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ABSTRACT 
This paper presents an overview of the research landscape of data-
driven human-engaged computing in the Human-Computer 
Interaction Initiative at the Hong Kong University of Science and 
Technology. 
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1 INTRODUCTION 
Making technologies more engaging for human users is 

gaining increasing attention in academia and industry these days. 
It aims to equip computing devices and services with the abilities 
to perceive and understand users' attentional, emotional, 
cognitive, and behavioral engagement, as well as to manage and 
use such information to improve user interactions and 
experiences. In this paper, we present an overview of our research 
efforts on human-engaged computing (HEC) (Fig. 1). In 
particular, we take a data-driven approach to 1) inferring human 
engagement dynamicity from various signals, and 2) analyzing 
factors that engage users in online and offline activities in 
everyday life that can potentially be adopted in human-computer 
interaction (HCI). Then, we apply the resulting insights to two 
main application areas: achieving more engaging interaction 
experiences 3) with artificial intelligence (AI) via the design of 
emotionally and socially intelligent robots and agents; and 4) with 
non-AI entities (e.g., data and objects) via immersive hybrid 
realities. Last but not least, we experiment with the use of 
engagement ingredients to enrich user experiences in different 
contexts, ranging from education, e-commerce, health and 
wellbeing, to creativity. 

2 ABOUT ENGAGEMENT 

2.1 Definition of Engagement 
In human-human interaction, engagement is “the process by 

which interactors start, maintain, and end their perceived 
connections to each other during an interaction” [21]. In the 
context of HCI, we take a more comprehensive definition that 
details the dimensions of engagement – considering it as “the 
attentional, emotional, cognitive, and behavioral connection that 

exists between a user and the task at hand at any point in time and 
possibly over time” ([22], adapted from [2], P. 2). Some literature 
takes a narrower definition of engagement that refers to only one 
of the following dimensions (Fig. 2). 

Attentional Engagement concerns attention allocation and 
redistribution (e.g., [4]), which can be measured by gaze data 
collected via eye tracking. 

Emotional engagement concerns users’ affective reactions 
such as interest, excitement and boredom (e.g., [10]), commonly 
measured using subjective questionnaires. Recently, researchers 
have explored the use of sensors to detect users’ affective states. 

Cognitive engagement concerns psychological devotion to a 
task (e.g., [13]), such as active thinking and reflection, and can be 
measured by sensors like EEG (objective) or by self-reporting 
(subjective). 

Behavioral engagement concerns physical participation and 
involvement (e.g., [7]), often measured by attendance, time spent, 
number of actions, and number of attempts. 

2.2 Human-Engaged Computing 
With the technology advancement, researchers and 

practitioners start looking into how to design synergized 
interactions between humans and technologies, with the goal of 
augmenting the capabilities of both parties and maximizing their 
capacities. In the article “Rethinking the Relationship between 
Humans and Computers”, Xiangshi Ren proposes that human-
engaged computing aims to achieve “a state of optimal balance 
between engaged humans and engaging computers” [20]. 

 
Figure 1: Overview of our research on data-driven human-

engaged computing. 
 



 
 

There are two essential research components of this notion: 
engaged humans and engaging computers (Fig. 2). The former 
requires the ability for computers (in a general sense) to perceive 
and understand the states and changes of human engagement. The 
latter demands feature(s) in a technological design that can 
motivate and facilitate humans to establish connections with it. 
Our group proposes to take a data-driven approach, i.e., 
leveraging rich data about humans, computers, and assorted 
interactions from diverse sources, to infer user engagement 
dynamicity and analyze engaging factors for design inspiration. 
Based on the derived insights, we further explore the creation of 
engaging experience with AI systems and non-AI entities. 

3 RESEARCH LANDSCAPE OF HEC 

3.1 Inference (Engaged Humans) 
The main goal of the Inference research component is to sense 

and model human engagement dynamicity in real-time, i.e., the 
states, transitions, and fluctuations of engagement – a single 
dimension or multiple dimensions as an integrated measure. We 
have been exploring the use of three types of signals as 
engagement cues: social signal, physiological signal, and 
behavioral signal. 

Social signals are “communicative or informative signals that, 
either directly or indirectly, provide information about social 
facts, namely social interactions, social emotions, social attitudes, 
or social relations” [26]. In other words, social signals are 
indicators of attentional, emotional, and even cognitive 
engagement in interpersonal interactions, which can potentially be 
transferred to other interaction contexts. Common social signals 
include gaze, facial expressions, vocal behaviors, proxemics, 
gesture, posture, and other body languages. Our group 
investigates non-intrusive methods to capture social signals during 
an interaction, using sensors like cameras and microphones.  Fig. 
3 shows an example setup of a posture detection system [34]. In 
actual applications, the sensors are better embedded in the 
environment.  

