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Abstract  

The precursor glasses in (mol%) 25.53Li2O-21.53Ta2O5-35.29SiO2-17.65Al2O3 (LTSA) and 

25K2O-25Nb2O5-50SiO2 (KNS) glass systems were prepared by the melt-quench technique. 

Ferroelectric LiTaO3 (LT) and KNbO3 (KN) crystallites containing bulk nano glass-ceramics 

have been prepared by controlled crystallization of these precursor glasses respectively. Second 

harmonic generations (SHG) at 532 nm in both the glass-ceramics have been realized under 

fundamental beam of Nd3+:YAG laser source (1064 nm). The SHG power output has been found 

to increase up to 14 and 62.4 nJ with variation of rotation angle for LT and KN bulk nano glass-

ceramics respectively due to orientation of ferroelectric domains under applied field.  
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1. Introduction 

 
The area of nonlinear optics (NLO) has gained considerable importance with the advent of 

lasers1 and demonstration of second-harmonic generation (SHG) in a quartz crystal with an 

intense ruby laser beam by Franken and coworkers2. The generation of new output at different 

color with frequency twice that of ruby laser radiation has laid the foundations of nonlinear 

optics.3,4 The electric field strength of conventional light sources is much lower as compared to 

the inter-atomic fields, and hence cannot demonstrate sizeable nonlinear effects. But the field 

strength of laser light is comparable to that of inter-atomic fields, so the nonlinear-optical effects 

are readily manifested.  

NLO deals with the interaction of intense electromagnetic fields with matter, producing 

magnified fields that are different from the input field in frequency, phase or amplitude. NLO is 

essentially a material phenomenon, and the usual nonlinear medium is a crystal. Hence search for 

new nonlinear-optical materials with superior properties has got new momentum in the past few 

decades.  

LiTaO3 (LT) and KNbO3 (KN) are the two most important lead-free ferroelectric materials in 

the A1+B5+O3 type perovskite family. These materials exhibit excellent nonlinear optical 

properties in their single crystal forms.5-8 Optical and structural properties of single crystal 

LiTaO3 and KNbO3 have also been studied due to their potential optical and optoelectronic 

applications.9-14 In the last decade, significant interest has been articulated by the researcher in 

non-single crystal (vitreous, glass-ceramic and ceramic) optical media capable of producing 

optical second harmonic generation (SHG). The demands of optics and optoelectronics for fiber 

and waveguide materials with nonlinear properties have motivated the researchers to do so. 

However, the design of these glass materials has been basically hampered by the fact that glasses 
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have inversion symmetry and forbid the even-order optical nonlinearity, in particular, the SHG 

effect. This forbiddingness can be removed through a polar or noncentrosymmetric texturing of 

the material either owing to external actions or due to the formation and ordering of acentric 

internal fragments.15-19  

Numerous publications during last several years are devoted to dc electrical poling of various 

glasses of complicated compositions such as potassium cesium niobium silicate17, titanium 

silicate18, lithium niobium tellurite19, lead silicate20, niobium borophosphate21 and others. It 

should be emphasized that the SHG effect in poled glasses has exclusively electric-induced 

nature and does not involve noticeable atomic rearrangements on the scale of both short-range 

and medium-range orders. Therefore, SHG efficiency of poled glasses is not long living and may 

be easily suppressed by a subsequent low-temperature heat treatment21 A brief review on optical 

nonlinearity in photonic glasses has been reported by Tanaka et al.22 Electron beam induced 

SHG generation in Er3+ doped PbO-GeO2 glasses containing silver nanoparticles has also been 

reported by Kassab et al.23 In this connection, nanostructured glasses or transparent glass-

ceramics based on ferroelectric or other highly polarizable phases are of great interest for 

different non-linear optical applications. At present, however, the nanometric scale is not 

sufficiently well mastered to allow manufacturing of nanostructured transparent glasses and glass 

ceramics possessing a distinct second order optical non-linearity. Recently, the structural and 

luminescence properties of rare earth doped LiTaO3 and KNbO3 glass-ceramics have been 

reported by our group24,25 and other researchers26 as well.  However, as we aware distinct second 

order optical non-linearity in the volume nanocrystallized ferroelectric crystal of LiTaO3 and 

KNbO3 in bulk glass-ceramics has not been explored so far. 
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In view of above, the present work focuses on the preparation of 25.53Li2O-21.53Ta2O5-

35.29SiO2-17.65Al2O3 (LTSA) and 25K2O-25Nb2O5-50SiO2 (KNS) precursor glasses and 

subsequently LT and KN nano glass-ceramics respectively, by controlled nucleation and 

crystallization processes. The consequences of crystallization have been studied by X-ray 

diffraction (XRD), transmission electron microscopy (TEM) and second harmonic generation 

(SHG) measurements.  

