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ABSTRACT
Context-Adaptive Task models are a state-of-the-art executable
modelling language to develop pervasive computing systems.
Although these models have proven to be successful in the au-
tomation and support of user daily tasks, they do not provide
a proper checking for ensuring the correctness of the designed
systems. In this paper, we investigate and define mappings to
translate the task models into Coloured Petri Nets (CPN), a
formalism that provides powerful techniques for simulation
and verification. By using these mappings, task models can
be translated to their equivalent CP nets, enabling that the
system’s behaviour described in the task models can be ex-
haustively checked at design time to ensure a proper system
execution at runtime.
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ACM Classification Keywords
D.2.12. Interoperability: Data mapping; D.3.3 Language Con-
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INTRODUCTION
Pervasive computing [9] is a computational paradigm in which
technical systems are developed and deployed in the envi-
ronment to support humans in their daily activities. To do
this, these systems provide pervasive services that can effect
changes in the environment and suggest appropriate activities
to the users. A key requirement is supporting these activities
by remaining safe for the system users.

Context-Adaptive Task models [12] are a state-of-the-art mod-
elling language to represent daily routines that can be sup-
ported by pervasive environments. This language provides
executable conceptual models that hierarchically specify the
tasks a system should execute in a certain context in order to
support a user in the conduction of her daily routines. Task
models have been successfully adopted in model-driven per-
vasive infrastructures [12, 11, 13]; however, although these
models have shown to be effective for supporting routine au-
tomation, they provide limited support for checking the cor-
rectness of the designed behaviour in order to assure a safe

interaction with the users. For instance, it is essential to en-
sure that the modelled assisting routines do not produce loops
when they are executed or that the execution of several rou-
tines in sequence or in parallel does not produce undesired
behaviour. This is important for pervasive environments such
as smart homes, and is essential for critical environments such
as Ambient Assisting living (AAL) facilities, hospitals, etc.

In order to provide support for this validation, this paper in-
vestigates how to map context-adaptive task models to Col-
ored Petri Nets (CPN). CPN is a modelling language that has
a graphical notation and a formal definition for the execution
semantics; but what is more important is the support of CPN
for powerful associated analysis techniques. CPN allows to
validate: 1) structural properties, such as structural liveliness
(i.e., to validate that there is at least a context state where no
deadlocks are found), repetitiveness (i.e., the routines should
be able to be executed again provided the context that acti-
vates them is repeated), consistency (i.e., a certain context
state always fires the same actions); and 2) behavioural prop-
erties, such as reachability of a certain state (e.g., to validate
that the system can always return to a safe state), behavioural
liveliness (to validate the absence of deadlocks for certain
context), coverability (there is no designed task that can never
be executed).

Thus, by mapping task models to CPN, this work enables the
visual simulation of the system execution and the automatic
checking of the correctness of the designed behaviour.

The rest of the paper is organized as follows. The next sec-
tions explain: the related work; a running example; our base-
line: task models and CPN; the mappings between both for-
malisms; and finally the discussion, future directions, and
conclusions.

RELATED WORK
In this paper, we define mappings to transform task models
intro Petri nets, as such enabling the correctness checking of
the pervasive behaviour described in the task models. Sev-
eral works have defined mappings from different languages
to Petri nets in order to take advantage of their simulation and
verification techniques. For instance, in [7], the authors pro-

11

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by International SERIES on Information Systems and Management in Creative eMedia...

https://core.ac.uk/display/228470449?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


