# Effects of SiO<sub>2</sub> and TiO<sub>2</sub> fillers on thermal and dielectric properties of eco-friendly bismuth glass microcomposites of plasma display panels

SHIV PRAKASH SINGH, KARAN PAL, ANAL TARAFDER, MOUSUMI DAS, KALYANDURG ANNAPURNA, BASUDEB KARMAKAR\*

Glass Technology Laboratory, Glass Division, Central Glass and Ceramic Research Institute (Council of Scientific and Industrial Research), 196. Raja S.C. Mullick Road, Kolkata 700 032, India.

**Abstract.** The effects of SiO<sub>2</sub> (amorphous) and TiO<sub>2</sub> (crystalline, rutile) fillers on softening point  $(T_s)$ , glass transition temperature  $(T_g)$ , coefficient of thermal expansion (CTE), and dielectric constant ( $\varepsilon$ ) of zinc bismuth borate, ZnO-Bi<sub>2</sub>O<sub>3</sub>-B<sub>2</sub>O<sub>3</sub> (ZBIB) glass microcomposites have been investigated with a view to its use as the white back (rear glass dielectric layer) of plasma display panels (PDPs). These experimentally measured properties have also been compared with those theoretically predicted values. Both the experimental and theoretical trends of these properties with added filler contents correlate very well. The interaction of fillers with glass occurred during sintering at 560°C has also been monitored by XRD and FTIR spectroscopic analyses. It is observed that the fillers have partially dissolved in the glass at the firing temperature leaving some unreacted residual filler which results in ceramic-glass microcomposites. In consideration of the desired properties of white back of PDPs, the addition of  $TiO_2$  filler to ZBIB glass is found to be more preferable than  $SiO_2$ filler. The addition of 10 wt% TiO<sub>2</sub> filler yielded  $T_s$ ,  $T_g$ , CTE and  $\varepsilon$  values of 560°C,  $480^{\circ}$ C.  $82x10^{-7}$ /K and 14.6 which are found to be met the desired values of  $<580^{\circ}$ C,  $<500^{\circ}$ C,  $<83x10^{-7}$ /K and <15 respectively with respect to PDP glass substrate (PD200).

Keywords. Composite materials; FTIR; Thermal properties; Dielectric properties.

E-mail address: basudebk@cgcri.res.in

<sup>\*</sup> Corresponding author. Tel.: +91 33 2473 3496: fax: +91 33 2473 0957.

# 1. Introduction

At the present time, the flat panel displays (FPDs) are widely being used in many fields and commercial applications. One well known FPD is the plasma display panel (PDP), which is competing against the liquid crystal display (LCD) in wall-hung television (TV) applications (Shinoda et al, 2000) and its popularity is increasing very rapidly. Especially, the PDP has several advantages compared to LCD such as high dimension TVs (about 102 inches), wide viewing angle (160°), best bright room contrast ratio, excellent color fidelity, least motion artifact and very gentle to eyes. PDP requires several glass powders of some specified thermal and dielectric properties for its construction such as white back (rear glass dielectric layer), barrier rib (partition between phosphor cavities), etc. In PDP white dielectric (white back) is used as the insulating film of the address electrodes on the rear glass substrate and give support to barrier rib. Glass powders are widely used as white back materials with addition of various types of ceramic oxide (e.g.  $SiO_2$ ,  $TiO_2$ , etc.) as filler for adjustment of its desired properties as well as improvement of its mechanical strength. Lead (Pb) based frits of PbO-B<sub>2</sub>O<sub>3</sub>-ZnO and PbO-B<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses are very popular as the commercial materials for PDP (Hwang et al 2002; Hiromitsu et al 2000; Shiro et al 1998). Lead is used in the glass due to its low softening point (Ts), high refractive index as well as adjustable properties required for PDP (Masahi et al 1999; Naoya et al 1999; Kim et al 2002). Here, lead oxide (PbO) is used to the extent of 60-80 wt.%, which creates problem due its deleterious effect to both health and the environment (Chang et al 2001). So recently some Pb-free glasses such as BaO-ZnO-B<sub>2</sub>O<sub>3</sub> [9], Bi<sub>2</sub>O<sub>3</sub>-B<sub>2</sub>O<sub>3</sub>-BaO-ZnO (Song et al 2006; J. -Y. Song and S. -Y. Choi 2006), BaO-B<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> (Lim et al 2006) etc. have been reported for application in PDPs. The effects of various types of crystalline fillers (e,g.  $SiO_2$ ,  $TiO_2$ ,  $Al_2O_3$ ,  $ZrO_2$ , MgO, etc.) in some lead-free glasses for PDP application are reported (Kim *et al* 2005; Lim *et al* 2006; Shin *et al* 2006a; Shin *et al* 2006b; Kim *et al* 2006). But very few glass compositions have been reported for white back application. To the best of our knowledge, there is no report on the effect of  $SiO_2$  and  $TiO_2$  fillers on the properties of ZnO-Bi<sub>2</sub>O<sub>3</sub>-B<sub>2</sub>O<sub>3</sub> (ZBIB) glass for use as white back of PDP.

