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ABSTRACT 

An investigation is made of t he low temperature behavior of a 

two-dimensional many- fermi on system parameterized to serve as a model 

of a mono-molecular layer of liquid He3 . The calculations are made 

using the A approximation of the Martin-Schwinger thermodynamic 
00 

Green's function theory. A Herzfeld potential is. used for the t wo-

body interaction in order that the re sulting T matrix equation can be 

solved exactly. Three sets of the three parameters of this potential 

are chosen by requiring that t hey reproduce either the experiment al 

and theoretical low temperature second virial coefficient, the phase 

shifts calculated from the six-twelve potential, or t he experimental 

binding energy and density of the three-dimensional system. The 

chemical potential, energy per particle, density, and specific heat 

are calculated. Of the three sets of parameters the maximum binding 

energy for the two-dimensional system results from the potential which 

predicts the correct three-dimensional experimental energy and density. 

The maximum binding in this case is 1 . 1°K at a density corresponding to 
0 

r
0 

= 6.1 A. Three-dimensional calculations were made with the several 

sets of parameters with the result that the virial coefficient and phase 

shift sets predict too little attraction. 
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I. INTRODUCTION 

A theoretical calculation of the low temperature properties of a 

two-dimensional system of He3 is of interest because of recent experi-

1 mental work on monomolecular layers of liquid helium. This paper 

reports the results of a calculation of the b inding energy, density, 

chemical potential, ~nd specific heat of a t wo -dimensional model of 

liquid He3 in the zero-temperature limit. The calculations are based 

on Puff's A approximation of the Martin-Schwinger thermodynamic 
00 

Green's function theory and the numerical work has been done on an 

electronic computer. 

A brief discussion of the Green's function equations and the approxi-

mations used here in solving them is_ contained in Section II. The A 
00 

theory requires a transition (T) matrix analogous to the K-matrix of 

Brueckner theory. A two-body potential is chosen that will allow us to 

solve the integral T matrix equation exactly. This potential is the 

Herzfeld potential, an infinite repulsive core plus an attractive square 

well. The determination of the parameters of this potential is discussed 

in Section III. Section IV presents numerical results for the low tempera-

ture properties of interest and contains a discussion of the specific heat . 

Finally Section V contains a discussion of these results. In the case of 

the two-dimensional fermion system used as a model of a monolayer of He3 

the implicit assumption is made that the substrate is sufficiently smooth 

on the atomic scale so that no bound states exist and so that the effective 

mass of the single particl e states is not greatly altered . Also, in the 

calculation of the specific heat, strong adhesive forces are assumed so 

that the excitations which determine the low-temperature limit of specific 
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heat are the exitations of the t wo-dimensional many-body system. These 

assumptions are discussed further in Section V. 

II. GREEN'S FUNCTION EQUATIONS 

The Mart i n-Schwinger Green's function approach to the many-body 

problem2 will yield t~e exact ground-state properties of the system 

if the exact one-particle Green's function can be obtained. However 

each Green 's function of a given order is obtained from the Green ' s 

function of the next h igher order , and so the entire hierarchy of equations 

must be solved to obtain the exact G
1

. In coordinate space the fir st two 

of these equations a re 

G, (I)') "; G-. 0 
(I} I) + G, 0 

( l,l..) \1 ( ~ ,3 ) G (~3 3~1') 
:l. ) 

(1) 

G:, ( I 4 ) I' ~ I ) = c;. 0 
( I, 11

) G- ( ~ ;z I) - G <) ( I .l. I) c;. ( ~ ' I) 
- I ' I I • I ' 

(2) 

Here G1° is the solution of the differential equation of motion for G1 

with no interaction term. The numerical indices denote posi tion, time, 

and spin. Integrati on over space and time and summat i on over spin is 

intended for repeated indices. The time dependence of V is simply 

v ( ~ 13) : ~ (\j ( ll:l,- tJ-3 ) s ( f~- tl ) o 
_.., ,..._, (3) 

The usual approximation made is to truncate the infinite chain of 

equations above by factoring the G
3 

of Eq. (2) into symmetrized products 

of G1 and G2 , keeping correlations between particles interacting through v. 
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This is a low density approximation and means in words that when two 

par ticles are interacting their mot i on is i ndependent of all other 

parit lce s in the medium. This can be expressed analytically as 

v ( ;:z) 3) ~ ( I ~ 3) I I ~ I 3 I ) ~ v ( 'J I 3 ) [ G-, ( \) I ') G-4 ( ~ 3J ~ I 3 I) 