CurrentTime=08:30

Composite TaskSystem Task

Root Task

Temporal Refinement
Orderingwconstraintswforwexecution

Timewto
Wakewup

[OutsideBrightness=low]
switchwlightwon

[OutsideBrightness]=low]
raisewbedroomwshutters

illuminate
thewroom

measure
healthwparameters

Exclusive Refinement
Onlywonewsubtaskwiswexecuted

Activation Condition

HomePresence=truewand
HomeSecurity=enabled

start
recording

>>[HomeSecurity
=deactivated]>>switch

lightswon
activate
alarm

IntruderwSecurity

deactivate
alarm

5wmin>>

UserLocation]=Home

activate
security

>>
lockwdoor

UserwLeft

switch
lightswoff

switchwoff
heating

||| >>

stop
recording

notify
police

|||||| ||| |||

Weather=Raining

>>close
windows

StormwSecurity

lower
shutters

switch
sprinklerswoff

|||

switch
lightswoff

reminder:wtake
medicines

calculate
medicinewdose

>> >>
turnwon

thewradio

|||

|||

Context Precondition

Temporal
Relationship

Figure 1. A task model representing the “Time to Wake up”, ”User Left”, ”Storm Security” and ”Intruder Security” user routines

pose a mapping from Business Process Execution Language
(BPEL) onto WorkFlow nets, which are a subclass of Petri
Nets (PN), to enable soundness checking. The paper pre-
sented in [15] also describes how UML 2 Activity diagrams
can be intuitively translated into Petri net notations for exe-
cution and validation. However, no other previous work has
focused on mapping task models onto Petri nets.

In addition, Petri nets have also been used for describing per-
vasive behaviour and checking the correctness of this behaviour.
For instance, an outstanding example is the one presented in
[6]. Using Petri nets, the authors model workflows to control
the device operations and the interactions among the devices
of a household. Thus, designers can run the PN simulation
to predict environmental effects before (or while) a workflow
is (being) executed. Also, in [1], the authors propose to use
CPN to represent and validate the requirements of a pervasive
system by means of animated simulation. In our work, the
system is specified using task models, which are more com-
prehensive than Petri nets by users (e.g., doctors and nurses in
the healthcare domain) and provide a more compact notation
[5] [3]. Thus, in our work Petri nets are used to complement
the task models for verification purposes, allowing the possi-
bility to use the best model according to their benefits for the
specific pursued goal.

RUNNING EXAMPLE
An AAL home pervasive environment supports the daily rou-
tines of an elderly person. The AAL home is equipped with
Ambient Intelligence devices, controlled by pervasive ser-

vices [12] that monitor and collect context information, as
well as enabling interaction with the users and the environ-
ment. Some of the supported routines are as follows:

• Time to Wake up: At 8:30 in the morning, the system turns
on the radio and tunes to the user’ favourite channel and
illuminates the room by raising the blinds if the brightness
outside is high, or by switching the lights on otherwise.
After 5 min., the system requires the user to measure their
health parameters. With this information, the system calcu-
lates the medicine dose that the user needs to take and noti-
fies his/her about the medicines and their dose that should
be taken before breakfast.

• User Left: When the user leaves home, the system locks the
door, switches off the lights and the heating, and activates
the security.

• Intruder Security: When an intruder is detected (the secu-
rity is enabled and someone’s presence is detected in the
house), the system activates the alarm, notifies the police,
switches on the lights and starts recording. Afterwards,
when the situation is under control (the security is dis-
abled), the system switches the lights off, deactivates the
alarm and stops recording.

• Storm Security: when it starts raining, the system closes
all the windows that are open, lowers the shutters so the
windows are not stained, and switches off the sprinklers of
the garden if they are working at that moment.
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Figure 2. CPN to represent the behaviour of a light-dimming switch

RESEARCH BASELINE
This section presents our research baseline: Context-Adaptive
Task Models (CATM) and Coloured Petri Nets (CPN).

Context-Adaptive Task Models (CATM)
Context-Adaptive Task Models (CATM) specify how a perva-
sive infrastructure can support its users in carrying out every-
day activities [12]. CATM are inspired by Hierarchical Task
Analysis (HTA) [14], which constructs a task tree that refines
a high-level task into a set of executable ones.