 

2. Experimental 

2.1     Precursor Glass Preparation 

The precursor glass having molar composition (mol%) 25.53Li2O-21.53Ta2O5-35.29SiO2-

17.65Al2O3 and 25K2O-25Nb2O5-50SiO2 were prepared from high-purity chemicals such as 

Li2CO3 (GR, 99%, Loba Chemie), K2CO3 (GR, 99.9%, Loba Chemie), Ta2O5 (99.85%, Alfa 

Aesar), Nb2O5 (GR, 99.9%, Loba Chemie), SiO2 (99.8%, Sipur A1 Bremtheler Quartzitwerk) 

and Al2O3 (99.8%, CT 1200 SG, Almatis Inc.) by conventional melt-quench technique. The well-

mixed batch of about 100 g of each glass was melted in a platinum crucible in an electric furnace 

at 1550-1600°C for 2 h in air. The glass melts were poured onto a pre-heated iron mould. They 

were annealed at 600°C for 4 h to remove the internal stresses of the glass and then slowly 

cooled down to room temperature. The as-prepared glass blocks were cut into desired 

dimensions and optically polished for ceramization and subsequently to perform SHG 

measurements. 

2.2     Characterization  

The crystalline phases generated in the glass matrices were identified by X-ray diffraction 

measurements using an X’Pert-Pro MPD diffractometer (PANalytical) with Ni-filtered CuKα = 
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1.5406 Å radiation as the X-ray source. The 2θ scan range was 10o to 80o with a step size of 

0.05o. The TEM images and selected area electron diffraction (SAED) of powdered glass-

ceramic samples were obtained using a Tecnai G2 30ST transmission electron microscope (FEI 

Company).   

SHG measurements were carried out using Nd: YAG laser (λ = 1064 nm) of pulse width 17 

ns. The experimental set up for the measurement of relative second harmonic intensity is shown 

in Fig. 1. The input energy of Nd3+: YAG laser was fixed at 17 mJ. The input energy of laser was 

divided in two directions (50% energy in each direction) using reflecting neutral density filter. In 

one direction KDP was put for reference. The reference SHG signal was measured using 

photodiode. Second beam was passed through visible filter (which blocks all visible wavelengths 

but pass 1064 nm) and focused onto the test samples. The SHG generated from the sample was 

focused onto a second harmonic separator, which reflects 532 nm at 45o and transmit 1064 nm. 

The SHG signal reflected from SHG separator passed through IR filter was finally measured 

using PMT. The reference signals from photodiode and from PMT were measured 

simultaneously using Lecroy oscilloscope (bandwidth 1GHz). 

 

3. Results and Discussion 

3.1     X-ray Diffraction Analysis  

The photographs of transparent precursor bulk LTSA and KNS glasses and their corresponding 

nano glass-ceramics (of different lengths) prepared by controlled crystallization of the precursor 

glasses at 680oC for 10 h and 800oC for 10 h respectively, and they are shown in Fig. 2(a) and (b) 

respectively. The X-ray diffractograms of precursor glass and cerammed glass-ceramics of both 

the systems are shown in Fig. 3 and Fig. 4. The XRD pattern of the precursor glasses exhibit 
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broad humps characterizing their amorphous nature. The X-ray diffraction pattern of the glass-

ceramics in LTSA glass system clearly shows the structural behavior expected after a thermal 

treatment of the precursor glass. With increase of heat-treatment temperature, several diffraction 

peaks have been appeared. From the analysis of these peaks it has been concluded that these 

peaks are attributed to rhombohedral LiTaO3 (JCPDS Card File No. 29-0836) except a few 

diffraction peak around 2θ = 23.05o, 25.35o, 44.60o and 47.02o which are due to the formation of 