Physiological signals are readings produced by physiological 
processes of human beings, including but not limited to heartbeat 

rate (ECG/EKG signal), respiratory rate and content (capnogram), 
skin conductance (EDA signal), muscle current (EMG signal), 
brain electrical activity (EEG signal), etc. Research has shown 
that physiological signals can serve as cues of attentional (e.g., 
[9]) and emotional engagement (e.g., [1]). We have previously 
experimented with extracting emotional cues from pulse [33] and 
skin conductance data [24] (Fig. 4) 

Behavioral signals are actions and activities performed during 
an interaction or on an interface online or offline, such as 
conversational acts, text input, clicks, scrolling, page switch, 
emoji usage, likes, check-ins, etc. Some of these are task-specific, 
but they all suggest users’ level of behavioral, cognitive, and 
sometimes emotional engagement. We have been mining 
behavioral signals from different sources, such as gameplay data 
[12], social media data [29], social commerce data [31], 
multimedia data [25], and public service data [6]. 

We can use the different types of engagement signals 
individually or collectively, according to the application context 
and needs. 

3.2 Analytics (Engaging Computers) 
The purpose of our Analytics research component is to identify 

engaging factors people may encounter in their everyday life. In 
particular, we are interested in what engages users when they 
interacting with other humans or with physical / virtual entities.  

Our research on engagement with social actors concerns a) 
characteristics of individuals that tend to attract other people to 

 
Figure 2: Components of Human-Engaged Computing (HEC): 

engaged human and engaging computer. 
 

 
Figure 3: Example setup to detect posture [34]. 

 

 
Figure 4: Monitoring skin conductance using Pip sensor and 

sample readings [24]. 



 

participate in activities with them e.g., personality [30] and 
structure of their intimacy network [11]; and b) strategies people 
used to directly or indirectly manage others’ engagement [29] e.g., 
money gifting. 

Our research on engagement with physical and virtual entities 
intends to capture tangible and nontangible properties that make 
something more engaging than others. Our studies have covered a 
wide spectrum of design space, ranging from appearance (e.g., 
cuteness [19]), layout (e.g., product arrangement on e-comerce 
site [31]), medium (e.g., food for social messaging [28] and data 
display [27]), to semantics (e.g., associations in humor [3]). 

To give an example, Fig. 5 shows a visualization of viewer 
engagement on an online video sharing platform, by analyzing the 
live commenting data [25]. We can gain an idea about which part 
of a video is engaging and why, and how viewers engage one 
another to create an illusion of co-watching. 

3.3 Application I: Engagement with AI Systems 
Our first application of insights drawn from inference and 

analytics is designing engaging experiences with Artificial 
Intelligent (AI) systems, naming robots and virtual agents (HRI / 
HAI). More specifically, we would like to augment AI systems 
with emotional and social intelligence, enabling smoother, more 
effective, and more enjoyable human-AI collaboration. 

For example, we compare the efficacy of two disengagement 
handling techniques (dominant / explicit versus submissive / 
implicit) adapted from human-human interaction, when employed 
by a physical robot to manage potential interaction breakdowns 
with a human user [23]. During the entire process, the robot 
closely monitors the user’s shift of engagement by social and 
behavioral signals. We have also experiment with applying these 
two traits on a virtual agent to deal with user challenges such as 
verbal abuse and sexual harassment [30]. 

 

3.4 Application II: Engagement with Non-AI 
Entities 

Our second application focuses on non-AI entities in a computing 
system, such as data and traditional interface elements. We use 
engaging factors (e.g., appearance, medium, semantic, etc.) 
identified previously to inform the design of these entities across 
the reality–virtuality continuum. In other words, a design can 
live in conventional digital media, in “ambient media” situated in 
everyday life [14], or a combination of both. As a result, these 
designs could be of better assistance in areas like informatics 
(e.g., healthcare [17] and wellness [24], photo archive [15], etc.), 
narratives (e.g., video synopsis [25], paper-craft [35], etc.), 
persuasion (e.g., volunteerism [8] and healthy aging [32]), and 
recommendation (e.g., e-commerce [31], travel [5], and 
transportation [6]).  
In the work shown in Fig. 7, we use crowdsourcing techniques 

to infer users’ allocation of attentional and cognitive engagement 
when looking at digital medical graphics [16]. Guided by the 
results, we can use optimization algorithms to automatically 
improve the perceptual effectiveness of the information display 
during physician-patient communication.  

In another work, we conduct meta-synthesis of daily anecdotes 
about how breakage of technology may lead to engagement of 
(restoring, reinforcing, or promoting) online and offline 
interpersonal communication [18]. Based on the findings, we 
propose a Breakage-to-Icebreaker (B2I) design process, i.e., 
embedding icebreaking mechanisms into existing products and 
services to create opportunities for users to interact and reflect 
while enjoying the original functionalities (Fig. 8). 

4 CONCLUSIONS 
This paper provides a brief overview of the research on data-

driven human-engaged computing (HEC) conducted in the 
Human-Computer Interaction Initiative at the Hong Kong 
University of Science and Technology. We summarize our works 
related to two essential components of HEC: engaged humans 

 
Figure 6: Example of engagement sensing and handling in 
human-robot interaction; the user disengaged from his 

conversation with the robot to work on a task on the computer 
[23]. 

 

 
Figure 5: Analysis of viewer engagement during live video 

commenting [25]: (middle) video timeline; (top) summary of 
video scenes, height encoding intensity of behavioral 
engagement; (bottom) comments posted during video 

watching, color encoding sentiment. 
 



 
 

(inference) and engaging computers (analytics). We also presents 
some exploratory applications of our research results, enabling 
more engaging synergized interactions between human users and 
AI systems as well as non-AI elements in a technology.  
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