Substituting this expression for a
3 

into Eq. (2) yields what i s called 

A
10 

approximation. The resulting equation for a2 is 

G- (IJ. \'~') == G (II')(;;.(~ ;J.') - G- ( \ '"'') r <""" \') ~ ) I I 1 ) I )el.. '-="; oo<') 

A further approximation can also be made, which consist s of replacing 

the a1 's in the square brackets with a1°'s. This is called the A 
l\00 

approximation, and this theory has been inve stigated thoroughly for 

nuclear matter by Puff3 and subsequently by Falk and Wilets4 and 

R~ynolds and Puff.5 The difference between A
00 

and A10 has been 

investigated for nuclear matter6 ' 7 with the result that A10 predicts 

slightly less binding than does A . This paper will rely solely on the 
00 

A
00 

theory . 

Equation (5) can be converted into an integral equat ion for a 

T matrix, defined by VG2 ; TG1G1 , which is analogous to the K matrix 

used by Brueckner. In the zero temperature limit of the A
00 

theory, with 

the condition that the chemical potential ~ be negative, the integral 

4 
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equation in momentum space is 

- < k, ka. l f\T - N 
- - EX 

(6) 

where K and k" are the center of mass and relat ive momenta r espectively . 

Once th is T matrix has been obtained the bulk properties of the 

system can be calculated using the fol lowing equations self-consistently : 

V<k.,w) = f ; .. ~~' f< k,) < ~· ~,\Tlw +Wod<,_))\\(,'k,_> 
,.., "w 

(7) 

"t;t k 4 

Wo( k,) ~ ~~ + V ( k,) W
0
(k,)) (8) 

J < k) = e ( kF - k,) l 1 - (9) 

E/ N = ( ~/ J) ( ~ ~~ f" ( k,) 
) (~11")3 ( 10) 

0 = ~ r cl ~. A (~). 
J (a'tr)J J , ( l l) 

Equations (6), (7), (10), and (ll) can be converted easily to 

apply to a two-dimens i on system by changing the integrat ions from 

to 
• 



III. TWO-BODY INTERACTION 

Equation (6) for the T matrix can be solved exactly for either a. 

sum of square wells or a sum of separable potentials. We have chosen 

the Herzfeld potential for calculational purposes in order to avoid the 

non-local nature of the separable potential while keeping the numerical 

aspects of the problem tract Lble. The He3 - He3 interaction is then 

parameterized by three quantities (a
1

, the hard core radius; a
2

, the 

radius of the outer edge of the attractive well; and V , the well depth). 
0 

These parameters can be determined by requiring that they reproduce the 

second virial coefficient in the l ow temperature range. 

The re are experimental data for the second virial coefficient B(T) 

in the range from 1.5 to 4°K, and outside that range values have been 

calculated using the six-twelve and exponential-six potentials. The 

general expression for the second virial coefficient is 

B (T);: 

)( f ~ cl]-~ d [ E'l< p (_Elk T)j :I.~.)( F (_E .. ,/ I<T) 1 
+ t Jl~v•~;).l +I) ( ~ ~;~,"-){ ~ [11-R J l e'><f (- E/I<T)] 

( 12) 

Here ~l is the phase shift for the £ th partial wave, E is the energy 
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of the relative motion of the two particles, m is the He3 atomic mass 

(5.0076 X lo-24 grams), T is the absolute temperature, K is Boltzmann's 

constant, and the Enl are the energies of the bound states. There were no 

bound states for the range of the parameters investigated so the sum 

over discrete states can be neglected. 

In practice it is convenient to use Kihara's methodS in which B(T) 

is calculated as a function of the new parameters 

s == 

,-:l. s K 

'f"" = ~(GJ-1)~\Vo\ T • 
The parameter s is the effective depth parameter used in nuclear physics 

by Blatt and Jackson.9 An electronic computer was used to calculate a 

quantity f (T) which was proportional to T3/ 2B(T) and independent of 

the T/ T ratio. For a particular g value calculations were performed 

for various s values which gave minimum values of f(T) in the vicinity 

of the theoretically expected minimum value. The lateral spread of the 

calculated curve when plotted against T is, of course, dependent on the 

T/T ratio. Thus if f(T) is normalized to be equal to T3/ 2B( T) and the 

ratio T/T is chosen so that the best comparison is obtained for t he 

two curves the third parameter T is then determined. To check the 

computation a calculation was first made for He
4 

with g = 1.5, s = 1.0, 

and agreement was obtained with the results of Kihara. 

