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ABSTRACT 

In biological research machine learning algorithms are 
part of nearly every analytical process. They are used to 
identify new insights into biological phenomena, 
interpret data, provide molecular diagnosis for diseases 
and develop personalized medicine that will enable 
future treatments of diseases. In this paper we (1) 
illustrate the importance of machine learning in the 
analysis of large scale sequencing data, (2) present an 
illustrative standardized workflow of the analysis 
process, (3) perform a Differential Expression (DE) 
analysis of a publicly available RNA sequencing (RNA-
Seq) data set to demonstrate the capabilities of various 
algorithms at each step of the workflow, and (4) show a 
machine learning solution in  improving the computing 
time, storage requirements, and minimize utilization of 
computer memory in analyses of RNA-Seq datasets. 
The source code of the analysis pipeline and associated 
scripts are presented in the paper appendix to allow 
replication of experiments.  
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 INTRODUCTION  

Every living cell’s genome is encoded in DNA 
(Deoxyribonucleic Acid) – a long sequence of nucleic 
acids, also called nucleotides, encoded in four letters: 
adenine, thymine, cytosine, and, guanine, abbreviated as 
A, T, C and G respectively. DNA provides recipes for 
making all active molecules in the cell, such as RNA 
(Ribonucleic Acid) and proteins [1, 2]. In RNA T is 
replaced by uracil (U) and proteins are made of twenty 
amino acids. 

Information stored in the DNA is transcribed into RNA 
some of which are further translated into proteins, which 
are the main workhorses of the cell. These three steps 
are also referred to as genome, transcriptome and 
proteome, which make up multidimensional data.  
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Currently genome and transcriptome are analysed via 
Next Generation Sequencing (NGS). Sequencing is the 
process of transforming molecular information into a 
digital format. NGS allows sequencing the entire 
genome, specific regions of the genome, as well as 
epigenetic modifications of the genome (e.g. Methyl-C-
seq, ChIP-seq) [3-6].  

Sequencing RNA provides a snapshot of cellular gene 
expression, which is compared among various treatment 
groups or disease states to identify differentially 
expressed genes. RNA sequencing (RNA-Seq) reveals 
the order of the four nucleotides in short segments [7, 8]. 
These short segments are called reads and are stitched 
together algorithmically into a large genome sequence 
computationally [4, 6, 9]. There are two ways to 
sequence DNA/RNA fragments using single-end or 
paired-end sequencing. In single end sequencing 
DNA/RNA fragment is sequenced from one end only, 
whereas in pair-end sequencing fragment is sequenced 
from two opposing ends producing two reads per 
fragment. 

NGS generates vast amounts of data, usually hundreds 
of gigabytes [5], commonly referred to as Big Data, and 
as researchers we aim to transform into Cognitive Big 
Data [10, 11] or other practical use cases as e.g [58] or 
[59]. Therefore automatic machine learning plays a 
crucial role in handling, interpreting, learning and 
visualising the big NGS datasets to produce easily 
understandable knowledge base. 

Here we illustrate the importance of machine learning 
algorithms in analyzing big data and provide a specific 
example of analysis pipeline (also referred to as 
workflow) of NGS data. Our analysis pipeline consist of 
a standardised modular workflow where some modules 
are taken from the pipeline proposed by  Partea et al. 
[12]. 

Within the scope of this paper, we show the utility of 
machine learning algorithms in identifying genes that 
are different among various conditions. We use two 
publicly accessible mouse RNA-Seq data sets available 
from the NCBI GEO database accession NCBI GEO 
database under the accession number GSE56933 [13] 
and under the accession number GSE60450 [14].  

a. Research Goals 

Here we provide a detailed review of the algorithms 
most widely used in RNA-Seq DE analysis. We 
showcase the necessity and requirements for each step 
in the analysis pipeline and deliver the minimal required 
knowledge about RNA-Seq DE analysis.  

We show:   

 practical impossibility of analysing  NGS data 
without the use of computer algorithms 

 standardized workflow of DE analysis 
 utilization of publicly available data for 

analysis and new algorithm development 

To achieve our goal, we first describe several potential 
pipelines. Next, we evaluate and selected software and 
last, we perform an illustrative performance analysis 
which can be used as a learning example.  

