic Performance with Eight Zero 
Scores Removed 
 

 
Self-Regulation Variable 

Correlation to Academic 
Performance Sig. 

Task Value .385 .006** 

Self-Efficacy for Learning and 
Performance 

.397 .005** 

Metacognitive Self-Regulation .257 .053 
Effort Regulation .149 .177 
*p < .05. **p < .01. 

Research Question 2: What is the relationship of selected academic risk factors 

to academic performance, as measured by final exam score, in an online learning 

environment?  

Three academic risk independent variables were correlated to final mathematics 

scores using a z-score calculation. Each academic risk variable was analyzed for 
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correlation to academic performance. None of the variables had any significant 

correlations (see Table 13). No significant predictive relationship was found between 

academic risk factors to academic performance as measured by final mathematics 

examination scores. The hypothesis that students with personal characteristics associated 

with academic risk will achieve significantly lower academic performance, as 

measured by final examination score, than students with personal characteristics not 

associated with academic risk was not supported. 

Table 13  

Academic Risk Factors Correlation to Academic Performance  

 
Academic Risk Factor 

Correlation to Academic 
Performance Sig 

Age -.131 .188 
Gender .119 .210 
Ethnicity -.033 .412 
* p < .05  ** p < .01 

A multiple regression analysis was conducted to analyze all independent variables 

as predictors of academic performance. Table 14 shows the results of the regression 

analysis. Model 1 indicated a statistically significant positive correlation only with Self-

Efficacy for Learning and Performance to academic performance (.404, p = .030). 

Regression analysis in Model 2 showed no statistically significant relationships of 

independent variables to academic performance.  
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Table 14 

Linear Model Coefficients of Predictors of Academic Performance  

Model  B SE B    β Sig. 
1 Constant -1.521 .826  .073 
 Self-Efficacy for Learning and  

Performance 
.035 .016 .404 .030* 

 Effort Regulation -.001 .038 -.004 .980 
 Metacognitive Self-Regulation -.010 .018 -.107 .588 
 Task Value .021 .023 .159 .356 
2 Constant -1.884 1.078  .088 
 Self-Efficacy for Learning and 

Performance 
.033 .017 .383 .060 

 Effort Regulation -.022 .040 -.011 .951 
 Metacognitive Self-Regulation -.008 .018 -.093 .648 
 Task Value .024 .024 .177 .328 
 Ethnic Background .122 .288 .061 .673 
 Gender  .270 .281 .136 .342 
 Age -.009 -.072 -.072 .643 
      

* p < .05  ** p < .01 

Research Question 3: To what extent do self-reported, self-regulated learning beliefs 

moderate the relationship of academic risk factors to academic performance?  

Hierarchical multiple regression analysis was conducted to test the predicted 

moderating effects of self-regulation on academic risk factors. The variable Self-Efficacy 

for Learning and Performance and Task Value were the only subscales that indicated any 

significant correlations to academic performance and thus warranted further analysis.  

A summary of the interaction effects for all independent variables can be found in 

Table 15. Beta values for the moderating relationship of Self-Efficacy for Learning and 

Performance on gender, age, and ethnicity suggest a possible relationship. However, 

likely due to the small n of the convenience sample the results are not statistically 

significant. The beta values for the moderating relationship of Task Value on gender, age, 

and ethnicity suggest a possible relationship. However, given the small n of the 
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convenience sample the results are not statistically significant. The interaction effect of 

Task Value and age suggests multicollinearity with the independent variables of Task 

Value and age.  

Table 15 
 
Multiple Regression Analysis Summary: Moderating Effects of Self-Efficacy for Learning 
and Performance and Task Value on Academic Risk Factors to Academic Performance 
 

Self-Regulation Subscale B SE B  ß   t Sig. 
Self-Efficacy for Learning and Performance      
   AgexSELP -.001 .002 -.272 -.432 .668 
   GenderxSELP -.014 .024 -.361 -.596 .554 
   EthnicityxSELP -.016 .024 -.321 -.680 .500 
 
Task Value 

     

   AgexTaskValue .005 .003 1.831 1.616 .113 
   GenderxTaskValue -.020 .039 -.407 -.507 .615 
   EthnicityxTaskValue .022 .038 .382 .578 .567 
      
Linear Model Coefficients Interaction Effect of Academic Risk Factors and Self-

Efficacy for Learning and Performance 

The moderating effect of the independent variable Self-Efficacy for Learning and 

Performance was evaluated for all three academic risk factors. While beta values suggest 

a possible interaction effect, none were significant (see Tables 16, 17, and 18).  
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Table 16 
 
Linear Model Coefficients Interaction Effect Age and Self-Efficacy for Learning 
Performance  
 
Model  B SE B  ß   t Sig. 