β-spodumene (LiAlSi2O6) crystal phase (JCPDS Card File No. 35-0797) in minor quantity. It is 

clearly observed from the XRD analysis that the peak of LiAlSi2O6 (2θ = 25.27o) is more 

prominent in sample heat-treated at 680oC for 10 h duration and it got diminished with respect to 

LiTaO3 phase in samples heat-treated at higher temperatures (here 750 and 850oC) for same 

duration of heat-treatment. This observation indicates that the β-spodumene content in glass-

ceramics decreases with formation of more LT with increase in heat-treatment temperature. The 

structuring of broad hump in the 25K2O-25Nb2O5-50SiO2 glass system takes place in the XRD 

pattern of the heat-treated nano glass-ceramic sample along with the appearance of other well 

defined peaks at around 15o, 16o, 25o, 30o, 51o diffraction angles, which confirms the 

precipitation of crystalline phase in the amorphous matrix. The diffraction pattern of glass-

ceramics to some extent resembles the JCPDS Card File No. 32-821 of known potassium niobate 

(KNbO3) crystal phase. From the full width at half maximum (FWHM) of the most intense 

diffraction peak at 2θ = 23.6o of LiTaO3 and 2θ = 30o of KNbO3, the average crystallite size 

(diameter, d) is calculated by using the Scherrer’s formula27  

θβλ cos/9.0=d     (1) 

where λ is the wavelength of X-ray radiation (CuKα = 1.5406Å), β is the full width at half 

maximum (FWHM) of the peak at 2θ. The average LiTaO3 crystallite size increases with heat-



 7 

treatment duration and found to vary from 35 to 60 nm. For KNbO3 crystallite containing nano 

glass-ceramics the crystallite size is estimated to be around 15 nm.  

 

3.2     TEM Image Analysis 

The morphology and distribution of LiTaO3 and KNbO3 crystallite containing nano glass-

ceramics have been examined by TEM image analysis.  The TEM bright field images and their 

corresponding selected area electron diffraction (SAED) patterns of the heat-treated (at 680oC for 

10 h) LiTaO3 nano glass-ceramic and heat-treated (800oC for 10 h) KNbO3 nano glass-ceramic 

samples are shown in Figs. 5(a) and (b) respectively. From these images, it is observed that many 

irregular size and shaped LiTaO3 and nearly spherical KNbO3 crystallites precipitated 

homogeneously and remained dispersed in the residual glass matrix.  The crystallite size from 

TEM image of Fig. 5(a) is found to be around 15-30 nm and Fig. 5(b) to be around 12 nm. The 

presence of fine spherical rings around the central bright region in SAED pattern discloses the 

existence of LiTaO3 and KNbO3 crystallites in the glassy matrix. 

 

3.3     SHG Analysis 

Some basic principles of nonlinear optics are discussed as follows. For a more comprehensive 

article, the reader is referred to other literature on nonlinear optics.28-32 A general introduction to 

(linear) crystal optics can be found in standard textbooks.33-35 The NLO processes originate from 

the response of a nonlinear dielectric medium to an oscillating electric field. For an applied low 

amplitude oscillating field on the crystal structure and its electron distribution the induced 

oscillation of charges in the structure results in the radiation of an electromagnetic field with a 

frequency equal to the applied field oscillation. If, however, a harmonic oscillation with 
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sufficiently high amplitude is applied, then radiation that is described by a combination of the 

induced frequency and its harmonics is produced. Therefore, NLO processes in optical media, 

caused by intense electromagnetic radiation fields, generate new frequencies of light. With 

respect to the electromagnetic field the processes can either be energy conserving such as 

harmonic generation or energy consuming such as stimulated Raman or Brillouin scattering. In 

harmonic generation, a single harmonic (frequency doubling, tripling, etc.) of a given 

fundamental frequency is generated by the nonlinear response of the material. The induced 

dielectric polarization P depends on the applied field E and can be expressed in a series of 

powers of E, according to Eq. 2, where χ(1) is the linear dielectric susceptibility known from 

linear optics, and χ(2), χ(3), etc. are the nonlinear dielectric susceptibilities of second, third, etc. 

order, respectively. 

