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1. INTRODUCTION 
The problem of transition curves applies to both 

roads and railways. However, it could be seen that 
there is a clear disproportion in the interest of this 
problem. In case of roads there still can be 
observed an effort of searching for new solutions 
in the area (e.g. [1, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 
16, 23, 25, 27, 29, 30, 31, 32, 33, 34, 36, 37, 42, 
43]). In the case of railroads, the situation is 
completely different − the investigations of new 
transition curves are not as numerous, and, what is 
more, the works were worked out relatively long 
time ago  (e.g. [2, 9, 10, 15, 17, 18, 19, 22, 24, 26, 
28, 35, 38, 39, 40, 41]). 

It is obvious that the use of transition curves is 
aimed at ensuring a continuous change of an 
unbalanced side acceleration between vehicular 
road lengths (or railway track sections) of 
diversified curvature, in a way that is advantageous 
for the dynamics of the road – vehicle system 
interactions. Such a requirement concerns all types 
of transition curves. In this situation it might seem 
that there is one defined algorithm of their 
formation, which is common for the whole family 
of curves under consideration. However, all the 

solutions that have been known so far, appear 
independently and use various names (sometimes 
originating from the name of their author).                       
A knowledge of a general method of determining 
transition curve equations would make it possible 
to compare different forms of curves and to 
prepare an assessment of their usefulness for 
practical application. 

As a matter of fact, this problem was to a large 
extent explained 20 years ago, mainly with respect 
to railway lines [24]. It was then that the method of 
identifying unbalanced accelerations, occurring on 
various types of transition curves, was worked out. 
The method was based on a comparative analysis 
of some selected transition curves provided with                
a dynamic model. Acceleration was in it a factor 
exciting transverse vibrations of the vehicle [20]. 
The basic conclusion resulting from the 
considerations given to the subject was to indicate 
the existing relation between the response of the 
system and the class of the exciting function. The 
dynamic effects were smaller (that is more 
advantageous), if the class of the function was 
higher. It appeared that the largest acceleration 
values were definitely connected with a third-order 
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parabola (function class C0), whereas in the case of 
the Bloss curve and the cosinusoid (class C1) they 
were significantly smaller. The smallest values 
were noted on sinusoid (class C2). 

The transition curves are also defined in             
a different way. As regards vehicular roads they 
are often defined by function of angle θ(l) which is 
responsible for changing the direction of the 
longitudinal axis of a vehicle after it has travelled        
a length of a certain arc. The railway engineering 
is, traditionally dominated by the use of curvature  
k(x)  with a rectangular system of coordinates. The 
acceleration values over the length of the transition 
curve result from the curvature distribution. As can 
be expected it is the curvature distribution that 
should form the basis for the identification of the 
transition curves. In general it can be linear or 
nonlinear. 

 
2. METHODOLOGY FOR IDENTIFYING 

TRANSITION CURVES 

2.1. DETERMINATION OF THE 
CURVATURE EQUATIO 

Let us make an attempt at generalizing the 
method presented in the paper [24] with a view to 
applying it also to typical vehicular roads. In the 
curvature distribution k(l) one can make use of                
a similar procedure. The curvature should be 
described by a function of an appropriate class to 
produce a lesser (i.e. more advantageous) dynamic 
effect. 

Function  k(l)  should be sought among the 
differential equation solutions  
 

 𝑘𝑘(𝑚𝑚)(𝑙𝑙) = 𝑓𝑓�𝑙𝑙,𝑘𝑘(𝑙𝑙),𝑘𝑘′(𝑙𝑙), … ,𝑘𝑘(𝑚𝑚−1)(𝑙𝑙)�    (1) 
 
with conditions at first (for  l = 0) and then (for              
l = lk) of the transition curve 
 

𝑘𝑘(𝑖𝑖)(0+) = 0        for         i = 0, 1, 2, ..., n1 

 

                       1
𝑅𝑅

     for     j = 0 
  𝑘𝑘(𝑗𝑗 )(𝑙𝑙𝑘𝑘−) =                            (2) 
                     0     for     j = 1, 2, ..., n2 
 

The order of the differential equation (3) is                       
m = n1 + n2 + 2, and the obtained function  k(l)  is                      
a function of class Cn within the interval 〈0, 𝑙𝑙𝑘𝑘  〉, 
where  𝑛𝑛 = min(𝑛𝑛1,𝑛𝑛2). 

The presented mathematical notation is an 
identification of the shape of the transition curves 

by using differential equations. It describes the 
way to find some solutions satisfying an arbitrary 
number of assumed conditions. The solutions can 
be of entirely different form with respect to the 
given conditions.  

2.2. DETERMINATION OF CARTESIAN 
COORDINATES 

Making use of the transition curves in field 
necessitates the determination of their coordinates 
in terms of the Cartesian system x, y. In order to 
this one should first determine function θ(l) 
 

𝛩𝛩(𝑙𝑙) = ∫𝑘𝑘(𝑙𝑙)𝑑𝑑𝑙𝑙                        (3) 
 
and next the transition curve equation expressed in 
a parametric form: 
 

        𝑥𝑥(𝑙𝑙) = ∫ cos𝛩𝛩(𝑙𝑙)𝑑𝑑𝑙𝑙                       (4) 
 

        𝑦𝑦(𝑙𝑙) = ∫ sin𝛩𝛩(𝑙𝑙)𝑑𝑑𝑙𝑙                        (5) 
 

Here it is necessary to explain that the 
determination of  x(l) and y(l) by using equations 
(4) and (5) will require expansion of the 
integrands, in a general way, into Taylor                     
(or Maclaurin) series [21]. 

