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The asymptotic power-law behavior of a distribution function P (X) for X clusters is ana-

lyzed for aggregation and chipping processes with power-law kernel of aggregation processes,

K(n,m −→ n + m) = n−ψm−ψ/A2. An exact value of non-integer power-law index is ob-

tained, that is, P (X) ∼ 1/Xα, α = n
2 + 1 − ψ in the case ψ < 0.5. Numerical simulations

agree well with this result.
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I. INTRODUCTION

Aggregation process can be found in various phenomena in both nature and

social sciences[1–4]. These are nonequilibrium systems, thus not described by

Gibbs distribution like thermal equilibrium system. In systems where only

aggregation mechanism is operative, all the clusters in system eventually co-

agulates one condensed cluster. On the other hand, with some fragmentation

mechanism the system evolves, in many cases, a power-law distribution[5]. We

have already investigated the discrete aggregation-chipping processes with the

constant kernels for both the aggregation and the chipping[6–8], the case where

the chipping kernel has a power-law form[9], and the case with the constant

chipping kernel[10]. In these papers, we have reported that the asymptotic

power-law cluster size distribution P (X) ∼ 1/Xσ emerges when the weight of

the chipping kernel has a power-law form C(n) ∼ 1/nσ and the case 2 > σ > 1.

In the case 0 < σ ≤ 1, our analysis suggests that there is no asymptotic power-

law solution, and in the case σ = 0 the chipping kernel becomes a constant, the

exponential distribution appears. On the other hand, in the case σ > 2, still

the power-law distribution holds, but also the condensed ”big” cluster appears.

These results suggest that even the chipping kernel has strong influences for

the resultant cluster size distribution, and for the actual systems that mostly

have the complex kernels of the aggregation and the chipping processes, further

analysis is required to understand the resultant distribution.

In this paper, we consider the case where the aggregation kernel has a power-

law form, and analyze the asymptotic power-law behavior of the cluster size
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distribution.

II. THEORY

Now we introduce a weighted-aggregation and chipping process, described as

follows: initially N clusters are set where each cluster has a certain number of

units, according to an initial distribution. The unit process consists of two parts,

weighted-aggregation and chipping. First, two clusters are chosen according

to a certain aggregation kernel K(X,Y −→ X + Y ) (X and Y clusters) are

integrated and make one big cluster (X + Y cluster). Secondly one unit is

chipped off from a randomly chosen cluster which has more than 2 units (Z(≥ 2)

cluster) and become a cluster. In an one unit process, the total number of

the clusters and the units are conserved (X, Y , Z clusters are changed into

(X+Y ), (Z−n) and n clusters). The whole process proceeds by repeating the

unit process.

In the present paper we consider the case where the aggregation kernel

K(n,m −→ n+m) has a power-law form

K(n,m −→ n+m) = n−ψm−ψ/A2, (1)

where 1/A = (Σ∞
i=1i

−ψ)−1 is the normalization constant. In the limit ψ −→ 0,

i.e. the aggregation kernel K(n,m −→ n + m) = 1/A2 thus the two clusters

for the aggregation are chosen freely, a resultant distribution is the power-law

distribution P (X) ∼ 1/X2.5[7].

We analyze here the case ψ is a non-integer and ψ < 0.5. Note that if ψ ≤ 1

A would be infinite, thus we need some high-cut for the system size. At a steady
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state, the basic equations of this system are

(1− P (1))(1− P (1))

A2
+

P (2)

1− P (1)
=

P (1)2

A2
(X = 1), (2)

∑
i+j=X

i−ψj−ψ

A2
P (i)P (j) +

P (X + 1)

1− P (1)

=

(
2X−ψ

A
+

1

1− P (1)

)
P (X) (X ≥ 2). (3)

where αn is a normalization constant,

αn =

(
n−1∑
s=1

1

sσ

)−1

. (4)

We now assume that the system has an asymptotic power-law solution,

P (X) ∼ 1/Xα. In this case, the first term of the left hand side of (3) can be

written as

∑
i+j=X

i−ψj−ψ

A2
P (i)P (j)

∼
∑

i+j=X

i−ψj−ψ

A2

1

iα
1

jα
=

∑
i+j=X

1

A2

1

iα+ψ

1

jα+ψ
. (5)

Also, the first term of the right hand side of (3) is,

2X−ϕ

A
P (X) ∼ 1

A

1

Xα+ψ
. (6)

Therefore, using the z-transform ϕ(z) =
∑∞

X=0 P (X)z−X , the basic equation
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in z-space has the form near z ∼ 1