+++= 3)3(2)2()1(()( EEEEP o χχχε - - -)                          (2) 

Unfortunately, not all materials are suitable for NLO applications. Nonlinear second-order 

susceptibility only occurs in crystals without a center of symmetry, in centric crystals or 

amorphous materials (e.g., glass) it is zero. In the case of SHG (ω1 = ω2, ω3 = 2ω1, ωn=1, 2, 3 are 

the frequency terms of χ(n)) a SHG tensor dijk is commonly used in the literature, which is defined 

as dijk = χijk/2. In other way, in this process two identical photons from a single pump beam are 

added, resulting in a photon having twice the frequency. The generation of second-harmonic 

waves from the incident wave of frequency ω
1 

is a two-step process. First, a polarization wave at 

the second harmonic frequency 2ω
1 

is produced. The next step is the transfer of energy from the 

polarization wave to an electromagnetic wave at frequency 2ω
1
. The phase velocity of the 

fundamental as well as the second harmonic depends upon the refractive index of the medium at 

respective wavelengths. 
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The variation of SHG output power (nJ) with time period in LTSA glass and LT glass-

ceramics has been shown in Fig. 6(a)-(d). It is seen from the Fig. 6(a) that the precursor LTSA 

glass does not exhibit any SHG output. This is due to inversion symmetry of the precursor glass. 

For a constant heat-treatment time (10 h), the SHG output power increase from 1.08 to 1.875 nJ 

when the temperature is increased from 680oC to 850oC. This is attributed due to the formation 

of ferroelectric (non-centrosymmetric) LiTaO3 crystals in the glassy matrix. Moreover, the 

increase in SHG output power with subsequent increase of heat-treatment temperature is due to 

the increase of LiTaO3 crystallites content and their sizes in the glassy matrix. The variation of 

SHG output power from 1 x 1 x 1  and 3 x 1 x 1 cm3 bulk samples with time period has been 

presented Fig. 7(a) and (b). With increase in length of the sample, the output SHG power is also 

increased from 1.08 nJ to 1.126 nJ and this may be due the availability of relatively more number 

LiTaO3 ferroelectric crystallites in glass-ceramics. The variation of SHG output power with 

angle of rotation (0-32.5o) is shown in Fig. 8. With variation of rotation angle, the nano glass-

ceramics exhibit maximum SHG output (14 nJ) at an angle of 8o. This phenomenon is explained 

on the basis of reorientation of ferroelectric domains under the applied electric field. A similar 

observation and explanation were reported by Borrelli et al.36,37 

The SHG output power (nJ) of KNS glass and KN glass-ceramics heat-treated at 800oC for 

10 h is shown in Fig. 9(a)-(b). It is seen from the Fig. 9(a) that the precursor glass does not 

exhibit any SHG output. This phenomenon once again explained on the basis of inversion 

symmetry of the precursor glass. With heat-treatment of the precursor glass at 800oC for 10 h 

duration, the SHG output power increase to 39.74 nJ. This is attributed due to the formation of 

ferroelectric (non-centrosymmetric) KNbO3 crystals in the glassy matrix. The variation of SHG 

output power of the glass-ceramic composite material with angle of rotation (0-32.5o) is shown 
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in Fig. 10. With variation of rotation angle, the nano glass-ceramics exhibit maximum SHG 

output (62.4 nJ) at an angle of 4o. It is also happened due to reorientation of ferroelectric 

domains under the applied electric field.36,37 

 

4. Conclusions 

We have prepared LT and KN nano glass-ceramics by controlled crystallization of the 

corresponding precursor glasses. X-ray diffraction (XRD) and transmission electron microscopic 

(TEM) analyses confirm the formation of LiTaO3 crystals in LTSA glass system and KNbO3 

crystals in KNS glass system. The crystallite sizes of the LT are in the range 35-60 nm and KN is 

about 15 nm. We have demonstrated the second harmonic generation (SHG) in the 

aforementioned two bulk nano glass-ceramics. It is attributed to the formation of non-

centrosymmetric ferroelectric LiTaO3 and KNbO3 nano crystals. It is also observed that with 

increase of ferroelectric phases (LiTaO3 and KNbO3) and its sizes, the SHG output powers have 

also increased and found to vary in the range 1.08 to 39.74 nJ. The variation of SHG output 

powers with the changes of rotation angle for LT and KN nano glass-ceramics have been studied 

and the maximum values of SHG output are 14 nJ and 62.4 nJ respectively. 
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FIGURE CAPTIONS 

Fig. 1. Schematic diagram of experimental arrangement for measuring bulk SHG efficiency. 