 
2.3. A SIMPLIFIED METHOD OF 

DETERMINING THE TRANSITION 
CURVE EQUATION 

On railway routes, as well as vehicular roads of 
fast traffic, where note is taken of great circular arc 
radii and relatively long transition curves, use is 
made of a commonly simplified technique for 
determining the transition curve equation which 
consequently provides us with this formula in the 
form of explicit function y(x). The simplification of 
the procedure is based on the assumption that the 
modeled curvature  k(l)  is related to its projection 
on axis  x, that is, l = x, and lk = xk . As a result of 
such assumptions we obtain an initial equation for 
curvature k0(x). The determination of function  y(x) 
in an accurate way by analytical approach is 
impossible, for the reason that it would require to 
solve the differential equation 

 

𝑘𝑘0(𝑥𝑥) =
𝑦𝑦′′ (𝑥𝑥)

{1 + [𝑦𝑦′(𝑥𝑥)]2}
3
2

 

 
Therefore  k0(x)  is also traditionally treated as 

an initial curvature, being an approximation of 
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target curvature  k(x). The transition from k0(x)  to  
k(x)  takes place in such a way that  k0(x)  is 
assumed as equation of the second derivative of 
function  y(x) being sought; thus, 
 

  𝑦𝑦′′ (𝑥𝑥) = 𝑘𝑘0(𝑥𝑥)              (6) 
 
Then, the equation is integrated twice, which 

gives  y'(x)  and  y(x); conditions  y(0) = 0  and  
y'(0) = 0 are taken into account.  

Curvature  k(x) of the transition curve obtained 
differs, of course, from the initial curvature  k0(x). 
The difference depends on the tangent slope value  
y'(x). With regard to the transition curves used for 
railway purposes (if advantage is taken of a system 
of coordinates where the outset of the curve is 
tangent to the x-axis) the value of  y'(x)  along the 
length is small, therefore the difference between 
curvatures  k0(x)  and  k(x)  is, in practice, 
insignificant.  

 
3. ANALYSIS OF SOME KNOWN FORMS 

OF TRANSITION CURVES 

3.1. CLOTHOID 
The clothoid is a curve proposed in 1874 by 

French physicist Marie Cornu, in connection with 
his research in the field of optics (diffraction of 
light). The following basic boundary conditions 
 
                 𝑘𝑘(0+) = 0       

 (7) 
                𝑘𝑘(𝑙𝑙𝑘𝑘−) = 1

𝑅𝑅
  

 
and the differential equation 
 

           𝑘𝑘′′ (𝑙𝑙) = 0                            (8) 
 
are used. After determining the constants, the 
solution of the differential problem (7), (8) is as 
follows: 
 

          𝑘𝑘(𝑙𝑙) = 1
𝑅𝑅 𝑙𝑙𝑘𝑘

𝑙𝑙                (9) 
 
Thus, we are dealing here with a linear change 

of curvature. From expressions (3) and (9), by the 
use of integration, it is possible to find angle  θ . 
 

       𝛩𝛩(𝑙𝑙) = 1
2 𝑅𝑅 𝑙𝑙𝑘𝑘

𝑙𝑙2                         (10) 
 

Having expanded function  cos Θ(l) and sin 
Θ(l) into Maclaurin series [21], on the basis of 
equations (4) and (5) we have 

 
 𝑥𝑥(𝑙𝑙) = ∫ cos𝛩𝛩(𝑙𝑙)𝑑𝑑𝑙𝑙 = 𝑙𝑙 − 1

40 𝑅𝑅2 𝑙𝑙𝑘𝑘
2 𝑙𝑙5 +

1
3456 𝑅𝑅4 𝑙𝑙𝑘𝑘

4 𝑙𝑙9 −
1

599040 𝑅𝑅6 𝑙𝑙𝑘𝑘
6 𝑙𝑙13 +  …                  (11) 

 
 𝑦𝑦(𝑙𝑙) =  ∫ sin𝛩𝛩(𝑙𝑙)𝑑𝑑𝑙𝑙 = 1

6 𝑅𝑅 𝑙𝑙𝑘𝑘
𝑙𝑙3 − 1

336 𝑅𝑅3 𝑙𝑙𝑘𝑘
3 𝑙𝑙7 +

1
42240 𝑅𝑅5 𝑙𝑙𝑘𝑘

5 𝑙𝑙11 −  …                                          (12) 
 

The simplified form of clothoid in terms of the  
x, y  system is obtained on accepting the following 
assumptions:  abscissa  x = l,  the final point 
abscissa  𝑥𝑥𝑘𝑘 = 𝑙𝑙𝑘𝑘  , the initial curvature   𝑘𝑘0(𝑥𝑥) =

1
𝑅𝑅 𝑙𝑙𝑘𝑘

𝑥𝑥 . 
 

          𝑦𝑦(𝑥𝑥) = 1
6 𝑅𝑅 𝑙𝑙𝑘𝑘

𝑥𝑥3      (13) 
 
The simplified clothoid carries its own name, 

the cubic parabola, and it has been used for years 
as the basic type of transition curve in railway 
engineering. It does not mean at all that the 
solution is most advantageous.  

 
3.2. QUARTIC PARABOLA 

Now the number of conditions has been 
increased. At the same time the conditions are 
being differentiated for the first and the second half 
of the transition curve. An appropriate differential 
equation is used. 