The He3 virial coefficients can be compared with a few measured 

values in the range of 1.5 - 4°K10 and with theoretical curves calculated 

for the six-twelve potential and the exponential-six potential.
11 
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Results of the fittings indicate that there is a range of g values over 

which for some s value a fit can be found to the observed data and to the 

theoretical curves for B(T) in the temperature range from 1°to 10°K. 

TABLE I. Herzfeld Potential Parameters determined by fitting 

of second virial coefficient 

0 0 
V (°K) g s T/r a1 (A) a2 (A) 

0 

1.5 0 . 895 2.39 2 .594 3.89 -21.11 

l. 75 0.865 2.85 2.386 4.16 -10 .82 

2.0 0.845 3·37 2.185 4.370 - 7.03 

2.25 0.825 3.81 2.055 4.624 - 4 . 96dl~ 

2.5 0 .810 4.23 1.95 4 . 89 - 3.76tpll,r 

2.75 0.795 4.57 1.88 5.16 - 2.93 

Figure 1 is a typical comparison of the calculated virial coefficients of t he 

Herzfeld potential with the experimental and theoretical values for He3. In 

Table I the parameters of the Herzfeld potential are listed for various 

fittings. A general conclusion can be drawn that as g becomes smaller the 

calculated B(T) curve has excessive curvature and tends to lift up from the 

He3 and the six-twelve values in the tegion of ten degrees and of zero 

degrees . As g becomes larger the Herzfeld B(T) curve is too broad. The 
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conclusion is that the best set of parameters from the basis of the second 

0 0 
virial coefficients alone is that of g = 2.0: i.e., a1 = 2.18 A, a2 = 4.370 A, 

0 
V

0 
= -7.03 K. 

Certainly the second virial coefficients themselves ar e not a reliable 

determination for the parameters of a crude potential such as the Herzfeld 

potential. The virial coefficient expansion is a low density expansion, and 

the virial coefficients are most sensitive to the long range part of the 

potentials . It is certainly desirable, therefore, to use other criteria for the 

parameterization of the He3 - He3 interaction. 

We know that scattering data for momenta up to values of order kF are 

important in the A theory, and we can impose an additional restriction on 
00 

the potential. We require that the parameters reproduce B(T) fairly well 

in the low temperature region and that they also give the proper phase shifts 

for the lower par tial waves near kF. The set of parameters corresponding to 

g = 2.5 is the best of all the sets in Table I in this respect. 

A third set of parameters has also been chosen by the criterion that 

they should reproduce the experimental binding energy and density when a 

A
00 

calculation is performed. Taking a binding energy of 2.53°K per particle 

and a density parameter r (defined by 1/density = (4/3)nr 3) equal to 2.43 ~ 
0 0 

we find a suitable choice of parameter s to be 
0 

a1 1.85 A 
0 

a2 3.95 A 

0 V = -10.7 K 
0 

This potential is intended to phenomenologically compensate for errors 

inherent in the A approximation and in the use of the Herzfeld potential. 
00 

The strength parameter for this potential is s = 1.19, which indicates the 
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presence of a bound state. This i.s contrary to most data on the He3 - He3 

interaction and indicates that the calculations i·rith potentials dete rmined 

from virial coefficient end scattering data will yield insufficient binding. 

There is of course :more than one set of three potential parameters vhich 

will yield the two experimental quantities of binding energy and density . He 

find that the core radius is very important in determining the proper density 

for the system but that the energy can be fit over a range of ~ and V
0 

values . 

No attempt was made to find a physical reason for choosing one particular pair 

of a2 and V0 values in preference to the others and calculations are presented 

for one member of this set only. 