 TOOLS FOR TRANSCRIPTOMIC DATA  

ANALYSIS 

Transcriptome studies using RNA-Seq reveal 
quantitative information about transcripts, which are 
fragments of RNA. Transcripts, in turn, show variation 
in patterns of gene expression at specific developmental 
time points, in various treatment conditions [9, 15-17]. 
As such, the most common goal in RNA-Seq analysis is 
finding differentially expressed genes across different 
conditions.  

 

Figure 1. Data analysis workflow, software, algorithms. 

A standard RNA-Seq workflow can be divided into the 
following steps: 

1. Design of experiment: determine the biological 
question to study and estimate the sample size 
necessary to identify new knowledge with 
statistical significance 

2. Perform the biological experiment using cells 
or animal models under different treatment 
conditions or genetic alterations  

3. Obtain sequencing data [7] 
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4. Preprocess data: perform quality control, 
adapter trimming, and alignment 

5. Analyze data: identify coverage at gene- or 
transcript- expression level, normalize, find 
which genes behave differently across 
conditions, visualize results, and validate 
results if needed 

Our differentially expression analyses example is 
outlined in Figure 1. It includes quality control, adapter 

trimming, alignment, and differential expression. The 
tools we suggest to use are FastQC [18] (quality 
control), cutadapt [19] (adapter trimming), HISAT2 
(alignment) [20], DESeq2 [21] R package (DE). There 
are alternative methods to perform most of the steps.    

To understand the performance of the applied tools, we 
conducted a performance analysis such as algorithm 
execution time, memory (RAM) and CPU usage.

 

Table 1. Representation of tools that can be used for RNA-Seq data analysis. 

 

 PIPELINE SETUP  

a. Data Description  

We downloaded the GSE60450 [14] dataset from the 
Gene Expression Omnibus (GEO). These data is of gene 
expression changes in luminal and basal mammary 
glands of non-pregnant, pregnant and lactating mice was 
run on the Illumina HiSeq 2000 platform.  Sequenced 
total RNA from the samples generated single-end reads 
of 100 base pairs (bp) in length.  

The second GSE56933 [13], RNA-Seq dataset was 
extracted from the heart and liver tissues of 10-weeks 
old male mice and ran on the Illumina Genome Analyzer 
IIx. The resulting reads are single-end of 75 bp in length 
and contain adapter sequences. These data are selected 
to exemplify the necessity of adapter trimming 
algorithms that remove adapter sequences before the 
data is aligned to a reference genome. Since adapter 
sequences are not present in organism’s genome reads 
that contain sequences will fail to correctly align to the 
genome. 

In both datasets raw sequence information was saved in 
FASTQ file format. FASTQ file format is text-based 
with four lines of the file describing one read/sequence 
at a time. The first line is a sequence identifier, the 
second, is the sequence itself, the third line is no longer 
used for sequence identification and contains a +, and 
forth line contains sequence quality information [29]. 

b. Quality Control 

Quality control is performed on the raw data to detect 
low quality bases, duplicates, PCR primers, or adapters 
in the reads. FastQC [18], an open-source software  is 
widely used to investigate: (1) per base sequence 
quality, (2) per sequence quality scores, (3)  per base 
sequence content, (4) per base GC content, (5)  per base 
N content, (6) sequence length distribution, (7) 
duplication level, (8) overrepresented sequences, (9) 
adapter content, (10) kmer content, and (11) per tile 
sequence quality [18]. The quality summary provides 
information on possible artifacts in the raw data that can 
affect the next steps of the RNA-Seq analysis. The 
adapter content section of the FastQC report gives 
information about the adapter sequence observed in the 
data. Additionally, the overrepresented sequences 

  Task Tools Algorithm Ref 
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Adapter 
trimming; poor 
quality bases 
elimination 

Cutadapt Semiglobal alignments [19] 
FASTX-Toolkit - [22] 

Trimmomatic 
Seed and extend followed by palindrome mode 
approach 

[23] 

BBDuk - [24] 

A
li

gn
m

en
t 

Alignment of 
reads to the 
reference genome 

BWA Burrows-Wheeler transform [25] 
Bowtie 2 Burrows-Wheeler transform [26] 

HISAT2 Karkkainen's blockwise algorithm [20] 

A
n
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ys

is
 

D
if
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l 
E

xp
re

ss
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n 

Identify 
differentially 
expressed genes 

Deseq2 (R) Negative binomial generalized linear models [21] 
edgeR (R) Negative binomial generalized linear models [27] 

Ballgown (R) 
Standard linear model-based comparison statistical 
test 

[28] 
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section of the FastQC report sometimes, but not always, 
gives more specific information of the possible adapter 
source. For example, Figure 2A shows a list of 
overrepresented sequences found in GSE56933 dataset, 

and indicates presence of the TruSeq adapter. The 
pattern of the adapter can be found in the Illumina 
adapter catalogue and should always be provided by the 
authors [30].  