 
    𝑘𝑘′′′ (𝑙𝑙) = 0                          (14) 

 
• For the first half of the transition curve (i.e. 

for 𝑙𝑙 ∈ 〈0, 𝑙𝑙𝑘𝑘
2
〉) we have the conditions: 

 
      𝑘𝑘(0+) = 𝑘𝑘′(0+) = 0  

              (15) 
     𝑘𝑘 �1

2
𝑙𝑙𝑘𝑘−� = 1

2 𝑅𝑅
     

 
Solution of differential problem of (14), (15) is 

as follows: 
 

   𝑘𝑘(𝑙𝑙) = 2
𝑅𝑅 𝑙𝑙𝑘𝑘

2 𝑙𝑙2                       (16) 

 
  𝛩𝛩(𝑙𝑙) = 2

3 𝑅𝑅 𝑙𝑙𝑘𝑘
2 𝑙𝑙3                      (17) 
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  𝑥𝑥(𝑙𝑙) = ∫ cos𝛩𝛩(𝑙𝑙)𝑑𝑑𝑙𝑙 = 𝑙𝑙 − 2
63 𝑅𝑅2 𝑙𝑙𝑘𝑘

4 𝑙𝑙7 +
2

3159 𝑅𝑅4 𝑙𝑙𝑘𝑘
8 𝑙𝑙13 −  …                                        (18) 

 
  𝑦𝑦(𝑙𝑙) = ∫ sin𝛩𝛩(𝑙𝑙)𝑑𝑑𝑙𝑙 = 1

6 𝑅𝑅 𝑙𝑙𝑘𝑘
2 𝑙𝑙4 −

2
405 𝑅𝑅3 𝑙𝑙𝑘𝑘

6 𝑙𝑙10 +
1

14580  𝑅𝑅5 𝑙𝑙𝑘𝑘
10 𝑙𝑙16 −  …                                     (19) 

 
A simplified form of the quartic parabola is 

obtained for   𝑘𝑘0(𝑥𝑥) = 2
𝑅𝑅 𝑙𝑙𝑘𝑘

2 𝑥𝑥2. 
 

  𝑦𝑦(𝑥𝑥) = 1
6 𝑅𝑅 𝑙𝑙𝑘𝑘

2 𝑥𝑥4                     (20) 
 

• For the second half of the transition curve          
(i.e. for 𝑙𝑙 ∈ 〈 𝑙𝑙𝑘𝑘

2
 , 𝑙𝑙𝑘𝑘 〉)  the conditions are as 

follows: 
 
      𝑘𝑘 �1

2
𝑙𝑙𝑘𝑘+� = 1

2 𝑅𝑅
  

 
  𝑘𝑘(𝑙𝑙𝑘𝑘−) = 1

𝑅𝑅
          (21)                

 
  𝑘𝑘′(𝑙𝑙𝑘𝑘−) = 0  

   
  

Now we have  
 

  𝑘𝑘(𝑙𝑙) = − 1
𝑅𝑅

+ 4
𝑅𝑅 𝑙𝑙𝑘𝑘

𝑙𝑙 − 2
𝑅𝑅 𝑙𝑙𝑘𝑘

2 𝑙𝑙2      (22) 

 
  𝛩𝛩(𝑙𝑙) = 𝑙𝑙𝑘𝑘

6 𝑅𝑅 
− 1

𝑅𝑅
𝑙𝑙 + 2

𝑅𝑅 𝑙𝑙𝑘𝑘
𝑙𝑙2 − 2

3 𝑅𝑅 𝑙𝑙𝑘𝑘
2 𝑙𝑙3   (23) 

 
After using the equations (18) and (19) for 

estimating the values 𝑥𝑥 �𝑙𝑙𝑘𝑘
2
�  and  𝑦𝑦 �𝑙𝑙𝑘𝑘

2
� , we obtain 

 

               
                                          (24) 

 
𝑦𝑦(𝑙𝑙) = ∫ sin𝛩𝛩(𝑙𝑙)𝑑𝑑𝑙𝑙 =  𝑦𝑦 � 𝑙𝑙𝑘𝑘

2
� + sin � 𝑙𝑙𝑘𝑘

12 𝑅𝑅
� �𝑙𝑙 −

𝑙𝑙𝑘𝑘
2
�+ 1

4 𝑅𝑅
cos� 𝑙𝑙𝑘𝑘

12 𝑅𝑅
� �𝑙𝑙 − 𝑙𝑙𝑘𝑘

2
�

2
− � 1

24 𝑅𝑅2 sin � 𝑙𝑙𝑘𝑘
12 𝑅𝑅

� −
1

3 𝑅𝑅 𝑙𝑙𝑘𝑘
cos � 𝑙𝑙𝑘𝑘

12 𝑅𝑅
�� �𝑙𝑙 − 𝑙𝑙𝑘𝑘

2
�

3
− � 1

192 𝑅𝑅3 
cos � 𝑙𝑙𝑘𝑘

12 𝑅𝑅
� +

1
8 𝑅𝑅2 𝑙𝑙𝑘𝑘

sin � 𝑙𝑙𝑘𝑘
12 𝑅𝑅

�+ 2
12 𝑅𝑅 𝑙𝑙𝑘𝑘

2 cos � 𝑙𝑙𝑘𝑘
12 𝑅𝑅

�� �𝑙𝑙 −
𝑙𝑙𝑘𝑘
2
�

4
+ … 

                                          (25) 
 
The approximate solution  is obtained for  

𝑘𝑘0(𝑥𝑥) = − 1
𝑅𝑅

+ 4
𝑅𝑅 𝑙𝑙𝑘𝑘

𝑥𝑥 − 2
𝑅𝑅 𝑙𝑙𝑘𝑘

2 𝑥𝑥2; the following 

conditions are valid: 𝑦𝑦′ �𝑙𝑙𝑘𝑘
2
� =  𝑙𝑙𝑘𝑘

12 𝑅𝑅
 , 𝑦𝑦 �𝑙𝑙𝑘𝑘

2
� =  𝑙𝑙𝑘𝑘

2

96 𝑅𝑅
 . 