IV . RESULTS 

Van Leeuwen and Rei ner12 have solved the three-dimensional T matrix equation 

exactly for a potential made up of an arbitrary number of step potentials in 

general and for a Herzfeld potent i al in parti cular . Thei r analysis can be applied 

to the two-dimensional system and the result is the s ame as if the normalized 

spherical Bessel functions i n their result are replaced by cylindrical Bessel 

Functions and the square of al or of a2 at any point is simply replaced by a1 or a2 

respectively. Having the ex~ct T matrix enables us to solve equations (7) to (9) 

sel f -consistently to obtain the zero temperature bulk properties of the system. 

This vas first done for. the three- dimensional system and values of E/N and 1.1 

were found as functions of r 0 • For the pure vi r i al-coeffi cient potential corres-

pending to g = 2.0 the energy per part i cle remains pos i tive and has values of 

0. 1 ~ E/N ~ 0 . 2°K at densities corresponding to 3. 5 ~ r 0 ~ 4.0 A. The potential 

based on considerati ons of both virial coefficient and phase shifts yields sli ghtly 

':) 

more attraction , >rith E/N -:::: - 0 .1 °K at r 0 :::: 3.25 A at the energy minimum. Thus the 

A
0

:> approximation vith the Herzfeld potential fit to virial coefficients and phase 



shifts does not seem to be a good approximation applied to the three

dimensional system. These results are in agreement with those of Beck
1

3 who 

used separable potentials fit to de Bc·er phase shifts in a /\
00 

calculation. 

He finds the system is self-bound with a binding energy of -0.04°K at a density 

corresponding to r 
0 

0 14 = 3.25 A. Brueckner and Gammel in a different calculation 

I 
0 0 

using a realistic two-body potential find EN = -0.9 Kat r ~2.6 A. 
0 

When two-dimensional calculations are done with the same potentials 

the general feature of very weak attraction persists , but maximum binding 

does not occur until extremely large inteyparticle separations. The virial 

coefficient potential (g = 2.0) yields a minimum ene~per particle of -0 . 03°K 
0 

at r = 14.8 A. The virial-coefficient-phase-shift potential (g = 2.5) yields 
0 

a minimum of energy at E/N = -0.047°K and r 
0 

0 
= 13.3 A. Figure 2 illustrates 

the variation of the ene'rgy per particle and the chemical potential with r
0 

for 

the latter potential. Finally when the potential parameters which yield the 

experimental bulk properties for the three -dimensional system were used were 

used an energy minimum of E/N = -l.l°K at r = 6.15 ~ is found. 
0 

Puff and Reiner15 have obtained an expression for the specific heat of a 

system of interacting ferrnions based on the 1\ approximation. Their result is 
00 

made up of one term equal to the usual effective mass term multiplied by the 

momentum distribution factor p(kF) plus temperature dependent correction 

terms which can give a contribution at absolute zero. Most theoretical calcula-

tions of the specific heat rely on the effective mass approximation and due to 

the inherent limitations of our approximation we also will obtain the specific 

heat from 

c (13) 

ll 



= [ 
- I 

Hr l c 
CFRE'E 

The ratio of C/CFR~~ was calculated at the energy minimum for the three
t;t. 

(14) 

dimensional system ~~d the results are m*/m = 1. 25 for the g = 2.5 set of 

parameters, m*/m = 1.27 for the g = 2.0 set, and m'~/m = 1.1 for the "physical 

set ". These numbers are to be compared to m* /m = 1. 88 , obtained by Brueckner 

and Ga.mr.lel. 

'!'he calculations in tuo-dimensions are done over a range of densities and 

our two-dimensional specific heat as a function of rJ is pictured in Fig. 3 

for the g = 2.5 potential. In this case m*/m is less than one and approaches 

one as the density goes to zero. At the point of maximum binding the results 

are C/CFREE = m* /m = 0. 86 for the above s.et of parameters, m* /m = 0. 88 for the 

g = 2.0 set, and m*/m = 0.60 for the "physical set". 

V. DISCUSSION 

The A00 theory is an approximation in vrhich an attempt is made to treat 

two-particle correlations in the medium w·hile replacing the effects of the 

other particles by an average field. For a dilute system this should be a 

~ood approximation and indicat ions are that it is valid for nuclear matter. 