1 Constant .433 .504  .859 .395 
 Age -.016 .017 -.131 -.895 .375 
2 Constant -

1.273 
.724  -1.758 .086 

 Age -.005 .016 -.042 -.304 .763 
 SELP .036 .012 .421 3.065 .004 
3 Constant -

1.962 
1.754  -1.119 .269 

 Age .018 .057 .154 .325 .747 
 SELP .056 .047 .647 1.197 .238 
 AgexSELP -.001 .002 -.272 -.432 .668 

 
Table 17 
 
Linear Model Coefficients Interaction Effect Gender and Self-Efficacy for Learning and  
Performance  
 
Model  B SE B  ß   t Sig. 

1 Constant -.379 .486  -.780 .440 
 Gender .236 .290 .119 .815 .419 
2 Constant -1.1885 .638  -2.953 .005 
 Gender .267 .264 .135 1.012 .317 
 SELP .037 .011 .435 3.268 .002 
3 Constant -2.655 1.442  -1.841 .072 
 Gender .812 .953 .410 .853 .398 
 SELP .057 .035 .664 1.633 .110 
 Gender xSELP -.014 .024 -.361 -.596 .554 
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Table 18 
 
Linear Model Coefficients Interaction Effect Ethnicity and Self-Efficacy for Learning and 
Performance  
 
Model  B SE B  ß   t Sig. 

1 Constant .025 .180  .136 .892 
 Ethnicity -.066 .295 -.033 -.222 .825 
2 Constant -

1.489 
.500  -2.975 .005 

 Ethnicity .074 .272 .037 .271 .787 
 SELP .038 .012 .436 3.203 .003 
3 Constant -

1.765 
.647  -2.728 .009 

 Ethnicity .693 .951 .347 .729 .470 
 SELP .044 .016 .516 2.861 .006 
 EthnicityxSELP -.016 .024 -.321 -.680 .500 

 
Linear Model Coefficients Interaction Effect of Academic Risk Factors and Task 

Value 

The moderating effect of the independent variable Task Value was evaluated for 

all three academic risk factors. While beta values suggest a possible interaction effect, 

none were significant (see Tables 19, 20, and 21). 

Table 19 
 
Linear Model Coefficients Interaction Effect Age and Task Value  
 
Model  B SE B  ß   t Sig. 

1 Constant .433 .504  .859 .395 
 Age -.016 .017 -.131 -.895 .375 
2 Constant -.998  .738   -1.353 .183 
 Age -.021 .017 -.179 -1.284 .206 
 Task Value .048 .019 .355 2.542 .015 
3 Constant 3.575 2.921  1.224 .228 
 Age -.187 .103 -1.561 -1.803 .078 
 Task Value -.088 .086 -.653 -1.023 .312 
 AgexTask Value .005 .003 1.831 1.616 .113 
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Table 20 
 
Linear Model Coefficients Interaction Effect Gender and Task Value  
 
Model  B SE B  ß   t Sig. 

1 Constant -.379 .486  -.780 .440 
 Gender .236 .290 .119 .815 .419 
2 Constant -1.914 .790  -2.423 .019 
 Gender .258 .276 .130 .933 .356 
 Task Value .045 .019 .334 2.398 .021 
3 Constant -2.975 2.240  -1.328 .191 
 Gender .915 1.327 .462 .690 .494 
 Task Value .077 .066 .570 1.174 .247 
 GenderxTask Value -.020 .039 -.407 -.507 .615 

 
Table 21 
 
Linear Model Coefficients Interaction Effect Ethnicity and Task Value  
 
Model  B SE B  ß   t Sig. 

1 Constant .025 .180  .136 .892 
 Ethnicity -.066 .295 -.033 -.222 .825 
2 Constant -1.463 .659  -2.221 .031 
 Ethnicity -.040 .282 -.020 -.143 .887 
 Task Value .045 .019 .329 2.340 .024 
3 Constant -1.091 .924  -1.181 .244 
 Ethnicity -.774 1.302 -.387 -.595 .555 
 Task Value .033 .027 .247 1.229 .226 
 EthnicityxTask Value .022 .038 .382 .578 .567 
 

In conclusion, the hierarchical multiple regression analysis in the present study 

did not support the hypothesis that self-regulated learning beliefs significantly moderate 

the relationship of academic risk factors to academic performance. However, Self-

Efficacy for Learning and Performance and Task Value did significantly correlate to 

academic performance.  

Summary of Results 
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Descriptive statistics suggested that the data collected in the MSLQ survey and 

demographic data obtained from the college exhibited relatively normal distributions. 

The response rate (63%) to the survey was strong providing a good representation from 

each online mathematics class included in the study. Reliability of the responses to the 

survey questions was analyzed and found to be consistent with the expected outcomes 

(Pintrich et al., 1993). 