 

 

Figure 2. FastQC HTML report overview of overrepresented sequences before (A) and after (B) trimming [18].  

 

c. Adapter Trimming 

Once the presence of adapters is identified, the next step 
is to remove/trim those adapters prior to read alignment 
to a reference genome.  

To perform adapter trimming we used one of the 
commonly used trimming tools, cutadapt [19]. Cutadapt 
can remove adapters an error-tolerant way, which means 
that it will trim adapters even if errors were introduced 
during the sequencing. The adapter sequence can be 
fully or partially present in the read.  

Cutadapt uses unit costs function to consider 
mismatches (a single nucleotide base substitution), 
insertions (one or more base pair are added to the 
sequence), or deletions (one or more base pairs are lost 
in the sequence) as a single error score. The best mapped 
sequences are those that have an overlap score 
maximized but are below the selected threshold error 
rate.  If after passing this condition there are multiple 
options of mapped sequences, the mapping with the 
smallest error rate is selected. However, if by passing 
this condition there are still more than one mapped 
sequences, then the mapping of the adapter sequence to 
the most left position on the read is selected as the best 
match [19]. To validate that all adapters have been 
trimmed we run FastQC software on adapter trimmed 
data. Figure 2B shows a list of overrepresented 

sequences after trimming with cutadapt. Table 1 
contains a list of adapter trimming software. 

d. Alignment 

The next step in the analysis pipeline is read alignment. 
For organisms for which genome sequence (reference 
genome) is available the reads are aligned to that 
organism’s reference genome.  For organisms without 
genome reference genome de novo assembly is required 
(de novo assembly is beyond the scope of this 
manuscript).  

Although there are many programs that can perform  
sequence alignment not all of them are appropriate for 
NGS data, such as BLAST [31] and BLAT [32], as these 
tools were developed for low volume datasets.  

Table 1 contains a list of aligners suitable for NGS 
sequencing data. The main goal of the alignment process 
is to correctly align and assemble a large number of short 
reads to a reference genome, which is a time consuming 
process, requires temporary disk storage, and intensive 
CPU usage. Majority of currently available alignment 
tools use algorithms that can be categorized into two 
groups: (1) based on hash tables and (2) based on suffix 
tree [33]. 

The hash table algorithm stores reads of the data in an 
array that can be retrieved with an index, where similar 
values are stored at the same location under the same 

A. Overrepresented sequences before adapter trimming
Sequence Count Percentage Possible  Source

GATCGGAAGAGCACACGTCTGAACTCCAGTCACGAGTGGATATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAA 673591 2.695638929 TruSeq Adapter, Index 7 (97% over 36bp)

AGATCGGAAGAGCACACGTCTGAACTCCAGTCACGAGTGGATATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAA 394423 1.578438538 TruSeq Adapter, Index 7 (97% over 36bp)

GATCGGAAGAGCACACGTCTGAACTCCAGTCACGAGTGGATATCTCGTATGCCGTCTTCTGCTTGAAAAAAAACA 96534 0.386318713 TruSeq Adapter, Index 7 (97% over 36bp)

GATCGGAAGAGCACACGTCTGAACTCCAGTCACGAGTGGATATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAC 78364 0.313604322 TruSeq Adapter, Index 7 (97% over 36bp)

GATCGGAAGAGCACACGTCTGAACTCCAGTCACGAGTGGATATCTCGTATGCCGTCTTCTGCTTGAAAAAAACAA 60850 0.243515173 TruSeq Adapter, Index 7 (97% over 36bp)

AGATCGGAAGAGCACACGTCTGAACTCCAGTCACGAGTGGATATCTCGTATGCCGTCTTCTGCTTGAAAAAAACA 42623 0.170572674 TruSeq Adapter, Index 7 (97% over 36bp)