 
𝑦𝑦(𝑥𝑥) = − 𝑙𝑙𝑘𝑘

2

48 𝑅𝑅
+ 𝑙𝑙𝑘𝑘

6 𝑅𝑅
𝑥𝑥 − 1

2 𝑅𝑅
𝑥𝑥2 + 2

3 𝑅𝑅 𝑙𝑙𝑘𝑘
𝑥𝑥3 −

1
6 𝑅𝑅 𝑙𝑙𝑘𝑘

2 𝑥𝑥4                                                     (26) 

 
Over the whole length of the curve there occurs 

a nonlinear change of the curvature.  A similar 
situation will take place with respect to other 
smooth transition curves under consideration for 
which the number of the boundary conditions                
n1 = n2 (for  n1 ≠ n2  the curvature distribution 
becomes asymmetrical) . 

 
3.3. BLOSS CURVE 

In 1936, German engineer A. E. Bloss proposed 
a spiral transition for railways, in which as                    
a curvature he used a simple polynomial of 3rd 
degree in relation to the length of the arc. In 
vehicular roads this curve is very often called 
Göldner curve. Further on the number of 
conditions is increased 

 
          𝑘𝑘(0+) = 𝑘𝑘′(0+) = 0  
 
          𝑘𝑘(𝑙𝑙𝑘𝑘−) = 1

𝑅𝑅
                               (27)

    
          𝑘𝑘′(𝑙𝑙𝑘𝑘−) = 0  
 
and use is made of differential equation 
 

𝑘𝑘(4)(𝑙𝑙) = 0                         (28) 
 
The solution of problem (27), (28) provides the 

curvature equation 
 

     𝑘𝑘(𝑙𝑙) = 3
𝑅𝑅 𝑙𝑙𝑘𝑘

2 𝑙𝑙2 −
2
𝑅𝑅 𝑙𝑙𝑘𝑘

3 𝑙𝑙3                (29) 

 
    𝛩𝛩(𝑙𝑙) = 1

𝑅𝑅 𝑙𝑙𝑘𝑘
2 𝑙𝑙3 −

1
2 𝑅𝑅 𝑙𝑙𝑘𝑘

3 𝑙𝑙4   (30) 
 

𝑥𝑥(𝑙𝑙) = ∫ cos𝛩𝛩(𝑙𝑙)𝑑𝑑𝑙𝑙 = 𝑙𝑙 − 1
14 𝑅𝑅2 𝑙𝑙𝑘𝑘

4 𝑙𝑙7 + 1
16 𝑅𝑅2 𝑙𝑙𝑘𝑘

5 𝑙𝑙8 −

 1
72 𝑅𝑅2 𝑙𝑙𝑘𝑘

6 𝑙𝑙9 + …                                               (31) 
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𝑦𝑦(𝑙𝑙) = ∫ sin𝛩𝛩(𝑙𝑙)𝑑𝑑𝑙𝑙 = 1
4 𝑅𝑅 𝑙𝑙𝑘𝑘

2 𝑙𝑙4 −
1

10 𝑅𝑅 𝑙𝑙𝑘𝑘
3 𝑙𝑙5 −

1
60 𝑅𝑅3 𝑙𝑙𝑘𝑘

6 𝑙𝑙10 + 1
44 𝑅𝑅3 𝑙𝑙𝑘𝑘

7 𝑙𝑙11 −  …                      (32) 
 
The simplified form of Bloss curve, using the  

x, y  system, is obtained on the assumption  
𝑘𝑘0(𝑥𝑥) = 3

𝑅𝑅 𝑙𝑙𝑘𝑘
2 𝑥𝑥2 − 2

𝑅𝑅 𝑙𝑙𝑘𝑘
3 𝑥𝑥3 . 

 
   𝑦𝑦(𝑥𝑥) = 1

4 𝑅𝑅 𝑙𝑙𝑘𝑘
2 𝑥𝑥4 − 1

10 𝑅𝑅 𝑙𝑙𝑘𝑘
3 𝑥𝑥5       (33) 

 
3.4. COSINUSOID 

Satisfying conditions (27) the curvature is 
identified by means of another differential 
equation. 