Academic risk factors, defined as gender, ethnicity, and age, showed no 

statistically significant relationship to academic performance. No moderating effects of 

Task Value and Self-Efficacy for Learning and Performance to academic risk factors 

were found. However, Task Value and Self-Efficacy for Learning and Performance were 

found to have positive and significant correlations to academic performance.   
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Chapter 5: Discussion 

Introduction 

The purpose of this study was to examine the relationship of self-regulated 

learning beliefs and academic risk factors to academic performance in three community 

college online mathematics courses. Additionally, this study analyzed the moderating 

effects of self-regulation on academic risk factors. The responses to the MSLQ 

questionnaire subscales of Task Value and Self-Efficacy for Learning and Performance 

do suggest a possible relationship to academic performance. The results also indicate that 

academic risk factors did not predict academic performance in the present study. Self-

regulation independent variables did not affect the strength of the relationship between 

academic risk factors and academic performance. The hypothesis that students with 

higher levels of self-regulation would achieve higher academic success than those with 

lower levels of self-regulation was not supported for all subscales measured.  

This chapter provides the results of the analysis in relation to the research 

questions and to the hypotheses of the study. It also addresses the implications of the 

findings, the limitations of the study, areas of suggested future research, and modest 

recommendations for practitioners.   

Self-Regulation and Academic Performance 
 

The MSLQ questionnaire results indicate that participants in the study exhibited 

an overall moderate level of self-regulated learning beliefs in all four subscales. The 

mean score for each subscale in the present study was consistent with the internal 

consistency and reliability results reported by Pintrich et al. (1993) and similar to the 

mean scores reported by Cho and Heron (2015). In the present study, only Task Value 
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and Self-Efficacy for Learning and Performance yielded statistically significant positive 

correlations to academic performance. Surprisingly, Metacognitive Self-Regulation and 

Effort Regulation did not significantly correlate to academic performance, a finding 

contrary to Pintrich et al.’s (1993) study, which reported predictive validity with all four 

subscales used in the present study. One possible explanation for this difference may be 

that metacognition was not a requirement or an encouraged practice in the mathematics 

courses and thus was probably not practiced by students. Additionally, the study’s small 

sample size (n = 49) was arguably a factor as the relationship strength of Effort 

Regulation to academic performance was not detectable.  

Perhaps the most interesting finding was the incongruous result regarding the 

relationship between Self-Efficacy for Learning and Performance beliefs and academic 

performance. While Self-Efficacy for Learning and Performance beliefs correlated to 

academic performance (.430, p = .001), eight students (16.3%) in the study self-reported 

Self-Efficacy for Learning and Performance beliefs that did not correspond to their 

academic performance. Results showed that three students reported a Self-Efficacy for 

Learning and Performance belief score greater than 45, which was higher than the mean 

score (M = 38.96). All three of these students had final examination scores below 75, 

likely resulting in a failing grade in their course. Results also showed that five students 

reported a Self-Efficacy for Learning and Performance belief score of less than 30, lower 

than the mean score (M = 38.96). All of these students had an academic score higher than 

the mean score, with three students receiving a likely passing score for their course. 

These results suggest that student self-reports of their Self-Efficacy for Learning and 

Performance beliefs were not necessarily a reliable indicator of academic performance in 
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the present study. The academic risk factors of ethnicity, gender, age, and high school 

graduation status had no obvious patterns of correlation to Self-Efficacy for Learning and 

Performance beliefs to explain this inconsistency. This result illustrates a possible 

inherent weakness of the questionnaire because of the potential for validity bias related to 

socially desirable responses to a questionnaire that relies on self-reported beliefs (Duncan 

& McKeachie, 2005; Fowler, 2014). However, Duncan and McKeachie (2005) reported 

that while actual observations or behavior indicators provide better validity than self-

reports, the measures of response bias of the MSLQ questionnaire did not appear to 

account for any significant variance or change the results of the studies they evaluated. 

Another concerning finding was that 17 students received a final examination 

score that indicated they would likely fail the course. Jaggars et al. (2013) found a failure 

rate of 25% in online math courses with community college students. The failure rate of 

34.6% of the students in the present study indicates that this particular convenience 

sample exhibited very high failure rates. In particular, the failure rate of the College 

Algebra course was 36.7%. While the present study did not consider factors related to 

placement in math courses, perhaps some students are placed in courses without having 

the necessary skills to succeed.  

Academic Risk Factors’ Relationship to Academic Performance  
 

The present study hypothesized that academic risk factors such as gender, 

ethnicity, high school graduation status, and age would have a relationship to academic 

performance. However, no significant correlations were found. Moreover, these academic 

risk factors did not contribute any unique variance as predictors of academic performance 

in the regression model. This result is consistent with research findings of no significant 
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correlations between age, gender, and ethnicity and academic performance in community 

college online courses (Jost et al., 2012). Jost, Rude-Parkins, and Githens (2012) found 

that a cumulative GPA is the only predictor of academic performance when controlled for 

in a multiple regression analysis that includes demographic independent variables. The 

present study used high school graduation status as a proxy for prior academic success 

but no correlation to academic performance was found.  