A task model defines the routines that the system must auto-
mate to support user activities like the ones explained in the
running example. Using HTA, each user routine is described
as a task hierarchy. The root task represents the routine itself,
and has an activation condition that indicates the situation
in which the routine is activated. For instance, the ”Time to
Wake up” routine is to be executed at 8:30 a.m. The root task
is iteratively broken down into simpler tasks by means of two
task refinement constructs: exclusive refinement and temporal
refinement. Exclusive refinement (represented by a solid line)
decomposes a task into a set of subtasks in such a way that
exactly one subtask will be executed. Temporal refinement
(represented by a dashed line) also decomposes a task into
subtasks; however, all the subtasks shall be performed fol-
lowing a specific order which is graphically depicted by the
arrows between sibling tasks. Temporal constraints make use
of Concurrent Task Trees (CTT) operators [8]. For example,
in Fig. 1, we use:

• Enablement (T1 � T2): task T2 is triggered when task T1

finishes.

• Enablement with Condition Constraint (T1 � [s] � T2):
after the completion of T1, T2 is started as soon as the sit-
uation s holds.

• Enablement with Time constraint (T1 t � T2): after the
completion of T1, T2 is started as soon as the time period t
has elapsed.

• Parallel (T1 ||| T2): T1 and T2 are executed in parallel.

The task refinement process ends when every leaf task in the
tree can be associated with a pervasive service (controlled by
the pervasive system), which is responsible for executing the
task. For example, task “raise bedroom shutters” is executed
through a pervasive service that controls the shutters’ engine.
Thus, the leaf tasks are called System Tasks, while the tasks

that are refined are called Composite Tasks. Also, a task can
have a context precondition (depicted between square brack-
ets before the name of a task) to indicate that the task is
only executed if the precondition holds; otherwise the task
is skipped. In an exclusive refinement, the task executed will
be the one whose precondition is satisfied.

For a precise definition of the elements that can appear in a
context-adaptive task model, its metamodel can be found in
[13].

Coloured Petri Nets (CPN)
Coloured Petri Nets (CPN) [4] provide model checking ca-
pabilities such as state-space analysis, with emphasis on ver-
ifying behavioural and structural properties. CPN provide a
high level of expressiveness; in this section, we focus on ex-
plaining the constructs needed for translating task models. As
a simple example, Figure 2 shows a CP net that represents
the behaviour of a light-dimming switch. As it can be seen
in the figure, a CP net is a directed bipartite graph in which
the nodes consist of: transitions (i.e. actions that may occur,
represented by bars or a square), such as ”increase” and ”de-
crease”; and places (i.e. states, represented by circles), such
as ”Light Off”, ”Ligth On”. Each directed arc (represented by
arrows) connects either a place to a transition or a transition
to a place.

Each place contains a set of markers called tokens, such as
the marker ”0” of the ”Light Off” place. Each of these to-
kens carries a data value that can be modified by the occur-
ring transitions. Each data value belongs to a given data type,
which is called color; e.g., the token colours of the figure are
INT, which stands for the integer type. An arc can have an
expression, which is used to describe how the tokens change
when the transitions occur. In the example CP net, the transi-
tion ”switch on” moves the INT token’s initial value 0, to the
”Light on” place, increasing the brightness to 10.

A transition can occur if and only if its input places (i.e.,
each place having an arrow from it to the transition) have suf-
ficient tokens, and these tokens match the arc expressions’
colour set. For instance, at the beginning of the execution,
only the transition ”switch on” can occur, since only the place
”Lights Off” contains a token. Also, transitions can have
guard conditions (indicated between brackets next to the tran-
sition square) which must be satisfied to be able to fire the
transition, such as the guard of ”decrease” ([brightness >
0]), which prevents that brightness can be a negative number.
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Table 1. Tasks and context data mappings from CATM to CPN
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Table 2. Refinements’ mappings from CATM to CPN

When a transition occurs, exactly one token that matches the
arc expression is moved from the input places to the output
places (i.e., each place to which there is an arrow from the
transition). If no transition can occur, then the net is said to
be dead.