Helium is however significantly denser than nuclear matter when expressed 

relative to the respective close packed densities figured according to the 

respective repulsive core sizes. The calculations presented here al ong ,.,i th 

those of Brueckner and Gawnel indicate that corrections to the two-body theory 

must be incorporated before a theory can be applied to liquid He3. Bethe16 

has shovm that when the three-particle problem is treated correctly the result 

reduces to the two-particle result except when the three particles are close 

to one another. In that case the wave function is reduced to 1/3 of the more 
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elementary value corresponding to the fact that the wave function can be 

excluded from the strong repulsive core only once . 

However the two dimensional system is less dense than the three 

dimensional system and a two-particle theory such as ~ may be expecte~ to 
00 

have more validity in this situation . Our results for the two -dimensional 

system probably bracket. the true behavior of the system, with the virial 

coefficient potential indicating too little attraction and the potential based 

on the three-dimensional physical properties indicating too much. 

There is a considerable difference between the density of the monolayers 

measured by Goodstein and the densities calculated at maximum binding with 

the ~ approx i mati on. This is not a basic disagreement between theory and 
00 

experiment since a great range of densities is availabl e to the monolayer . 

With sufficient attractibn the substrate could bind the system even though the 

two-dimensional system by i tself would not be found at the same dens.ity . 

Goodstein et al. report a coverage corresponding to r ~ 2 .0 ~. Even with the 
0 

very attractive phenomenological potential the calculated ~ is positive for 
0 

r < 4.3 A. Our calculations are not applicable at greater densities since a 
0 

positive ~ results in a more complicated kernel in the T matrix equation . The 
0 

energy per particle can be extrapolated to go positive near an r of 4.0 A 
0 

and to increase with a decreasing r at a rate in excess of a degree Kelvin 
0 

per angstrom. I f ther e is, therefore, any validity in the A model the He3 
00 

atoms in the observed monolayer are close enough together to experience strong 

mutual repulsion with the large adhesive for ces of the substrate holding the 

layer together . 

The calcul ated quantity that is to be compared directly with experiment 

is the specific heat at the same density as in the experiment . Unfortunately 
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the only experimental data available are far into the positive ~ region of 

density . The significant thing is that Goodstein et al. report a specific 

heat proportional to the s~uare of the temperature. The most direct explanation 

of this is a two dimensional Debye model with collective, phonon-like excita-

tions . The A calculation is, of course, based on single-particle-like 
00 

excitations, and the calculated specific heat would be proportional to T. 

The ~uestion arises as to whether a collective - state-excitation model would 

be appropriate at high densities while a Fermi-li~uid theory as A might 
00 

become valid as low densities are approached. To answer this ~uestion experi

ments are needed with He3 monolayers with coverages that range from those of 
0 

Goodstein down to those which correspond to r values of 12 A or more. An 
0 

observation of a change in the temperature dependence of specific heat as the 

coverages are decreased would be the most direct evidence of such a change of 

behavior. 

The search for a specific heat linear in T at low densities would be futile 

if the surface of the substrate is so rough that the ground state wave function 

of a He3 atom on the substrate vrere l ocalized. In that case a two dimensional 

Fermi-li~uid model would not apply however low the density. The most direct 

interpretation of the T2 specific heat would be that collective excitations 

occur so that the helium atoms are interacting with each other and are not 

found to be in localized ground states in which case an exponential specific 

heat would be expected. 

ACKNOWLEDGMENTS 

The authors are indebted to Professor L. Wilets for originally suggesting 

the subject of this paper and for many helpful conversations during the course 

of the work. They wish to thank Professor R. Puff for helpful discussions and 

14 



comments. One of us (T.C.F.) would like to acknowledge the hospital ity of 

the Physics Department at the University of Washington where this work was 

begun. Numerical calculations were perf ormed on the IBM 7094 computer at the 

University of Washington, where a grant of computer time was given, and on 

the CDC 3600 computer a~ the University of California, San Diego. 



REFERENCES 

* Work s upported in part by the National Science Foundation and 

the Atomic Energy Commission. 

l . D. L. Goodstein) J , G. Dash, and W. D. McCormick , Phys. Rev. 15 , 

447 (1965). 

2. P. C. Martin and J . Schwinger , Phys . Rev. 115 , 1342 (1959) . 

3. R. D. Puff, Ann. Phys. 13, 317 (1961) . 

4. D. S. Falk and L. Wilets , Phys . Rev . 124, 1887, (1961) . 

5. J. C. Reynolds and R. D. Puff , Phys . Rev . 130, 1877 (1963). 

6. R. Puff, A. S . Reiner, and L. Wilets, Phys . Rev. To be published. 

1· T. C. Foster, Phys. Rev. To be published. 