The present study showed no statistical differences between males and females in 

academic performance. This result was surprising given that research on educational 

outcomes for females shows that females are more likely to graduate from high school 

and are more likely to earn a college degree (Buchmann & DiPrete, 2006; Heckman & 

LaFontaine, 2010). However, this community college setting has a disproportionate 

population of underprepared students, which likely impacts educational outcomes.    

Despite the fact that the diversity of the convenience sample in this study was 

over 63% non-white, no significant differences in academic success were found for 

ethnicity. This was surprising given that there is ample empirical evidence that students 

of color have far fewer degrees conferred compared to white students and that they have 

been systematically disadvantaged in school (DuBrock, 2000; NCES, 2004). One 

possible explanation is that underprepared white students in a community college setting 

do not exhibit the same levels of academic persistence or success as their white 

counterparts in a four-year college setting.  

The current study hypothesized that age would have a relationship to academic 

performance because older students may exhibit more maturity, persistence, self-

regulation, and better executive functioning. However, no evidence was found to 
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correlate age with academic performance. This is contrary to Wladis et al.’s (2015) 

finding showing that older, male students performed better than other students. The 

present study did not include data on employment or family obligations, factors which 

potentially diminish any social or cognitive advantages associated with age.   

Self-Regulation Beliefs as a Moderator of Academic Risk Factors  
 

Numerous studies have explored the relationship between self-regulated learning 

and academic performance (Agustiani et al., 2016; Barnard-Brak et al., 2010; Cazan, 

2014; Pardo et al., 2016; Puzziferro, 2008). Ning and Downing (2012) explored the 

moderating effects of self-regulation and motivation on learning experience for predicting 

academic performance and found positive and significant effects. The present study is 

unique because it explored the hypothesis that self-regulation beliefs would significantly 

moderate the relationship of academic risk factors to academic performance. 

  The moderating effects of Self-Efficacy for Learning and Performance and Task 

Value were regressed to three academic risk factors. Regression analyses of Self-Efficacy 

for Learning and Performance did not show significant moderating effects. However, the 

regressed interaction effect of Self-Efficacy for Learning and Performance and gender 

did explain slightly more (2.5%) of the variance accounted for in the regression model. 

This result indicates the possibility of an interaction effect, but the small sample size did 

not reveal any meaningful significance. Given that the academic risk factors were not 

found to be predictors of academic success, it was not surprising that self-regulation 

moderation was minimal.  

Limitations 
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The present study was conducted in a community college setting contextualized 

by a convenience sample population consisting of students in online mathematics 

courses. Therefore, the results of this study lack certain requirements of external validity 

and are limited to this setting. The following are limitations that should also be 

considered when applying the findings of this research to other contexts. 

1. Convenience Sample Size and Characteristics  

The present research relied on the cooperation and collaboration of two 

instructors in an authentic educational setting. Choosing to conduct the research in this 

setting limited the ability to recruit participants and collect relevant data. The final 

convenience sample consisted of 53 responses from three different online mathematics 

courses. Despite the relatively small n of the study, the response rate of 63% provided a 

reasonable representation of the overall population in the three online mathematics 

courses (Gall et al., 2015). The design of the research included eight independent 

variables for analysis using hierarchical multiple regression. A range of 10–15 samples 

per independent variable is generally expected for a multiple regression analysis, 

suggesting that the present study needed a minimum of 80 participants for the sample 

(Fields, 2014). However, using a multi-step hierarchical multiple regression analysis 

enabled identification of the relative contribution of known variances of each group of 

self-regulation variables and academic risk variables in the model. Additionally, only two 

subscale variables were regressed to academic risk variables to determine moderating 

effects to academic performance.  

Moreover, since the measurement of self-regulation is not defined by a particular 

discipline or instructional context, the results of this study are generalizable only to this 
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particular convenience sample in this specific learning environment. Despite the 

convenience sample limitations, the current research does provide limited insight into the 

performance of community college students taking online mathematics courses, which 

has been the subject of only a limited number of empirical studies.    

2. MSLQ Self-Report Questionnaire 

The MSLQ questionnaire is a valid and reliable instrument designed to measure 

self-regulation perceptions (Duncan & McKeachie, 2005; Pintrich et al., 1993). However, 

the use of this instrument in the present study has several limitations. First, while the 

MSLQ questionnaire is widely used to measure self-regulation in online learning 

environments, it is not specifically designed for this learning environment (Duncan & 

McKeachie, 2005; Pintrich et al., 1993). Furthermore, the questions in the current study 

were not modified in order to maintain the validity and reliability of the instrument. 