  
𝑘𝑘(4)(𝑙𝑙) + 𝜋𝜋2

𝑙𝑙𝑘𝑘
2 𝑘𝑘′′ (𝑙𝑙) = 0                  (34) 

 
The curvature equation is as follows 
 

𝑘𝑘(𝑙𝑙) = 1
2 𝑅𝑅

− 1
2 𝑅𝑅

cos �𝜋𝜋
𝑙𝑙𝑘𝑘
𝑙𝑙�                 (35) 

 
𝛩𝛩(𝑙𝑙) = 1

2 𝑅𝑅
𝑙𝑙 − 𝑙𝑙𝑘𝑘

2𝜋𝜋  𝑅𝑅
sin �𝜋𝜋

𝑙𝑙𝑘𝑘
𝑙𝑙�              (36) 

 
𝑥𝑥(𝑙𝑙) = ∫ cos𝛩𝛩(𝑙𝑙)𝑑𝑑𝑙𝑙 = 𝑙𝑙 − 𝜋𝜋4

2016 𝑅𝑅2 𝑙𝑙𝑘𝑘
4 𝑙𝑙7 +

𝜋𝜋6

25920 𝑅𝑅2 𝑙𝑙𝑘𝑘
6 𝑙𝑙9 −  …                                          (37) 

 
𝑦𝑦(𝑙𝑙) = ∫ sin𝛩𝛩(𝑙𝑙)𝑑𝑑𝑙𝑙 = 𝜋𝜋2

48 𝑅𝑅 𝑙𝑙𝑘𝑘
2 𝑙𝑙4 −

𝜋𝜋4

1440 𝑅𝑅 𝑙𝑙𝑘𝑘
4 𝑙𝑙6 +

𝜋𝜋6

80640  𝑅𝑅 𝑙𝑙𝑘𝑘
6 𝑙𝑙8 −  …                                          (38) 

 
A simplified form of the cosine curve is secured 

on the assumption that 𝑘𝑘0(𝑥𝑥) = 1
2 𝑅𝑅

−
1

2 𝑅𝑅
cos �𝜋𝜋

𝑙𝑙𝑘𝑘
𝑥𝑥�.  

 
      𝑦𝑦(𝑥𝑥) = 1

4 𝑅𝑅
𝑥𝑥2 + 𝑙𝑙𝑘𝑘

2

2𝜋𝜋2 𝑅𝑅
�cos�𝜋𝜋

𝑙𝑙𝑘𝑘
𝑥𝑥� − 1�    (39) 

 
3.5. SINE CURVE 

In addition to the assumptions made earlier 
more conditions are set out. 

 
 
 
 
 

       𝑘𝑘(0+) = 𝑘𝑘′(0+) = 𝑘𝑘′′ (0+) = 0 
 

𝑘𝑘(𝑙𝑙𝑘𝑘−) = 1
𝑅𝑅

                (40) 
 

     𝑘𝑘′(𝑙𝑙𝑘𝑘−) = 𝑘𝑘′′ (𝑙𝑙𝑘𝑘−) = 0 
  

Conditions (40) determine the order of the 
differential equation. They are expressed in the 
following form: 

 
 𝑘𝑘(6)(𝑙𝑙) + 4 𝜋𝜋2

𝑙𝑙𝑘𝑘
2 𝑘𝑘(4)𝑙𝑙 = 0               (41) 

 

Having solved the differential problem (40), 
(41) it is possible to obtain a formula for the 
curvature equation: 

 

𝑘𝑘(𝑙𝑙) = 1
𝑅𝑅 𝑙𝑙𝑘𝑘

𝑙𝑙 − 1
2𝜋𝜋  𝑅𝑅

sin �2𝜋𝜋
𝑙𝑙𝑘𝑘
𝑙𝑙�              (42) 

 
  𝛩𝛩(𝑙𝑙) = − 𝑙𝑙𝑘𝑘

4𝜋𝜋2 𝑅𝑅
+ 1

2 𝑅𝑅 𝑙𝑙𝑘𝑘
𝑙𝑙2 + 𝑙𝑙𝑘𝑘

4𝜋𝜋2 𝑅𝑅
cos�2𝜋𝜋

𝑙𝑙𝑘𝑘
𝑙𝑙�  (43) 

 
𝑥𝑥(𝑙𝑙) = ∫ cos𝛩𝛩(𝑙𝑙)𝑑𝑑𝑙𝑙 = 𝑙𝑙 − 𝜋𝜋4

648 𝑅𝑅2 𝑙𝑙𝑘𝑘6  𝑙𝑙9 +  …  (44) 
 

𝑦𝑦(𝑙𝑙) = ∫ sin𝛩𝛩(𝑙𝑙)𝑑𝑑𝑙𝑙 = 𝜋𝜋2

30 𝑅𝑅 𝑙𝑙𝑘𝑘3  𝑙𝑙5 − 𝜋𝜋4

315 𝑅𝑅 𝑙𝑙𝑘𝑘5  𝑙𝑙7 −
𝜋𝜋6

5670 𝑅𝑅 𝑙𝑙𝑘𝑘7  𝑙𝑙9 + …                                                (45) 
 
A simplified form of the sinusoid is obtained on 

making the assumptions  x = l ,   𝑥𝑥𝑘𝑘 = 𝑙𝑙𝑘𝑘   and   
𝑘𝑘0(𝑥𝑥) = 1

𝑅𝑅 𝑙𝑙𝑘𝑘
𝑥𝑥 − 1

2𝜋𝜋  𝑅𝑅
sin �2𝜋𝜋

𝑙𝑙𝑘𝑘
𝑥𝑥� . 

 

𝑦𝑦(𝑥𝑥) = − 𝑙𝑙𝑘𝑘
4𝜋𝜋2 𝑅𝑅

𝑥𝑥 + 1
6 𝑅𝑅 𝑙𝑙𝑘𝑘

𝑥𝑥3 + 𝑙𝑙𝑘𝑘
2

8𝜋𝜋3 𝑅𝑅
sin �2𝜋𝜋

𝑙𝑙𝑘𝑘
𝑥𝑥� (46) 

 
4. LIMITATIONS NOTED IN THE USE OF 

SMOOTH TRANSITION CURVES IN 
RAILWAY ROUTES 
A comparison of transition curves related to 

railway routes requires that certain assumptions 
should be made with respect to the permissible 
values of kinematic parameters being in force, 
acceleration growth  ψper  and the speed of lifting 
the railway rolling stock wheel at the 
superelevation ramp  fper . The assumption of equal 
values of ψper  and  fper  calls for the elongation of 
particular smooth transition curves in relation to 
the cubic parabola (by the use of an appropriate 
coefficient A).  
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Fig. 1. The shaping of the horizontal ordinates along   

the length of the cubic parabola  and the smooth 
transition curves. 