AGATCGGAAGAGCACACGTCTGAACTCCAGTCACGAGTGGATATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAC 37795 0.151251536 TruSeq Adapter, Index 7 (97% over 36bp)

GATCGGAAGAGCACACGTCTGAACTCCAGTCACGAGTGGATATCTCGTATGCCGTCTTCTGCTTGAAAAAAAATA 31804 0.127276197 TruSeq Adapter, Index 7 (97% over 36bp)

GATCGGAAGAGCACACGTCTGAACTCCAGTCACGAGTGGATATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAGA 27342 0.109419751 TruSeq Adapter, Index 7 (97% over 36bp)

GATCGGAAGAGCACACGTCTGAACTCCAGTCACGAGTGGATATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAG 26938 0.107802987 TruSeq Adapter, Index 7 (97% over 36bp)

GATCGGAAGAGCACACGTCTGAACTCCAGTCACGAGTGGATATCTCGTATGCCGTCTTCTGCTTGAAAAAAAAAT 26640 0.106610422 TruSeq Adapter, Index 7 (97% over 36bp)

B. Overrepresented sequences after adapter trimming
Sequence Count Percentage Possible  Source

2017092 8.072185821 No Hit
A 934711 3.74061316 No Hit
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index. On the other hand, the suffix array keeps the 
suffixes of the data values in a tree-like manner, where 
identical copies of reads’ suffixes are stored at the same 
path. Both approaches attempt to minimize execution 
time.          

When selecting an algorithm to process the data one has 
to consider the following factors: (1) reference genome 
size, for example, human genome consists of 
approximately of three billion bp [34], which comes at a 
cost of time and space for its alignment as compared to 
a shorter genome, (2) the length of the individual read 
can range from 25 to 500 bp and the length affects the 
accuracy and speed of the alignment. The longer reads 
will take longer to align.  

In our example we utilize Hierarchical Indexing for 
Spliced Aligner (HISAT2)[16] that uses the block-wise 
algorithm of Karkkainen in combination with the 
Burrows-Wheeler Transformation (BWT) and 
Ferragina and Manzinin (FM) index, data 
transformation and compression algorithms respectively 
[35-37]. HISAT2 [16, 20] can be used to align genes that 
have annotated splice sites, unlike Bowtie 2 [26], which 
is splice-unaware aligner. Figure 3 depicts the need for 
splice-aware alignment in higher level organisms.  

 

Figure 3. Alternative splicing. One gene with three 
introns is transcribed into two different mRNAs, 

one containing all three introns (mRNA1), and the 
second (mRNA2) with the second intron spliced out. 

The BWT is a compression algorithm and suffix array 
(SA) is lexicographically sorted array that when 
combined create space-efficient index or the FM-Index,  
which uses a prefix as a search pattern [36]. Storage 
space requirements of SA can be reduced to small blocks 
that is the approach of Karkkainen’s algorithm [37]. A 
detailed explanation of the BWT and FM-indexes is 
described in Langmead’s tutorial (“Introduction to the 
Burrows-Wheeler Transform and FM Index” Langmead 
2013) and the block-wise algorithm is thoroughly 
explained in [37].  

The output of the alignment software is a SAM format 
file which is a tab delimited file that contains the 

alignment information, for example, a read sequence 
that mapped to a genome, quality score of the alignment, 
genome mapping position (coordinate) [38]. The SAM 
files are large human readable text files , which require 
a lot of storage space, therefore they are commonly 
converted to a binary BAM format [38]. BAM files are 
accompanied by index files with extension bai to speed 
up access time.  

All aligners will produce a short summary of the 
alignment such as a number of raw reads and the number 
of aligned reads. If the number of aligned reads is 
satisfactory, which is generally anywhere above 70% of 
raw reads, next step is to visualise the aligned reads. 
Genome browser such as  Integrative Genomics Viewer 
(IGV) [39] or UCSC genome browser [40] are some of 
the best ways of confirming correct alignment. 

IGV is a freely available Java based visualization 
platform that is run locally on a computer, and enables 
to explore fragments that are mapped to the reference 
genome. IGV interface enables one to perform wide 
range of tasks, such as zooming in to the region of 
chromosome/gene of interest with good resolution, 
coloring, or sorting [39]. Due to the need of installation 
on a local PC performance of IGV is faster than web-
based genome browsers (such as the UCSC genome 
browser). IGV is a quick way to visualize the data, 
whereas researchers use UCSC browser to produce 
publication qualities images. UCSC browser allows for 
easy data sharing among multiple collaborators.   

