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Abstract. Fracture mechanics studies on glass by indentation has become predominant in 
recent times. Interest in it has become more prominent due to a large application of such 
materials in areas of engineering applications encountering fluctuating stresses induced 
thermally, mechanically or physically. However, glass subjected to repeated indentation at 
a point prior to crack initiation with subcritical loads phenomenological to metal fatigue has 
not been systematically investigated, Repeated indentation at a single point with different 
subcritical loads (0-1 N, 0" 15N, 0.25N, 0.50N, 1.0N) was performed till radial cracks occurred. 
The length of the diagonal was measured after each indentation, which was found to increase 
with indentation cycle eventually leading to crack initiation. This observation was analysed 
considering the elastic plastic component and the residual stress developed during each cycle. 
A mathematical model has been postulated to correlate the contribution of cumulative 
residual stress for crack initiation. 

Keywords. Indentation; fatigue; elastic stress; yield stress; critical stress; residual stress; 
cracks; median: lateral; radial. 

1. Introduction 

The failure of glass under indentation fatigue has captured the imagination of several 
workers lately. The process involved the application of a ball, knoop or diamond indenter 
on a polished surface of glass with a critical load creating an impression by surface cracks. 
Indentation was then repeated with several critical/subcritical loads for the crack growth to 
occur leading to chipping. The interest has been primarily towards initiation of cracks with 
critical single indentation and its subsequent propagation to failure by repeated number of 
indentations at the same point. Crack propagation and fracture behaviour of glass was thus 
ascertained by Lawn et al (1981, 1983), Cook and Pharr (1990), Guiu et al (1991) and 
Sparks and Hutchings (1992). Their work on indentation fracture principles and applica- 
tion gave a picture of the damage morphology under different indenter. They identified the 
complexity of the crack pattern due to elastic-plastic mismatch stresses from which 
formation of three cracks namely median/cone, radial and lateral during one single cycle 
was observed. In compact structure glass (like normal sodalime glass), median crack was 
initiated during loading followed by radial and lateral crack during unloading. In open 
structure glass (like silica glass;, borosilicate glass) where stress induced densification 
anomalicity occurs, cone cracking was initiated during loading followed by radial and 
lateral crack initiation during unloading. It was generally held that chipping occurred due 
to the removal of the material by the formation of the lateral cracks beneath the contact 
impression followed by its subsequent outward propagation and the final emergence of the 
material surface (Lawn et al 1981, 1983; Guiu et al 1991; Sparks and Hutchings 1992). 
Taylor (1950) while measuring hardness by pyramidal indenter had suggested the 
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concept of plastic deformation in glass. Later Johnson (1970), Evans and Fuller (1974), 
Marshall et al (1979) and Lawn et al (1981) correlated hardness with mean contact 
pressure and other properties of glass. Their work can be considered nearest to plastic 
deformation in glass prior to crack initiation and propagation under fatigue. True 
fatigue can only be considered when crack is initiated under repeated indentation at 
a singular point at subcritical loads and this has not been studied. 

The present study on sodalime glass simulate the true fatigue condition by repeated 
indentation at a singular point at subcritical loads until cracks are initiated. Attempts 
have been made to analyse the localized elastic-plastic components affecting the 
deformed impression. 

2. Materials and methods 

Annealed sodalime glass sample with 5 mm × 5 m m x  4 mm was taken with optical 
polish on all sides. A Vickers indentation (Model HMV-2000, Shimadzu) was utilized 
for the indentation study. Experiments were conducted with different subcritical loads 
viz. 0-10N, 0-15N, 0.25N, 0-50N and 1.0N. Repeated indentation at each load was 
performed at each singular point simulating fatigue conditions without any movement 
of the sample avoiding any error in the measurements. This procedure was repeated five 
times at each load to generate five datas. The load was applied for 10 sec in each cycle 
under normal temperature (25 + 2°C) and humidity (60 _+ 5%). The diagonal length of 
the impression was measured after completion of cycles 1, 5, 10 . . . .  The experiment was 
discontinued the moment the radial cracks were initiated. 

3. Results and discussion 

During repeated indentation with subcritical loads of 0" 1 ON, 0" 15N, 0'25N, 0.50N and 
1 .ON, it was observed that the diagonal lengths increased to a limit until hair line radial 
cracks were initiated. At 0" 10N, 0.15N, 0.25N, 0"50N, and 1.0N the cracks were found to 
initiate at 65, 60, 30, 15, 2 cycles respectively (figure 1). Figure 2a shows the fatigue 
graph where load was plotted against number of indentation cycles needed to initiate 
radial cracks. A typical fatigue behaviour was apparent. Analysing this graph one can 
verify the observation made by Banerjee and Sarkar (1995) that incorporating a critical 
crack at the very first instance for fatigue study was not necessary. Once a crack was 
introduced with a critical load it acts as a griffith crack, which propagates rapidly for 
the material failure at a stress above fracture stress. Hence, whether this simulate true 
fatigue remains unexplained. The study conducted by Banerjee and Sarkar (1995) on 
sodalime glass showed that even without incorporating a crack a Griffith crack can be 
generated by repeated indentation with subcritical loads for the ultimate failure of the 
material. Load vs number of cycles plotted by Sparks and Hutchings (1992) while 
experimenting on sodalime glass with an initial critical crack, differs considerably from 
the present observation. The comparative results are shown in figure 2a, b as best fit 
power curves. The two equations are: 

y =  378'229x o-8os4 (Sparks and Hutchings 1992), 

y =  1.66066x o.6,95 (Banerjee and Sarkar 1995). 
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Figure I. Gradual increase in the diagonal length with repeated cycles at loads 0.1N, 
0-15N, 0.25N. 0-50N and 1-0N where 'c" indicates the point of cracking (after Banerjee and 
Sarkar 1995). 