 
Thus it is possible to make a comparison of the 

horizontal ordinates (Fig. 1). In the given case the 
curve in the form of cubic parabola is a reference 
adopted for the following geometric system: 
• maximal speed of trains  v = 100 km/h, 
• radius of circular arc  R = 700 m, 
• value of superelevation along arc  h0 = 80 

mm, 
• length of transition curve (with a rectilinear 

superelevation ramp)  lk = 80 m. 
 

The lengths of the smooth transition curves in 
Fig. 1 are as follows: for sinusoid and quartic 
parabola (A = 2) –  lk = 160 m, for cosinusoid                 
(A = π/2) –  lk = 125,664 m, and for Bloss curve            
(A = 1,5) –  lk = 120 m. 

The theoretical analyses performer and the 
experimental works carried out unambiguously 
indicate a lesser (that is, more advantageous) 
dynamic interactions while travelling on smooth 
transition curves. As already mentioned                          
a dominant role here is played by the class of 
function describing the curvature. However, in 
spite of their indisputable advantages the range of 
application of smooth transition curves In railway 
tracks under exploitation is very limited. The basic 
reason for the existing skepticism about this 
question seems to be the very low value of the 
horizontal ordinates In the initial region of the 
curves analyzed. It is often difficult to set them out 
correctly in the field and in practice, leads to 
shortcuts of the transition curve made in 
comparison with the brief foredesign.  

 
Fig. 2. The shaping of horizontal ordinates in the outset 

region of transition curves under consideration. 
 
Table 1. Selected values of horizontal ordinates   

y [mm]. 
Transition 
curve x = 5 m x = 10 m x = 15 m x = 20 m 

Cubic 
parabola 0.37202 2.97619 10.04464 2.80952 

Quartic 
parabola 0.00581 0.09301 0.47084 1.48810 

Bloss curve 0.01524 0.23975 1.19280 3.70370 
Cosinusoid 0.01162 0.18562 0.93728 2.95150 
Sinusoid 0.00036 0.01143 0.08642 0.36183 

 
Let us, now, take a closer look at the shaping of 

the horizontal ordinates of the transition curves of 
Fig. 1 along the length of the first 20 m. This is 
illustrated in Fig. 2. Table 1 provides particular 
numerical values. When analyzing the data of 
Table 1, it is surprising that the usefulness of 
smooth transition curves causes such big doubts. 
The horizontal ordinates of the outset region are 
very small with respect to these curves. They are 
many times smaller than the ordinates of the cubic 
parabola. The Bloss curve takes relatively the best 
place among the smooth curves. The most 
advantageous sinusoid with respect to dynamics, in 
fact, seems to be impossible to be carried out, in               
a given case its ordinates along the distance of the 
first 20 m do not reach even 1 mm.  

The presented considerations relating to the 
railway routes can also be referred to vehicular 
roads. It all leads to the conclusion that the major 
cause of the difficulties encountered, lies in 
excessive smoothing of the curvature near the 
original smooth transition curve. In order to take 
preventive measures, it is necessary to resign from 
the zeroing condition of the curvature derivative at 
the outset point, and assume a certain numerical 
value instead, smaller, however, than it occurs in 
the case of clothoid, or a cubic parabola. In this 
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way an idea to find a new family, called parametric 
transition curves, has emerged [18]. 

 
5. PARAMETRIC TRANSITION CURVE 

Advantage is taken of differential equation (27) 
with the following conditions (where constant              
C > 0): 

 
                 𝑘𝑘(0+) =  0                𝑘𝑘(𝑙𝑙𝑘𝑘−) =  1

𝑅𝑅
   

                           (47) 
             𝑘𝑘′(0+) =  𝐶𝐶

𝑅𝑅 𝑙𝑙𝑘𝑘
           𝑘𝑘′(𝑙𝑙𝑘𝑘−) = 0     

 
The solution of the differential problem (27), 

(47) leads to the determination of the curvature 
equation of a new transition curve which on 
account of the occurring parameter C, will be 
referred to as parametric curve. The equation has 
the form 

 
𝑘𝑘(𝑙𝑙) = 𝐶𝐶

𝑅𝑅 𝑙𝑙𝑘𝑘
𝑙𝑙 + 3−2 𝐶𝐶

𝑅𝑅 𝑙𝑙𝑘𝑘
2 𝑙𝑙2 − 2−𝐶𝐶

𝑅𝑅 𝑙𝑙𝑘𝑘
3 𝑙𝑙3          (48) 

 
Function (48) describing the curvature is             

a function of class C0. However, due to the fact 
that the transition near the region of the circular arc 
is mild, and grows milder in the initial area (than in 
the case of the clothoid and the cubic parabola) the 
obtained curve can still be included among smooth 
transition curves. Moreover, the curve, in view of 
dynamics, is more advantageous than both the 
clothoid and the cubic parabola.  