Figure 4 illustrates read coverage (raw counts) for the 
EGF gene that provides a general overview of the depth 
of sequencing coverage. Visualization of the entire 
genome coverage provides limited information due to 
data being highly condensed; zooming in at the level of 
a region or gene of interest will provide sufficient detail 
about the coverage.  

e. Differential Expression 

DE analysis investigates differences in RNA levels 
among various samples as readout of gene expression 
changes. In general, DE analysis takes aligned raw 
counts, subjects them to normalization to improve 
comparability across samples prior to estimating 
statistical significance of the gene expression change.  

Several R packages exist that analyze RNA-Seq data for 
detecting differentially expressed genes across various 
conditions. The most popular are edgeR [26], DESeq2 
[21] and Ballgown [16, 27]. While DESeq2 
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                               Figure 4.  Coverage representation of aligned reads.  IGV snapshot of EGF gene. 

 

[21] and edgeR [26] are used for DE analysis based on 
gene annotations and are similar in performance, 
Ballgown [16, 27] is capable of analyzing both gene and 
transcript annotations. Both edgeR and DESeq2 
packages take raw counts as input data [40]. Ballgown 
requires transcript assembly with StringTie to be 
performed, which stores results in ctab format as gene-, 
transcript-, exon- and junction-level expression 
measurements. All methods perform count 
normalization to the total number of reads (library size) 
to produce abundance estimates [16, 21, 26, 27].    

Statistical analysis 

Both DESeq2 and edgeR require at least three samples 
per treatment group, whereas it is suggested to use 
Ballgown with four or more replicates due to the 
linearity in the model-based analysis [16]. We chose to 
perform DE analysis of annotated genes without the 
need to identify novel isoforms. For this reason and the 
availability of three biological samples per variable the 
most suitable package for DE in our example was 
DESeq2. The raw counts matrix was extracted with the 
provided python script 
(http://ccb.jhu.edu/software/stringtie/dl/prepDE.py) and 
supplied and analyzed with DESeq2 [21] (Appendix). 
The choice of DESeq2 enabled us to do the analysis 
quickly, exemplifying that the choice of the program and 

algorithms can cater to the needs of the biological 
question and sample availability. 

Visualization 

Visualization is an important step in data analysis that 
allows for ease of data interpretation. There are many 
possible ways of presenting the results of expression 
data such as MA-plot, volcano plot, counts plot, or 
heatmap among others.  Clustering Image Map (CIM) 
visualized as a heatmap shows differences and 
similarities across various conditions. Figure 4 shows 
the most differentially expressed genes of EGF receptor 
family. 

Heatmap is a two-dimensional display of numbers as 
colors. Heatmap has rows that indicate genes, and 
columns that show different conditions or samples. 
Figure  illustrates a heatmap of 11 pre-selected 
significantly expressed genes of EGF receptor family 
under three conditions (virgin vs pregnant vs lactation) 
for two cell types (luminal vs basal). The color key 
scheme (top left) shows the association of the numeric 
values to the color scheme. Here lowly expressed genes 
are shown in blue, and highly expressed genes are 
shown in red. 

Most heatmap functions can perform hierarchical 
clustering of genes and samples, which are shown as a 
dendrogram on the left and top of the plot in Figure 5. 
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Here rows/genes that have similar gene expression 
patterns are grouped together, and in columns luminal 
and basal cells represent two separate clusters.  
Moreover, the pregnant and virgin conditions show 
similar pattern in gene expression as compared to 
lactation condition for luminal cell type. The fact that 

 

Figure 5.  DESeq2 resulting table for EGF receptor 
family (top panel) and heatmap of the most differentially 
expressed genes of EGF receptor family (bottom panel).                                      
*Note: only three digits are shown after decimal point.  

two replicates for each cell type/condition cluster 
together confirms good quality of our example data. 
Heatmaps allow one to employ different algorithms to 
clustering the data, which will effect the dendogram.  

 PRESENTATION AND PERFORMANCE 

ANALYSIS 

Within this section, we describe a method for 
conducting a performance analysis for the standard DE 
analysis for RNA-Seq data. Table 2 illustrates the most 
popular tools in the domain, including the software 
versions that we have been applying as part of our DE 
analysis. 