C1{ϕψ
r (z) +B(1− z)−(1−α−ψ)}2

+ f(z){ϕr(z) +B(1− z)−(1−α)}

= C2{ϕψ
r (z) +B(1− z)−(1−α−ψ)}

+
1

1− P (1)
{ϕr(z) +B(1− z)−(1−α)}+ g(z), (7)

where ϕψ
r (z) is a regular term of the z-transform for P (X) ∼ 1/Xα+ψ, ϕψ

r (z) is

a regular term of the z-transform for P (X) ∼ 1/Xα, B, C1 and C2 are certain

constants, and f(z) and g(z) are certain regular functions of z. Here we use

the singularity of ϕ(z) =
∑∞

X=0 P (X)z−X near z → 1 is ϕs(z) ∼ (1 − 1/z)β−1

for P (X) ∼ 1/Xβ [11],

If the equation (7) holds, then the singular terms in (7) must satisfy

(1) (1− z)−{2(1−α−ψ)} = (1− z)−(1−α),

or

(2) (1 − z)−{2(1−α−ψ)} = (1 − z)n where n is an integer, thus this term

becomes a regular term.

The condition (1) leads to an equation α = 1−2ψ. When ψ > 1, α < 1 thus

the condition (1) is irrelevant. Therefore, we have the asymptotic power-law

solution,

P (X) ∼ 1/Xα, α =
n

2
+ 1− ψ. (8)

When ψ < 0.5 and n = 2, n
2 + 1− ψ > 2.0, thus it is clear that the condensed

cluster will appear in those cases.
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III. NUMERICAL RESULTS

Figures 1 and 2 show the cumulative distributions Cm(X) = Σx≤XP (x) of

the simulation results with ψ = 0.02 and ψ = 0.03 respectively. The total

number of the clusters N is 1000 and the mean value of the cluster size ⟨X⟩ =

1000.
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FIG. 1: Cumulative distribution of the simulation result for weighted-aggregation and

chipping process with the number of the clusters N = 1000, ψ = 0.02 and ⟨X⟩ = 1000.

Here the resultant distributions are the power-law ∼ 1/Xα, and the power-

law index α is practically the same as 5
2 − ψ. This is reasonable because when

ψ −→ 0, α would be 5/2. Therefore we conclude that there is an asymptotic

solution P (X) ∼ 1/X
5
2
−ψ in the case ψ < 0.5. Also we can see the condensed

clusters appear at the right side of those pictures. Apparently, It is required to

do simulations with ψ > 0.5, however due to the problem of calculation time, it
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FIG. 2: Cumulative distribution of the simulation result for weighted-aggregation and

chipping process with the number of the clusters N = 1000, ψ = 0.03 and ⟨X⟩ = 1000.

is difficult to make such simulations with the simulation circumstance we have

now.

IV. DISCUSSION AND SUMMARY

These results show that the power-law aggregation kernel influences directly

to the power-law index of the resultant distribution. It is, in some point of

view, obvious, however it also casts another questions.

When ψ becomes bigger than 0.5, there is no reason to break this asymptotic

solution until ψ ≤ 1.0. Thus we believe the solution P (X) ∼ 1/X
5
2
−ψ holds

0.5 < ψ ≤ 1.0. This means that the condensed cluster would disappear when

0.5 < ψ ≤ 1.0, because the power-law index of the resultant distribution α
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would be α < 2.0.

What, then, will happen if ψ is larger than 1.0? The simulation results

show that the power-law index α of the distribution is α = 5
2 −ψ when ψ < 0.5.

However, our analysis shows only that −2(1−α−ψ) must be integer, so it is also

possible, from the theory, that α = 3
2 − ψ, α = 7/2 − ψ or another solutions.

If, when ψ > 1.0, will the power-law index of the distribution α jump from

5
2 − ψ to 7

2 − ψ for example, or still hold the solution 5
2 − ψ? When ψ > 2.5,

will the power-law distribution still hold, or break into other distribution like

an exponential one? We cannot answer those questions now. However these

results at least show that the power-law index ψ of the aggregation kernel could

be another type of the control parameter for the resultant distribution P (X)

than the chipping kernel we have reported before, and also could affect the

emergence of the power-law distribution or the condensed cluster. It expands

the possibility of finding the corresponding phenomena in the real world.

In summary, we introduce the weighted-aggregation and chipping model, and

analyze the case that the aggregation kernelK(n,m −→ n+m) = n−ψm−ψ/A2.

When ψ < 0.5, our analysis shows there is an asymptotic solution of the prob-

ability distribution function P (X) ∼ 1/X
5
2
−ψ. The simulation results agree

with this analysis, but we need to reduce the simulation time for getting more

information when ψ is larger than 0.5. These results also show the strong pos-

sibility of the singularity analysis, and we believe that this analysis will show
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more profound features of the aggregation systems.
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