Second, the results of any self-report questionnaire are inherently limited due to the 

potential bias of the respondents, and therefore, potentially not valid or reliable (Gall et 

al., 2015). However, Duncan and McKeachie (2005) have sufficiently refuted this 

potential bias with this instrument in their research. Third, the present study selected only 

a subset of the full questionnaire including only four of the fifteen self-regulation 

subscales and 30 of the 81 questions contained in the complete questionnaire. However, 

the questionnaire was developed to be modular, and the developers maintain that the use 

of subcomponents of the instrument retains its validity and reliability (Pintrich et al., 

1993). The selection of subscales for inclusion in this study was strategic and based on 

the highest reported correlations to academic performance. Additionally, the decision to 

use a subset of the questionnaire was justified in order to increase participant response 
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rates and accuracy of responses by limiting the time to complete the survey to less than 

seven minutes. Requiring an answer to each question provided by the electronic survey 

software tool used to administer the questionnaire enhanced response accuracy.  

3.  Selection Bias in Online Classes 

The study’s sample was comprised of students who registered for online 

mathematics courses. Students who registered for the online classes self-selected this 

learning environment and therefore may already have certain biases about their perceived 

ability to be successful in an online class. Additionally, the present study did not measure 

any prior experience or success in online classes that could have been used as an 

independent variable in the study. However, self-efficacy with online technologies is not 

necessarily a predictor of future academic success (Puzziferro, 2008). While including a 

measure of online learning success or mathematics self-efficacy would have been 

informative, the addition of another independent variable would have necessitated a 

larger sample size (Gall et al., 2015).  

4.q Mathematics Software Influencing Self-Regulation  

The online mathematics courses in the study utilized two different web-based 

mathematics programs to manage learning and assessment. The XYZ Homework 

program used in the Algebra I and II courses is a non-adaptive system, but it provides 

immediate feedback on task performance and allows teachers to communicate with 

students using a discussion forum. The ALEKS program used in the College Algebra 

course uses an artificial intelligence assessment and learning system that utilizes adaptive 

questioning. ALEKS is built using Knowledge Space Theory, which is a framework that 
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utilizes an algorithm to identify the knowledge state of a learner and creates an 

individualized learning space (Yilmaz, 2017).  

The adaptive features of ALEKS could have potentially provided more support 

for self-regulation than the XYZ Homework program, thus biasing the results of the 

MSLQ questionnaire responses. Three questions in the MSLQ questionnaire were 

identified as potentially revealing a bias in how the ALEKS software potentially 

influences self-regulation perceptions (see Table 22). A paired-samples t-test was 

conducted to compare the mean scores of students who used the ALEKS software and 

students who used the XYZ Homework software. There was no significant difference in 

the scores for question number 26 t(47) = 1.631, p = 0.1096. There was no significant 

difference in the scores for question number 23 t(47) = 0.332, p = 0.7412. There was no 

significant difference in the scores for question number 25 t(47) = 0.625, p = 0.5347. The 

results indicate that the ALEKS software did not influence or bias the responses to the 

three questions identified.  

Table 22 

Comparing ALEKS Mean Response Scores to XYZ Homework Mean Response Scores 

 ALEKS 
XYZ 

Homework 
MSLQ Question 

M SD M SD 
26. When studying for this course I try to 
determine which concepts I don't understand 
well 

5.10 1.744 5.76 1.091 

23. When course work is difficult, I either give 
up or only study the easy parts 

5.30 1.593 5.45 1.526 

25. Even when course materials are dull and 
uninteresting, I manage to keep working until I 
finish.  

5.50 1.318 5.72 1.131 

 
5.  Prior Feedback that Influenced Self-Regulation Responses 
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Students completed the MSLQ questionnaire between weeks two and four of the 

quarter. Any instructor feedback or other assessment of their work potentially biased their 

responses to the questionnaire and, in particular, to the Self-Efficacy for Learning and 

Performance subscale. Instructor feedback and assessment data were not included in the 

scope of the present study.  

Implications 
 
  As community colleges continue to expand online mathematics course offerings 

that serve as gateways to career pathways, the potential for the study habits, motivation, 

and learning skills associated with self-regulation to influence academic success increases 

(Xu & Jaggars, 2014). In the present study, 42.9% of the students had a final mathematics 

test score of less than 75%, with nine of the students either receiving a score of zero or 

withdrawing from the course. These data suggest that a significant number of students 

potentially failed their mathematics course. This result is consistent with the findings at 

the Columbia University Community College Research Center, which concluded 

developmental mathematics courses had a failure/withdrawal rate of 62% in online 

courses versus 43% in face-to-face courses (Jaggars et al., 2013). Bahr (2011) also found 

that a majority of students who enroll in remedial courses in community colleges do not 

attain a college competency level. Given that passing mathematics courses is a 

prerequisite for many career pathways, failure can prevent students from advancing in 

certain programs and ultimately not attaining a credential, certification, or degree 

required for employment.  