To evaluate the performance of the applied software 
tools, we utilized the performance counter tool (perf) 
[41]. Perf is a Linux based command line utility that 
provides performance information of the operating 
system, applications and hardware. Perf stat function is 
an excellent choice for software that can provide 
performance analysis.  

Table 2. Software Tools Applied for a DE Analysis 

Software Tool Version Ref 
FastQC v0.11.5 [18]
Cutadapt v1.10 [19]
HISAT2 v2.0.4 [20]
DESeq2 (R) v3.3.2 [21]
Perf (Linux) v4.9.rc8.g810ac7b7 [41]

Table 3 illustrates performance parameters for FastQC, 
cutadapt, HISAT2 as Instructions per Cycle (IPC), 
where results are represented as software and hardware 
related events. The task-clock, context-switches, cpu-
migrations, page-faults are software related events, and 
the cycles, instructions are related to the hardware 
events. The task-clock shows the amount of time spend 
on the task. However, if there is parallel computing 
involved (for example, threads option in HISAT2) this 
number has to be devised on the CPUs involved. 
Context switch explains how many times the software 
switched of the CPU from one process/thread to another. 
CPU migration describes equality in a work load 
distribution across all cores. Finally, the page-faults 
occur when a program’s virtual content have to be 
copied to the physical memory.   

Our initial tests show, that HISAT2 (without threads 
option) is one of the most time-consuming steps (~25 
min) in the analysis process, with the highest CPU usage 
(1.047 CPUs utilized). This can be explained due to the 
nature of the alignment process, where enormous 
amount of reads are required to be mapped the reference 
genome. Although HISAT2 utilizes Karkkainen’s 
algorithm, which is time and space efficient, volume of 
the data that is required to be mapped to the reference 
genome is enormous and takes time to execute. One of 
the solutions to this problem is to apply threads (-p) 
option that enables to process the data in a parallel. We 
run HISTA2 with 18 threads which reduced the run time 
to 5 minutes. The number of cycles, which are an 
indicator for the number of instructions performed by 
software to produce final result is the highest for 
HISAT2 with thread parameter (~2.791 GHz), as 
expected, due to the fact that multiple parallel processes 
were executed.   
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Table 3. Perf Software Performance Analysis on the Example of FastQC, cutadapt, and HISAT2 utilizing the 
(SRR1552444) Data Set. Data is presented in Instructions per Cycle (IPC) 

Performance 
Parameter 

FastQC Cutadapt HISAT2 
HISAT2 with 
thread –p 18 

Measured 

Software Events 

task-clock     
3.8 (min) / 

1.021 CPUs 
utilized 

5.6 (min) / 
0.995 CPUs 

utilized

25.9 (min) / 
1.047 CPUs 

utilized

70.28 (min) / 
14.534 CPUs 

utilized
 

context-switches    0.094 0.002 0.752 4e-6 K/sec                  
cpu-migrations             0.006 0.000 0.001 0.011 K/sec                  
page-faults                0.302 0.019 3.6e-5 1.3e-5 K/sec                  

Hardware Events 

cycles                   2.925 2.976 2.959 2.791 GHz 
Total number of cycles     6.70122e+11 1.00997e+12 4.61275e+12 1.17684e+13                  
instructions               1.14 1.27 0.91 0.48 insn per cycle   

Total Run Time 

 3.7 5.7 24.8 4.8 minutes 

6. CONCLUSIONS AND DISCUSSION  

Within the scope of this paper we contributed with: 

 evaluation of machine learning algorithms 
utilized for differential expression analysis of 
RNA-Seq data 

 an example pipeline, which can be used to 
perform DE analysis (Figure 1) 

 source code of a script-based pipeline  

a. Advantages of Applying Machine Learning 

The application of machine learning helps to analyze 
large volumes of data without loading it into the 
computer memory. The initial size of the 
SRR1552444.sra sample (GEO GSE60450 [14]) was 
9.7 GB was narrowed to 1.1 MB of meaningful data, in 
other words we identified 7170 of significantly 
expressed genes with only 15 minutes software run time.  

b. Source Code of the Script Based Workflow 

Appendix A contains the source code and a practical 
guideline for people interested in conducting a similar 
kind of analysis. We provided and evaluated a script 
workflow of an analysis process to allow others 
repeating the experiment.  

c. Generic Reference Pipeline and Workflow 

To conduct the analysis, we applied publicly available 
datasets with the accession number GSE56933 [13]; and 
accession number GSE60450 [14] to describe the 
performance of software used in DE analysis of limited 
(up to three samples) number of samples. 