Fig. 2. Photograph of (a) LT precursor bulk glass (extreme left, one number) and nano glass-

ceramics (right, three numbers) and (b) KN precursor bulk glass (extreme left, one number) and 

nano glass-ceramics (right, three numbers) used to measure SHG efficiency. 

Fig. 3. XRD patterns of precursor LTSA glass and LT nano glass-ceramics obtained after heat-

treatment at 680, 750 and 850oC 10 h. 

Fig. 4. XRD patterns of precursor KNS glass and KN nano glass-ceramics obtained after heat-

treatment at 800oC for 10 h. 

Fig. 5.  (a) TEM images and SAEDs (Inset) of nano glass-ceramic samples (a) LT heat-treated at 

680oC for 10 h and (b) KN heat-treated at 800oC for 10 h. 

Fig. 6. Variation of SHG output power (nJ) with time period of precursor LTSA glass, 680, 750, 

and 850oC heat-treated for 10 h LT nano glass-ceramic samples. 

Fig. 7. Variation of SHG output power with time period of 1 x 1 x 1 and 3 x 1 x 1 cm3 LT nano 

glass-ceramic samples heat-treated at 680oC for 10 h.  

Fig. 8. Variation of SHG output power with angle of rotation (degree) of 3 x 1 x 1 cm3 LT nano 

glass-ceramics sample heat-treated at 680oC for 10 h. 

Fig. 9. Variation of SHG output power (nJ) with time period of precursor KNS glass and 800oC 

heat-treated for 10 h KN nano glass-ceramic samples. 
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Fig. 10. Variation of SHG output power with angle of rotation (degree) of KN nano glass-

ceramic sample heat-treated at 800oC for 10 h. 

 

 

 

 

 

Fig. 1. Schematic diagram of experimental arrangement for measuring bulk SHG efficiency. 
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Fig. 2. Photograph of (a) LT precursor bulk glass (extreme left, one number) and nano glass-

ceramics (right, three numbers) and (b) KN precursor bulk glass (extreme left, one number) and 

nano glass-ceramics (right, three numbers) used to measure SHG efficiency. 
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Fig. 3. XRD patterns of precursor LTSA glass and LT nano glass-ceramics obtained after heat-

treatment at 680, 750 and 850oC 10 h. 
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Fig. 4. XRD patterns of precursor KNS glass and KN nano glass-ceramics obtained after heat-

treatment at 800oC for 10 h. 
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Fig. 5.  (a) TEM images and SAEDs (Inset) of nano glass-ceramic samples (a) LT heat-treated at 

680oC for 10 h and (b) KN heat-treated at 800oC for 10 h. 

 

 

 

 

 

 

 

(a) (b) 



 21 

 

 

 

 

 

 

 

 

 

 

Fig. 6. Variation of SHG output power (nJ) with time period of precursor LTSA glass, 680, 750, 

and 850oC heat-treated for 10 h LT nano glass-ceramic samples. 
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Fig. 7. Variation of SHG output power with time period of 1 x 1 x 1 and 3 x 1 x 1 cm3 LT nano 

glass-ceramic samples heat-treated at 680oC for 10 h. 
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Fig. 8. Variation of SHG output power with angle of rotation (degree) of 3 x 1 x 1 cm3 LT nano 

glass-ceramics sample heat-treated at 680oC for 10 h. 
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Fig. 9. Variation of SHG output power (nJ) with time period of precursor KNS glass and 800oC 

heat-treated for 10 h KN nano glass-ceramic samples. 
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Fig. 10. Variation of SHG output power with angle of rotation (degree) of KN nano glass-

ceramic sample heat-treated at 800oC for 10 h.  