Research has shown that self-regulation can influence academic outcomes in 

online courses (Agustiani et al., 2016; Puzziferro, 2008). The findings of the current 
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study suggest that the motivational subscales of Task Value and Self-Efficacy for 

Learning and Performance potentially influence academic outcomes. While self-

regulation is only one factor attributed to success in online courses, supporting students’ 

self-regulation skills can be achieved with moderate adjustments to course design and 

with instructional modifications such as increased course scaffolding. More support for 

underprepared students in the community college setting is essentially a matter of justice 

and equity. 

Future Research 
 

This study considered only four of the fifteen available subscales of the MSLQ 

questionnaire survey instrument. These four subscales were selected based on prior 

research indicating a strong correlation to academic performance (Pintrich et al., 1993). 

Investigation of the relationship of all the subscales on the MSLQ questionnaire to 

determine which subscales are most relevant to specific contextualized learning 

environments warrants further research. A study that includes all fifteen subscales and the 

complete 81-question survey would provide a more comprehensive analysis of the role of 

self-regulation in online learning. Additionally, researchers should also consider using the 

modified MSLQ survey, which has been adapted to include contextualized terms specific 

to online learning.  

The present study focused exclusively on online mathematics courses in a 

community college setting. As community colleges continue to expand general online 

course offerings, more research is needed in all disciplines to investigate the role self-

regulated learning plays in academic achievement. Such research is especially important 
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to courses that are considered “gatekeepers” that are often viewed as barriers, which limit 

long-term academic success and degree completion.  

Academic risk factors could play an important role in identifying student 

characteristics associated with self-regulation and academic success. Bean and Metzner 

(1985) identified students over the age of 24 as a group highly susceptible to attrition. 

While the present study did not find a significant relationship between academic risk 

factors and academic achievement, prior research has suggested such a relationship exists 

(National Center for Educational Research, 2000; Wladis, Conway, & Hachey, 2015). 

Moreover, research that investigates how self-regulation moderates English language 

proficiency, prior experience with online learning success, or prior success in 

mathematics courses could provide guidance for predicting academic performance of 

underprepared students.  

This study relied on self-reported beliefs demonstrated in the MSLQ 

questionnaire’s responses to measure self-regulation. Prior research suggests that self-

regulation skills can be taught and provided as an effective intervention (Bol et al., 2016; 

Hu & Driscoll, 2013; Zheng, 2016). Research that investigates self-regulation skills that 

are taught as an intervention measure may limit the bias of self-reported self-regulation 

skills by combining it with other ways of determining student self-regulation.   

Recommendations 
 

Certain empirical data suggest that self-regulation could play a role in student 

success in online courses (Xu & Jaggars, 2014). While the present study suggests a 

relationship between Task Value and Self-Efficacy for Learning and Performance to 

academic performance, numerous prior studies have found that self-regulation can 
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influence academic outcomes (Agustiani et al., 2016; Barnard-Brak et al., 2010; Cazan, 

2014; Pardo et al., 2016; Puzziferro, 2008). Educators developing online courses should 

consider incorporating course design features and tools that promote self-regulation as a 

way to support student success. The following are recommendations for administrators 

and instructors who design or teach online courses.  

1.  Survey Student Self-Regulation Beliefs 

The MSLQ questionnaire used in the present study could be administered to all 

students who register for an online course to measure student self-regulation beliefs. 

Instructors could survey all fifteen subscales or select subscales they wish to measure that 

are particularly applicable to the student population or contextual subject of the course. 

The results of the survey could be used to identify motivation or skills of self-regulation 

that individual students may need.  

For example, intrinsic goal orientation is a subscale of the MSLQ that is 

correlated (r = .25) with academic performance (Pintrich et al., 1993). Students who have 

a low score on this subscale could be encouraged to set goals related to the course that 

consider ways in which the course content would be meaningful to them independent of 

the grade or college requirements. Goal setting has shown strong promise as an 

educational intervention (Hattie, 2012). Instructors could incorporate an assignment for 

students to complete of setting intrinsic goals before the course begins.  

Time and study environment is another MSLQ subscale that correlates (r = .28) to 

academic performance (Pintrich et al., 1993). Students who score in the bottom quartile 

of this subscale may need support with scaffolding assignments and workload or advice 

on how to establish a study environment that is organized, quiet, and free from visual and 
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auditory distractions. Instructors who identify students with this self-regulation weakness 

could develop coursework with more scaffold support and provide students with 

suggestions on how to create or seek out study environments more conducive to learning.  