In CPN, time delays can also be specified to describe delays
(indicated by @+t next to the transition square, where t is the
delayed time), e.g., the ”increase” and ”decrease” transitions
have a delay of 1 unit.

MAPPING CATM ONTO CPN
Tables 1-4 show the mappings each CATM construct to its
corresponding constructs of CPN. Figure 3 shows the CP Nets
that represent the three most complex routines of the running
example created by applying these mappings. There routines
cover the application of all the mappings.

As it can be observed in Table 1, each Root task is mapped
to a place (shown in blue in Figure 3) connected to a tran-
sition with a guard; system tasks are mapped to transitions;
composite tasks can be omitted or transformed to a subpage
transition (the last option is recommended when there are
more than two subtasks in the refinement in order to avoid
the excessive growing of the resulting CP net); and context
preconditions are mapped to guards. In addition, each con-
text property is represented in CPN as a place with a to-
ken that has the initial value of the property. This idea is
based on [6], which uses Petri nets to model pervasive be-
haviour. Thus, each transition that reads or modifies a con-
text property must have an input and output arc from and
to the place that represents that property. For instance, the

transition ”lock door” in the ”User Left” routine has as guard
UserLocation <> ”Home” and therefore is linked with the
place ”UserLocation” (see Figure 3).

Table 2 shows the mappings to transformed refinements. As
it can be seen in the table, the temporal refinement is normally
omitted, unless the upper task T is the Root taks, in this case,
the refinement is mapped like T was related by an enable-
ment temporal relationship to the first subtask. The exclusive
refinement is mapped to a CPN OR-split: a place related to
several transitions where the token can go to only one of the
transitions according to their guards. An example of exclu-
sive refinement can be seen in the CP Net of the ”Time to
Wake up” routine (see specifically tasks ”switch on bedroom
lights” and ”raise bedroom shutters” followed by the place
”P17”).

Table 3 shows the mappings to transform temporal relation-
ships. They are generally mapped to places that connect the
transitions (i.e., the tasks linked by the relationships) between
each other. Each temporal relationship has its own mapping
in order to appropriately reflect their different behaviour in
CPN. For instance, the result of applying the Parallel relation-
ship mapping can be seen in the ”Intruder Security” routine
shown in Figure 3: when an intruder is detected (see guard of
T1), the token is place in 4 different places (P4-P7) enabling
the 4 activities that must be performed.

Finally, Table 4 shows the mappings for the comparative and
Union operators, which are straightforward.

For simulation and model checking purposes, after applying
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Table 3. Temporal Relationships’ mappings from CATM to CPN

Table 4. Comparative and Union Operators mappings from CATM to CPN

16



P] Pp

Pw P=

P@

P+

PW

PC

PM

PE

Pw]

Pww

Pwp

Pw=

Pw@

ING

mey@ E

HomeSecurity

STRING

e

HomeLights

BOOL

w false

HomeHeating

BOOL

w`true

Pw+

Timemto
Wakemup

w

PwW

PwC
CurrentTime

TIME

w`=]W]

OutsideBrightness

STRING

w`yhighy

PwM

PwE Pp] PpwPwMb

lockmdoor

y]

Switch
lightsmoff

Switchmoff
heating activate

security

Tw

y=yactivatedyk
]

activate
alarm

notify
police

switchmon
lights

start
recording

Tp

[HomeSecurity=ydeactivatedy]

alarm
off

stop
recording

switchmoff
lights

T=

[CurrentTime==]W]]

turnmon
themradio

switchmon
bedroom
lights

[OutsideBrightness=ylowy]

raise
bedroom
shutters

[OutsideBrightness
=yhighy]

measuremhealth
parameters

calculate
medicinemdose

reminderb
takemmedicines

serLocation

HomeLights

false

HomeHeating

HomeHeating=false

HomeSecurity HomeSecurity

HomePresence

e

HomeSecurity

HomeSecurity
true

HomeLights
HomeSecurity

false

yactivatedy

HomeSecurity

HomeLights

HomeSecurity

HomeSecurity

CurrentTime
CurrentTime

OutsideBrightness

OutsideBrightness

OutsideBrightness

OutsideBrightness

@ +

@ +

P] Pp

Pw P=

P@

P+

PW

PC

PM

PE

Pw]