When the results are plotted on a log-log scale the best fit curves are shown in 
figures 3a, b. The slopes(m) are ~- - 0"8 and -~ - 0-6 for Sparks Hutchings (figure 3a) 
and Banerjee-Sarkar (figure 3b) respectively. Considering the values of 'm' it is 
apparent that there is a difference in the mechanism for propagating an existing crack 
and initiating a crack under repeated indentation simulating fatigue condition. 

Another important observation was the increase in the diagonal length of the 
deformed cavity by repeated indentation as seen in SEM (figure 4). This was reported 
for the first time by Banerjee and Sarkar (1995). It indicates that plastic deformation 
plays a pivotal role in the initiation of radial cracks. Previous workers (Cook and Pharr 
1990; Guiu et al 1991) showed that during indentation all the three cracks namely, 
median, lateral and radial initiated in one single cycle, first during loading and the other 
two during unloading. Hence the increase in the deformed cavity without initiating 
surface cracks, justifies the concept of plastic deformation in glass (Taylor 1950). Also 
subsurface cracks were not observed under SEM till radial cracks occurred which are in 
agreement with Cook and Pharr (1990). The above experiment was different from that 
of the previous workers since it was conducted without incorporating an initial crack in 
the glass sample, thus simulating true fatigue condition for ultimate failure of the 
material. Moreover, sodalime glass being a compact/normal glass the concept of 
densification anomalous behaviour does not arise (Arora et al 1979). 

3.1 The model 

To analyse the above phenomena, consider a stress a a applied on a prepared surface of 
a glass at a localized zone. The applied stress being greater than the yield stress (ay) but 
less than the critical fracture stress (ac) of glass, a small localized zone deformed 
plastically. Consequently, a plastic strain (%) developed. The corresponding stress a r 
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Figure 2. Power fitting fatigue graph showing load to number of cycles at cracking (a) 
Banerjee and Sarkar (1995) and (b) Sparks and Hutchings (1992). 

balanced the applied stress o a from further penetration into the material. Hence at 
equilibrium 

o'Pl :~ O"a , (1) 

where ~r~ ~ is the stress in the plastic region. 
Since elastic zone lies underneath the plastic zone and stress being a continuous 

vector, it decreases and at the elastic-plastic boundary becomes 

~r~ I = % .  (2) 

As the indentor was unloaded, the compressed material recovered d u e  to the 
recoverable elastic stress from the elastic zone lying beneath the plastic zone thus, 
reducing the diagonal length from the original first length when the indentor was fully 
within the formed cavity shown schematically in figure 5. Thus, at the surface around 
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F i g u r e  3. Best fit curve plotted in log-log axis: (a) Sparks and Hutchings (1992) and (b) 
Banerjee and Sarkar.(1995). 

the point of application the stress is zero, but due to elastic recovery the elastic stress 
reduces by a quantity e(a~), where a~ ~ is the elastic stress generated from the elastic 
zone and e is a scalar quantity within the domain (0 < ~ < 1). Hence, the resultant 
residual stress (a*) in the material is given by a coupled equation 

0"~ = (O'r pl "~ ~O'rel). (3) 

The direction of this residual stress is towards the surface. 
On imposing a new impression during the second indentation when the indentor 

meets a new surface at the cavity produced by the first impression the diagonal length 
increases but not to the same dimension as in first cycle due to the residual stress 
opposing the applied stress. This process was repetitive thus increasing the diagonal 
lengths at each cycle, but in decreasing magnitude due to cumulative residual stress 
built up at each cycle. The magnitude of this residual stress at 'n' number of cycles can 
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Figure 4. Scanning electron microscope (SEM) at 0.1N load showing the increase in the 
indentation diagonal length with no. of cycle~ (Number-3778 cycle 1; Number-3782 cycle 15; 
Number-3784 cycle 30; Number-3786 cycle 65: hair line crack). 
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Figure 5. Schematic diagram showing the elastic recovery of the plastic zone after the 
indenter is unloaded. 

be ca lcula ted  by modify ing  (3) 

j = l  

Here  a~" denote  the cumula t ive  residual  stress and  ~ j ,  t < ~j; cr el < a ~j I t  was obvious  
r + t  r j  • 

f rom (4) that  the plast ic  de fo rma t ion  increased progress ively  due to the increase in the 
plast ic  stress and  decreased  in the elastic recovery in subsequent  cycles. Neglec t ing  
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other components, fracture stress is given by 

O'f = ffa "~ fin. (5) 

Analysing (4) and (5) one can conclude the formation of surface crack even if the load 
is very small and number of cycles 'n' is very large. It was imperative that though glass is 
a brittle material it undergoes fatigue damage assisted by plastic deformation and 
cumulative residual stress due to repeated cycling. 

4. Conclusions 

It was observed that the diagonal length of the indentation in sodalime glass continued 
to increase with repeated indentation at subcritical loads till radial hair line cracks were 
formed. The number of cycles to cracking varied with applied load. It was apparent that 
the increase in the plastic region was due to imposition of a new impression at every 
indentation when the indentor meets a new surface at the cavity produced by the 
previous impression. Moreover, due to the cumulative residual stress developed per 
cycle opposing the applied stress, the increase in diagonal length gets progressively 
small from the previous cycle. It was demonstrated from the model that surface crack 
can be observed even if the applied load is very small and number of cycle 'n' is very 
large. It is thus imperative that this failure under fatigue loading is phenomenological 
to metal fatigue. 
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