2. Evaluate and Analyze Online Course Software that Addresses Self-Regulation 

Motivation and Learning Skills  

The present study acknowledged, but did not measure, the differences between 

the two software programs used by instructors in the courses considered in this study. 

Instructors should consider how features of the learning software address self-regulation 

motivation and skills.   

Instructors could also incorporate self-regulation components into course design 

with learning management systems. For example, the learning strategy Metacognitive 

Self-Regulation is an MSLQ subscale that is correlated (r = .30) to academic performance 

(Pintrich et al., 1993). Reflection is a practice that has been shown to have a positive 

effect size on learning (Hattie, 2012). Having students reflect on their learning as a 

required component of assignments can promote Metacognitive Self-Regulation.  

3.a Incorporate Training in Self-Regulation Learning in Courses 

Evidence has shown that self-regulation skills can be taught and used to support 

students in online learning environments (Bol et al., 2016; Hu & Driscoll, 2013. 

Instructors could incorporate web-based training in self-regulation learning skills into 

their existing courses as a requirement or supplement.  

Conclusion 
 
  As community colleges continue to expand online course offerings, it is 

imperative that administrators and instructors understand the factors associated with 
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student success in this contextualized learning environment. Prior research has identified 

self-regulation as an important factor in academic success in online courses (Agustiani et 

al., 2016; Barnard-Brak et al., 2010; Cazan, 2014; Pardo et al., 2016; Puzziferro, 2008). 

The current study contributes to the empirical body of literature regarding the role self-

regulated learning plays in academic achievement within the context of community 

college online mathematics courses. The findings of this study suggest that the self-

regulation subscales of Self-Efficacy for Learning and Performance and Task Value 

appear to relate to academic performance in this specific contextualized learning 

environment. In addition, this study makes a unique contribution to research regarding 

the moderating effects of self-regulated learning on academic risk factors related to 

academic performance in online courses.  
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Appendix A: MSLQ Questionnaire Item Descriptive Analysis 
 

 
 
Task Value Items N Min. Max. M SD 
I think I will be able to use what I learn in this course in 
other courses.  
 

49 2 7 5.82 1.33 

It is important for me to learn the course material in this 
class. 
 

49 3 7 6.49 .91 

I am very interested in the content area of this course.  
 

49 1 7 4.73 1.91 

I think the course material in this class is useful for me 
to learn. 
 

49 2 7 5.65 1.48 

I like the subject matter of this course. 
 

49 1 7 4.65 1.94 

Understanding the subject matter of this course is very 
important to me.  
 

49 2 7 5.88 1.31 

 

 

 
Self-Efficacy for Learning and Performance Items N Min. Max. M SD 
I believe I will receive an excellent grade in this class.  
 

49 1 7 4.55 1.68 

I'm certain I can understand the most difficult material 
presented in the readings for this course.  
 

49 1 7 4.31 1.82 
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I'm confident I can learn the basic concepts taught in 
this course.  
 

49 1 7 5.73 1.18 

I'm confident I can understand the most complex 
material presented by the instructor in this course.  
 

49 3 7 4.76 1.64 

I'm confident I can do an excellent job on the 
assignments and tests in this course.  
 

49 1 7 4.59 1.68 

I expect to do well in this class.  
 

49 1 7 5.14 1.69 

I'm certain I can master the skills being taught in this 
class.  
 

49 1 7 4.94 1.62 

Considering the difficulty of this course, the teacher, 
and my skills, I think I will do well in this class.  
 

49 1 7 4.94 1.56 

 

 
Metacognitive Self-Regulation Items N Min. Max. M SD 
During class time I often miss important points because 
I'm thinking of other things.  
 

49 1 7 4.96 1.79 

When reading for this course, I make up questions to 
help focus my reading.  
 

49 1 7 3.33 2.17 

When I become confused about something I'm reading 
for this class, I go back and try to figure it out.  
 

49 1 7 6.22 1.08 

If course readings are difficult to understand, I change 
the way I read the material.  
 

49 1 7 5.39 1.63 

Before I study new course material thoroughly, I often 
skim it to see how it is organized.  
 

49 1 7 4.67 1.87 

I ask myself questions to make sure I understand the 
material I have been studying in this class.  
 

49 1 7 4.76 1.73 

I try to change the way I study in order to fit the course 
requirements and the instructor's teaching style.  
 

49 1 7 4.88 1.77 

I often find that I have been reading for this class but 
don't know what it was all about.  
 

49 1 7 4.65 1.85 

I try to think through a topic and decide what I am 
supposed to learn from it rather than just reading it over 

49 1 7 4.71 1.5 
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when studying for this course. 

When studying for this course I try to determine which 
concepts I don't understand well.  

49 1 7 5.49 1.41 

When I study for this class, I set goals for myself in 
order to direct my activities in each study period.  