Pww

Pwp

Pw=

Pw@

UserLocation

STRING

w`yHomey

HomeSecurity

STRING

w`ydeactivatedy

HomePresence

BOOL

w`true

HomeLights

BOOL

w`false

UsermLeft

w

Intruder
Security

w Pw+

lockmdoor

[UserLocation:>yHomey]

Switch
lightsmoff

Switchmoff
heating

activate
security

activate
alarm

notify
police

switchmon
lights

start
recording

Tp

[HomeSecurity=
ydeactivatedy]

alarm
off

stop
recording

switchmoff
lights

UserLocation

UserLocation
HomeLights

false

HomeSecurity

HomeSecurity

HomePresence

HomePresence

HomeSecurity

HomeSecurity

true HomeLights

HomeSecurity

false

yactivatedyHomeSecurity

HomeLights

HomeSecurity

[HomeSecurity= ¨activated¨,

HomePresence=true]

Figure 3. CP Nets that represent the ”Time to Wake up”, ”User Left”, and ”Intruder security” routines of the running use case
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the presented mappings, a transition is created and linked to
each place that represents a context property whose value
must change in the simulation. For instance, at the begin-
ning of the simulation, the user location is ”Home”; however,
to be able to simulate the intruder routine, the user location
must change. As shown in Figure , this is simulated by creat-
ing a transition ”User Leaving” that changes the value of the
property ”UserLocation” to ”Out” after certain delay.

CONCLUSION, DISCUSSION AND FUTURE WORK
In this work we have presented an approach to enable, at de-
sign time, the checking of the correctness of pervasive be-
haviour. Specifically, the paper proposes a set of mappings
to transform the pervasive behaviour designed in task models
onto CP Nets. This enables the use of simulation and check-
ing techniques provided by CPN. For instance, by mapping
the running use case to their corresponding CP Nets using the
described mappings, we have been able to run several simu-
lations to check the behaviour of the routines in different con-
texts. Also, we have been able to run a state space analysis to
verify the correctness of the designed routines. For instance,
we have validated with this analysis that the described rou-
tines do not create any loop and that all the described tasks
can be executed. Also, we checked if several states were
reachable, such as the state were all the appliances are off
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when the user is not at home. We this checking we realized
that the radio stays on when the user leaves, which is an un-
desired behaviour.

Thus, this work enables the creation of pervasive systems us-
ing intuitive task models, while ensuring, at the same time, a
safe interaction with their users.

However, the proposed approach still presents some issues
that will be addressed as future work. For instance, the cur-
rent CPN notation has several limitations regarding the rep-
resentation of context data. While in CATM data is stored
and managed in ontologies [13], which provide a high level
of expressiveness for data representation; in CPN, the data
is internally represented and is strictly local with respect to
any transition [2]. Therefore, to be able to use certain context
data in a CP net, it needs to be passed across the net until is
used. Moreover, if any context data is instantiated in a CP
net and it is needed in other CP nets, an explicit link needs
to be created between the two CP nets to be able to pass the
data. To deal with this problem, we have used the approach
presented in [7], in which each context property is specified
using a place that is connected to all the transitions where the
property is required or modified (see Figure 3). However, this
solution introduces more complex and bigger models that are
more difficult to understand and maintain. To improve this
solution, we plan to extend the presented mappings to map
context-adaptive task models to the context-adaptive Petri net
formalism presented in [10], which represents and manages
the data using ontologies.

Furthermore, as future work we plan to implement a plugin
that automates the presented mappings and, taking as input
any set of CATMs, generates the equivalent context-adaptive
Petri nets.
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