8. T. Kihara, Red. Mod. Phys. 27, 412 (1955). 

9. J, M. Blatt and J. D. Jackson : Phys. Rev . 76 , 21 (1949). 

10. W. E. Keller, Phys. Rev. ~' 1571 (1955). 

11. J , D. Ki lpatrick, W. E. Keller, E. F . Hammel, and N. Metr opolis, 

Phys. Rev. 94, 1103 (1954) . 

12 . A. s. Reiner and J, M. J . Van Leeuwen, Physica 27 , 99 (1961) . 

13 . D. E. Beck and A. M. Sessler, Phys . Rev . To be published. 

14. K. A. Brueckne r and J, L. Gammel , Phys . Rev. 109, 1040 (1958) . 

15. R. D. Puff, Private Communication. 

16. H. A. Bet he, Phys. Rev. 138, B804 (1965) . 

16 



Fig. 1 

Fig. 2 

Fig. 3 

CAPTIONS FOR FIGURES 

A comparison of the seco~d virial coefficient multiplied by 

T3/
2 

calculated for the Herzfeld potentials with the experimental 

values and with the theoretical values for the exponential-six 

and for the six-twelve potential. 

Variation of ~ and E/N with the separation parameter r for the 
0 

0 0 0 
Herzfeld potential (a1 = 1.95 A, a2 = 4.89 A, V

0 
= 03.76 K). 

Variation of specific heat with the separation parameter r
0 

expressed as the ratio of the interacting to the free Fermi 

0 0 
gas for the Herzfeld potential (a1 = 1.95 A, a

2 
= 4.89 A, 

V = -3·76°K). 
0 

17 



0
~
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-

-1
0

0
 

- tU ..
J o 

-2
o

o
1 

?. ~
 

0 ~
 

-3
0

0
 

0 - I ~
 

-4
0

0
· 

)C
 - ..... - aJ
 

-5
0

0
 

\ \ \ \ \ 

\+
 

\ 
~
 \ 

\ 
0 '\
 'o

 
'+

o
 

'x
 ' ' 

2
.0

 

0 +
 

X
 

' 
......

. -&
- ~
 ....

.. 

E
X

P
-

S
IX

 
(K

E
L

L
E

R
) 

S
IX

-
T

W
E

L
V

E
 

(K
E

L
L

E
R

) 

E
X

P
E

R
IM

E
N

T
A

L
 

P
O

IN
T

S
 

H
E

R
Z

F
E

l-
D

 
Q

, 
=

 2
.1

8
5

 A
. 

Q
~
=
4
.
3
7
A
,
 

V
:-

7
.0

3
°K

 

H
E

R
Z

F
E

L
D

 
a.

 =
1

.9
5

 
A

. 
0

2
.=

4
.8

9
1

, 
V

=
-3

.7
6

°K
 

---
-

-
-

+
 

"':
p 

)
f-

-
-

4
(
 

-
-
+

-
,;-

+
 

4
.0

 
6.

0 
8

.0
 

T
 

t-
K

) 



z 
....... 
UJ :::1.. 

~ • 
0 
I 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 

---- --

• .0 
0 0 
d d 
I I 

()1.) N I 3 ONV r1 

\ 

' ' ' ' ' 

.,.., 
....-

...,..,.., 

' \ 

_,. 

\ 
\ 

\ 

/ 
/ 

., 
~ 
0 
I 

\ 
\ 

\ 
I 

I 
/ 

q 
.n 
N 

0 
d 
N 

-oc( -
• '-

0 
• an 

0 • 
0 



0 
z 
Q 
z -Q) 

~ 
:> 
1: 
x 
-< 
I: 
1a. 
0 ._ 
z 
g 

X 

0 

0 
0 
N 

() . 
~~ 

0 . 
0 

, ...... 
-< -

c 
1-. 


	ABSTRACT
	I. INTRODUCTION
	II. GREEN'S FUNCTION EQUATIONS
	III. TWO-BODY INTERACTION
	IV. RESULTS
	V. DISCUSSION
	ACKNOWLEDGMENTS
	REFERENCES
	CAPTIONS FOR FIGURES