49 1 7 4.80 1.63 

If I get confused taking notes in class, I make sure I sort 
it out afterwards. 

49 1 7 4.76 1.99 

Effort Regulation Items N Min. Max. M SD 
I often feel so lazy or bored when I study for this class 
that I quit before I finish what I planned to do.  

49 2 7 5.37 1.66 

I work hard to do well in this class even if I don't like 
what we are doing.  

49 1 7 5.63 1.46 

When course work is difficult, I either give up or only 
study the easy parts.  

49 2 7 5.39 1.53 

Even when course materials are dull and uninteresting, 
I manage to keep working until I finish.  

49 3 7 5.63 1.20 



This survey is being conducted for educational research purposes. The results of
your responses will be anonymous and confidential.
Please rate the following items based on your behavior in this class. 

Your rating should be on a 7-point scale where 1 = Not at all true of me to 7 = Very
true of me ."

Self-Regulation Student  Survey

1. Please enter your South Student ID (SID)
(All survey results are anonymous and confidential)

*

2. Which math course are you currently enrolled in?

Math 084 (Algebra I)

Math 085 (Algebra II)

Math 102 (College Algebra) 

Not at all true of
me Very true of me

3. I think I will be able to use what I learn in this course in other courses.

Not at all true of
me Very true of me

4. I believe I will receive an excellent grade in this class.

Not at all true of
me Very true of me

5. I'm certain I can understand the most difficult material presented in the readings for this course.

Not at all true of
me Very true of me

6. It is important for me to learn the course material in this class.
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Not at all true of
me Very true of me

7. I'm confident I can learn the basic concepts taught in this course.

Not at all true of
me Very true of me

8. I'm confident I can understand the most complex material presented by the instructor in this course.

Not at all true of
me Very true of me

9. I am very interested in the content area of this course.

Not at all true of
me Very true of me

10. I'm confident I can do an excellent job on the assignments and tests in this course.

Not at all true of
me Very true of me

11. I expect to do well in this class.

Not at all true of
me Very true of me

12. I think the course material in this class is useful for me to learn.

Not at all true of
me Very true of me

13. I like the subject matter of this course.

Not at all true of
me Very true of me

14. Understanding the subject matter of this course is very important to me.
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Not at all true of
me Very true of me

15. I'm certain I can master the skills being taught in this class.

Not at all true of
me Very true of me

16. Considering the difficulty of this course, the teacher, and my skills, I think I will do well in this class.

Not at all true of
me Very true of me

17. During class time I often miss important points because I'm thinking of other things.

Not at all true of
me Very true of me

18. When reading for this course, I make up questions to help focus my reading.

Not at all true of
me Very true of me

19. I often feel so lazy or bored when I study for this class that I quit before I finish what I planned to do.

Not at all true of
me Very true of me

20. When I become confused about something I'm reading for this class, I go back and try to figure it out.

Not at all true of
me Very true of me

21. If course readings are difficult to understand, I change the way I read the material.

Not at all true of
me Very true of me

22. I work hard to do well in this class even if I don't like what we are doing.
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Not at all true of
me Very true of me

23. Before I study new course material thoroughly, I often skim it to see how it is organized.

Not at all true of
me Very true of me

24. I ask myself questions to make sure I understand the material I have been studying in this class.

Not at all true of
me Very true of me

25. I try to change the way I study in order to fit the course requirements and the instructor's teaching style.

Not at all true of
me Very true of me

26. I often find that I have been reading for this class but don't know what it was all about.

Not at all true of
me Very true of me

27. When course work is difficult, I either give up or only study the easy parts.

Not at all true of
me Very true of me

28. I try to think through a topic and decide what I am supposed to learn from it rather than just reading it
over when studying for this course.

Not at all true of
me Very true of me

29. Even when course materials are dull and uninteresting, I manage to keep working until I finish.
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Not at all true of
me Very true of me

30. When studying for this course I try to determine which concepts I don't understand well.

Not at all true of
me Very true of me

31. When I study for this class, I set goals for myself in order to direct my activities in each study period.

Not at all true of
me Very true of me

32. If I get confused taking notes in class, I make sure I sort it out afterwards.
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Below is a sample email message you can use to introduce the survey. Please 
feel free to modify it to make it more personal.  Note I have put in a place where 
you can enter the points you will award for completing the survey. 

Dear students, 

I am participating in a research study to learn about the study habits, learning 
skills, and motivation of students in online math courses. I would like to ask you 
to participate in this study by completing a short questionnaire.  Your answers 
are anonymous and confidential.  The survey is not a test and your answers are 
not graded. We hope to use the results to help students be successful taking 
online classes. 

If you choose to participate, I can provide you x points in this course for your
time.  Below is a link to the survey. It should take you less than 6 minutes to 
complete.  Please try to complete the survey during the next 5 days. 

Thank you, 
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