 

The analysis process contains four steps:  

 quality control  
 adapter trimming  
 alignment 
 differential expression analysis 

This is a standard workflow for DE analysis and will 
only vary due to selection of various algorithms for each 
step. For example, adapter trimming step may be 
omitted if the data has been already preprocessed in the 
past and was downloaded from GEO.  

Here we show how to obtain data from publically 
accessible repositories can be used for analyses. One can 
also use such data to develop novel algorithms that can 
be benchmarked against existing ones without the need 
to produce more sequencing data. Algorithms described 
here provide efficient processing of big data but further 
improvements in speed, disk and RAM utilization are 
necessary to deal with larger and larger datasets. 

d. Final Remarks 

Big data coming from various omics platforms will only 
increase in size in the near future thus increasing the 
requirements for high performance analysis to gain 
understanding of the data.  To process, visualize, and 
understand such omics big data we must apply machine 
learning algorithms. Interestingly, and depending on the 
complexity of the task, multiple algorithms are utilized 
and parametrized to improve performance. Within this 
paper, we gave an overview several widely used analysis 

18



algorithms for NGS data, and indicated steps that assist 
in the analysis process. 

Future work and development will require improved 
machine learning algorithms such as deep learning on 
distributed systems [42, 43]. In addition porting existing 
statistical methods from other omics platforms [44-48] 
as well as developing new ones [16, 28, 49] specific to 
NGS is necessary and will provide greater statistical 
certainty in the results.  

In biomedical sciences, however, automatic machine 
learning approaches may suffer from insufficient 
number of training samples as a result of limited number 
of biological data sets, and in this instance interactive 
Machine Learning (iML) may be particularly useful [50, 
51]. A grand challenge is to provide integrative machine 
learning approaches, i.e. the optimization of workflows 
and processes that are in-line with the main workflow of 
biomedical researchers, thereby increasing their 
capacity whilst reducing costs and improving efficiency 
[52, 53]. In this context usability gets a new meaning 
and an increasing importance, as experimental scientists 
often have limited skills in machine learning generally 
or in algorithms specifically – raising the need for 
multidisciplinary training the next generation of 
researchers in biology, bioinformatics and statistics 
[54].  

Finally, bioinformatics software needs to be user-
friendly and be accompanied by a comprehensive user 
manual. User-friendly, well documented software we 
provide to biologists will ease the discovery process in 
biological sciences to improve our understanding of 
diseases [55, 56] and transform our medical system into 
truly personalized medicine [57]. 
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APPENDIX: SOURCE CODE AND SCRIPTS TO CONDUCT A SIMILAR KIND OF ANALYSIS 

Herein we describe step by step procedure used to achieve final results of the DE analysis to make the analysis process 
available to others. The Unix shell is used to run majority of commands of described protocol, Python, and R.  One 
sample is taken to show how to use these tools. We tried to present each step in a very precise way by avoiding one 
line complex commands 

ANALYSIS PROCESS GUIDELINES FOR SOFTWARE INSTALLATION 
 
NCBI SRA Toolkit: 
https://trace.ncbi.nlm.nih.gov/Traces/sra/sra.cgi?cmd=show&f=software&m=software&s=software 
FastQC:  http://www.bioinformatics.babraham.ac.uk/projects/fastqc/ 
Catadapt:  http://cutadapt.readthedocs.io/en/stable/installation.html 
HISAT2:  https://ccb.jhu.edu/software/hisat2/manual.shtml 
Samtools:  http://www.htslib.org/download/ 
StringTie: https://ccb.jhu.edu/software/stringtie/#install 
Python (prepDE.py): http://ccb.jhu.edu/software/stringtie/index.shtml?t=manual 
R (Deseq2):  source("https://bioconductor.org/biocLite.R") 

biocLite("DESeq2") 
 

ANALYSIS PROCEDURE 

STEP 1: RAW DATA 

Note: the first two steps are performed for GSE56933 dataset based on one sample (SRR1257444).  