From equation (48) it follows that 
 

𝛩𝛩(𝑙𝑙) = 𝐶𝐶
2 𝑅𝑅𝑙𝑙𝑘𝑘

𝑙𝑙2 + 3−2 𝐶𝐶
3 𝑅𝑅𝑙𝑙𝑘𝑘

2 𝑙𝑙3 −
2−𝐶𝐶

4 𝑅𝑅𝑙𝑙𝑘𝑘
3 𝑙𝑙4  (49) 

 
The parametric transition curve equations are as 

follows: 
 

𝑥𝑥(𝑙𝑙) = ∫ cos𝛩𝛩(𝑙𝑙)𝑑𝑑𝑙𝑙 = 𝑙𝑙 − 𝐶𝐶2

40 𝑅𝑅2 𝑙𝑙𝑘𝑘
2 𝑙𝑙5 −

𝐶𝐶(3−2 𝐶𝐶)
36 𝑅𝑅2 𝑙𝑙𝑘𝑘

3 𝑙𝑙6 +  9 𝐶𝐶(2−𝐶𝐶)−4(3−2 𝐶𝐶)2

504 𝑅𝑅2 𝑙𝑙𝑘𝑘
4 𝑙𝑙7 +

(3−2 𝐶𝐶)(2−𝐶𝐶)
96 𝑅𝑅2 𝑙𝑙𝑘𝑘

5  𝑙𝑙8 +  …                                           (50) 

 
𝑦𝑦(𝑙𝑙) = ∫ sin𝛩𝛩(𝑙𝑙)𝑑𝑑𝑙𝑙 = 𝐶𝐶

6 𝑅𝑅 𝑙𝑙𝑘𝑘
𝑙𝑙3 + 3−2 𝐶𝐶

12 𝑅𝑅 𝑙𝑙𝑘𝑘
2 𝑙𝑙4 −

2−𝐶𝐶
20 𝑅𝑅 𝑙𝑙𝑘𝑘

3 𝑙𝑙5 −
𝐶𝐶3

336 𝑅𝑅3 𝑙𝑙𝑘𝑘
3 𝑙𝑙7 −

𝐶𝐶2 (3−2 𝐶𝐶)
192 𝑅𝑅3 𝑙𝑙𝑘𝑘

4 𝑙𝑙8 +  …     (51) 

 

The largest values of the kinematic parameters 
are noted at point 𝑙𝑙0 = 3−2 𝐶𝐶

3 (2−𝐶𝐶)
 𝑙𝑙𝑘𝑘  , where also the 

curvature derivative is the maximum  
 

  max𝑘𝑘′(𝑙𝑙) = 𝑘𝑘′(𝑙𝑙0) = �𝐶𝐶 +   (3−2 𝐶𝐶)2

3 (2−𝐶𝐶)
� 1
𝑅𝑅 𝑙𝑙𝑘𝑘

  (52) 
 

Expression  𝐴𝐴 =  �𝐶𝐶 +  (3−2 𝐶𝐶)2

3 (2−𝐶𝐶)
�  determines 

the relation between the length of the parametric 
transition curve and the cubic parabola (for which 
in the calculation formulae A = 1). This coefficient 
assumes the smallest value for C = 1  and amounts 
to  𝐴𝐴 = 4

3
= 1.3333. 

A simplified form of the parametric curve is 
obtained on the assumption that   x = l , 𝑙𝑙𝑘𝑘 = 𝑥𝑥𝑘𝑘  ,  
𝑘𝑘0(𝑥𝑥) = 𝐶𝐶

𝑅𝑅 𝑙𝑙𝑘𝑘
𝑥𝑥 + 3−2 𝐶𝐶

𝑅𝑅 𝑙𝑙𝑘𝑘
2 𝑥𝑥2 − 2−𝐶𝐶

𝑅𝑅 𝑙𝑙𝑘𝑘
3 𝑥𝑥3 . 

 
𝑦𝑦(𝑥𝑥) = 𝐶𝐶

6 𝑅𝑅 𝑙𝑙𝑘𝑘
 𝑥𝑥3 +  3−2 𝐶𝐶

12 𝑅𝑅 𝑙𝑙𝑘𝑘
2  𝑥𝑥4  −   2−𝐶𝐶

20 𝑅𝑅 𝑙𝑙𝑘𝑘
3  𝑥𝑥5  (53) 

 
The parametric transition curve was determined 

because of the limitations indicated at an earlier 
point regarding the use of smooth transition curves 
on railway routes. Therefore it will be legitimate to 
consider its properties while working on the 
application of the simplified solution and the 
utilization of equation (53). 

 

 
Fig. 3. The shaping of the horizontal ordinates along the 

length of the parametric transition curve (C = 0,25,              
C= 0,5, C=0,75, and C = 1,0), the cubic parabola, and 

the Bloss curve. 
 
Fig. 3 shows the shaping of the horizontal 

ordinates of the obtained parametric curve for  
𝐶𝐶 ∈  〈0, 1〉 in the background of appropriate 
diagrams for the cubic parabola and the Bloss 
curve. As can be seen in this figure, for                    
𝐶𝐶 ∈  〈0, 1〉  ordinates  y(x) differ evidently along 
the whole length of the transition curve. The 
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parametric curve C = 1 has horizontal ordinates 
which are an approximation to the cubic parabolic 
ordinates. The ordinates of the remaining curves 
are fund between the cubic parabolic ordinates and 
the Bloss curve (i.e. curve C = 0).  