Download sra files. Unix shell is used to download the samples data from NCBI Geo database. The ftp directory of 
each sample should be supplied to wget. The samples will be saved to the directory from which the command is run. 
Run following command to download sample: 

 
$ wget ftp://ftp-trace.ncbi.nlm.nih.gov/sra/sra-
instant/reads/ByExp/sra/SRX/SRX681/SRX681985/SRR1552444/ SRR1552444.sra 
 

The next step is to convert sra to fastq file format. This can be done with sra-toolkit (see software installation 
section):   

$ path_to_sratoolkit/fastq-dump –gzip –split-3 SRR1257444.fastq 

 

STEP 2: QUALITY CONTROL 

Quality control with FastQC: 

$ fastqc -o SRR1257444.fastq.gz 

Unzip file: 
$ gunzip SRR1257444.fastq.gz   
 

 

STEP 3: ADAPTER TRIMMING 
Adapter trimming with cutadapt. Use only the prefix of the adapter sequence (TruSeq Index): 

 
$ cutadapt -a  GATCGGAAGAGCACACGTCTGAACTCCAGTCAC -o SRR1257444.fastq  
adapt_tr_SRR1257444.fastq &> stat_SRR1257444.log 
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STEP 4: ALIGNMENT 
Note: following steps are performed for data set from GSE60450, sample (SRR1552444). Map reads to the mouse 
reference genome: 

$ hisat2 -p 18 --dta -x index/mouse_genome -U SRR1552444.fastq -S 
aligned_SRR1552444.sam &> stat_SRR1552444.log 

Sort and convert the SAM to BAM: 
 
$ samtools sort -@ 18 -o SRR1552444.bam SRR1552444.sam 

 
Generate BAM index file: 

 
$ samtools index SRR1552444.bam 

 
Assemble transcripts.  

 
$ stringtie -p 18 -e -B -G musmusc.gtf -o outfolder/SRR1552444/SRR1552444.gtf -l 
SRR1552444 SRR1552444.bam 

 
Note: Important the outfolder holds all sample output from stringtie. For example, for the next sample the stringtie 
command line looks like: 

 
$ stringtie -p 18 -e -B -G musmusc.gtf -o outfolder/SRR1552445/SRR1552445.gtf -l 
SRR1552445 SRR1552445.bam 

PYTHON 

Follow an alternative differential expression workflow. Download prepDE.py from 
http://ccb.jhu.edu/software/stringtie/index.shtml?t=manual. Note that prepDE.py script aims to extract raw count 
matrixes for gene-level measurements and transcript-level measurements. The goal of this paper is to show 
differentially expression analysis at gene-level, thus we use only gene_level_raw_counts.csv output file. The script 
should be saved to the same directory as the folder that holds stringtie output (same path as outfolder) 

 

STEP 5: DIFFERENTIAL EXPRESSION ANALYSIS 

R 

Load DESeq2  package: 

$ R 
R version 3.3.2 (2016-10-31) 
source("https://bioconductor.org/biocLite.R") 
biocLite("DESeq2") 
library(DESeq2) 
 

Set directory to a file. Load gene-level count matrix:   
 
setwd(“path to gene_level_raw_counts.csv”) 
file_count = read.csv("gene_level_raw_counts.csv",row.names=1)   
countData = as.matrix(file_count)  

 
Create phenotype data ( multi-compariosn): 

 
ctype=factor(c(rep('Luminal',6),rep('Basal',6)))            
condition=factor(c(rep('Virg',2), rep('Pregn',2), rep('Lact',2))) 
coldata <- data.frame(row.names=colnames(countData),ctype,condition)    
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Construct DESeq object: 
 
dds = DESeqDataSetFromMatrix(countData = countData, colData = coldata, design = 
~condition + ctype) 

 
Filter law abundance genes: 

dds = dds[ rowSums(counts(dds))>1,] 
 

 
Differential expression analysis based on the Negative Binomial distribution:  

 
dds = DESeq(dds) 
res = results(dds, contrast=c("ctype","Basal","Luminal")) 

 
Get significantly expressed genes (cut-off < 0.01) 
 

signif = res[res$padj<0.01 & !is.na(res$padj),]    
write.csv(as.data.frame(signif),file="DESeq2_signif_two_group_gene_level_001.csv") 
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