For C ≥ 1 ordinates y(x) are similar along the 
entire length, and also share similarity with 
ordinates of the cubic parabola (particular curves 
are different only in length). All these factors 
create a situation where the use of transition curves 
which have C ≥ 1, would not be advantageous; 
they make the process of entering the circular arc 
easier. However,  the initial region is still affected 
by violent disturbances in the curvature, which are 
characteristic of the cubic parabola.  

Thus, solutions that may prove useful for 
applications in practice should be sought among 
parametric curves of 𝐶𝐶 ∈ (0, 1). The selection 
criterion should, of course, be based on values of 
the horizontal ordinates in the outset region. Fig. 4 
illustrates the shaping of the horizontal ordinates in 
the outset region of some selected parametric 
curves.  

The choice of the form of the parametric curve 
(i.e. the acceptance of the required value of 
parameter C) will depend on a particular geometric 
situation. The problem of fundamental significance 
will become the value analysis of the horizontal 
ordinates of the outset region. Table 2 illustrates 
the magnitudes of these ordinates along the length 
of the first 20 m for various values of parameter C 
(for the numerical data used in the paper). The 
ordinates are much greater than those for the 
smooth transition curves given in Table 1.  

 

 
Fig. 4. The shaping of the horizontal ordinates of some 
selected parametric curves (and the cubic parabola, and 

the Bloss curve) in the outset region. 
 
In the case analyzed it might appear that the 

best solution would be to apply parametric curve      
C = 0,5. It indicates quite clearly the horizontal 
ordinates in the initial region (though twice smaller 
than the cubic parabola). In addition it is 
characterized by relatively mild transfer from                
a straight to a transition curve; the curvature 
derivative at the initial point presents only 36 % of 
the value which appears on the cubic parabola.  
 
6. CONCLUSIONS  
• The requirements imposed upon transition 

curves relating both to vehicular roads and 
railway routes are clearly defined and for this 
reason there should be one common algorithm 
to create them. Meanwhile all the solutions 
that have been known so far, are still used 
independently and bear various names. 

Moreover, the transition curves are also 
defined in different ways, with respect to 
vehicular roads they are often denoted by 
angle function θ(l) which is responsible for 
changing the direction of the longitudinal axis 

Table 2. Selected values of horizontal ordinates y [mm] for various parametric curves. 

Curve A lk [m] x = 5 m x = 10 m x = 15 m x = 20 m 
C = 0.1 1.47544     118.035 0.03991 0.43272    1.82934      5.17768 
C = 0.2 1.45185     116.148 0.06533 0.63122    2.48293      6.68835 
C = 0.3 1.42941     114.353 0.09148 0.83501    3.15259      8.23309 
C = 0.4 1.40833     112.667 0.11831 1.04364    3.83676      9.80796 
C = 0.5 1.38889     111.111 0.14574 1.25648    4.53310    11.40720 
C = 0.6 1.37143     109.714 0.17365 1.47253    5.23825    13.02267 
C = 0.7 1.35641     108.513 0.20187 1.69041    5.94746    14.64299 
C = 0.8 1.34444     107.556 0.23016 1.90814    6.65403    16.25237 
C = 0.9 1.33636     106.909 0.25816 2.12293    7.34869    17.82905 
C = 1.0 1.33333     106.667 0.28537 2.33089    8.01849    19.34291 
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of the vehicle after travelling along a certain 
arc, whereas in railway routes the major 
functions are related to the use of curvature  
k(x) with a system of rectangular coordinates. 

• As can be expected the basis for the 
identification of the transition curves should 
be the curvature distribution along their length 
deciding about the occurring unbalanced 
accelerations. The dynamic interactions are 
smaller (i.e. more advantageous), if the 
function class describing curvature is higher. 
The paper presents a method identifying 
curvature on transition curves by differential 
equations. The method makes a reference to 
the approach used in [24] related to 
identification of accelerations. The curvature 
equations have been determined for some 
known forms of transition curves, such as, the 
clothoid, the quartic parabola, the Bloss curve, 
the cosinusoid and the sinusoid. Taking 
advantage of these equations the Cartesian 
coordinates were found. Approximate 
solutions were also provided after some 
simplified Assumption had been made, 
orientated to a large extent towards railway 
routes. 

• Smooth transition curves, i.e. curves of 
nonlinear distribution of curvature, have been 
known for a long time and possess a number 
of unquestionable advantages. First of all they 
are characterized by minor values of dynamic 
interactions. The range of their applications in 
railway routes has been limited so far. 
Unfortunately, the curve have one main 
drawback, namely, a very small value of the 
horizontal ordinates in the outset region, in 
practice often impossible for execution and 
hard to be maintained. 

• The basic reason for the difficulties occurring 
in some known forms of smooth transition 
curves is connected with curvature being too 
much mitigated in the outset region.  Thus it is 
necessary to find a new form of the transition 
curve, and abandon the condition of zeroing 
the curvature derivative at the outset point. 
For this purpose use has been made of the 
curvature identification method described in 
the paper, contributing simultaneously to the 
formation of a family of parametric transition 
curves. 

• The parametric transition curve recommended 
for practical application is characterized by           
a mild proceeding of the curvature In the 

region of entering the circular arc, and is 
disturbance at the starting point (though 
smaller than in the case of the clothoid, Or the 
cubic parabola as well). The acceptance of an 
appropriate value of parameter 𝐶𝐶 ∈ (0, 1) 
depends on a particular geometric situation 
and occurs as a result of the value analysis of 
horizontal ordinates in the outset region of the 
transition curve. 
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