In this study, bismuth oxide based glass has been selected as a substitute of lead oxide based glasses as it is next to lead in the periodic table which has low melting temperature (820°C) and high refractive index (n = 2.5) as lead oxide (m.p. = 880°C, n = 2.24). For selection of white back glass composition for PDP, it is important to achieve at least three decisive properties such as softening point ( $T_s$ ), coefficient of thermal expansion (CTE) and dielectric constant ( $\varepsilon$ ). It is observed that there is a very few reports on microcomposites for PDP application which have addressed all these three decisive properties simultaneously (Lim et al 2006). SiO<sub>2</sub> (CTE = 5.5 x 10<sup>-7</sup>/K,  $\varepsilon$  = 3.8) and TiO<sub>2</sub> (CTE = 80-100 x 10-7/K,  $\varepsilon$  = 80-100) having just opposite values (low and high respectively) of CTE and dielectric constant have been selected as fillers in this investigation.

In view of above, in this paper we report the effects of SiO<sub>2</sub> (amorphous) and TiO<sub>2</sub> (rutile) fillers on the softening point ( $T_s$ ), glass transition temperature ( $T_g$ ), coefficient of thermal expansion(CTE) and dielectric constant ( $\varepsilon$ ) of the microcomposites derived from the (wt.%) 19ZnO-46Bi<sub>2</sub>O<sub>3</sub>-35B<sub>2</sub>O<sub>3</sub> (ZBIB) glass. The interaction between the fillers and the glass occurred during sintering is also examined by XRD and FTIR analyses.

#### 2. Experimental procedure

# 2.1 Preparation of glass and microcomposite

The chemical composition (wt.%) of glass was  $19ZnO-46Bi_2O_3-35B_2O_3$  (ZBIB). The batch was prepared using the high purity raw materials such as ZnO (GR, 99%),  $Bi_2O_3$  (99%) and  $H_3BO_3$  (GR, 99.5%) of Loba Chemie. About 600 g glass was melted using these raw materials in a platinum crucible in an electrically heated raising hearth furnace at  $1150^{\circ}C$  for 2h in air with intermittent stirring. The molten glass was quenched by casting into an iron plate. The quenched glass was initially crushed in a stainless steel mortar and then pulverized in a planetary ball mill (Retzch, Model PM100) using zirconia jar and ball to obtain final glass powders of 14.4 µm size ( $d_{50}$ ).

The pulverized ZBIB glass powders were mixed in isopropanol medium with appropriate amount of microsilica, SiO<sub>2</sub> (Pooja Enterprises, 99.5 %,  $d_{50} = 1.5 \mu$ m) and titania, TiO<sub>2</sub> (Aldrich, 99.9 %,  $d_{50} = 3.2 \mu$ m) fillers in an agate mortar. All the powders were then granulated using 2 wt% aqueous solution of polyvinyl alcohol (PVA) followed by pressing uniaxially into disk or cylindrical shape under a pressure of 500 kgf/cm<sup>2</sup> and then dried. It was sintered at 560°C for 2h in air for measurement of coefficient of thermal expansion, dielectric constant, XRD and FTIR spectra. The composition of composites are enlisted in Table 1.

# 2.2 Characterization technique

The softening point ( $T_s$ ) of the dried disk was measured by a glass softening point system (Harrop/Labino, Model SP-3A) with an accuracy of  $\pm 1^{\circ}$ C. The instrument was previously calibrated with a NBS (National Bureau of Standards, USA) standard glass of known

softening point. The CTE and  $T_g$  of the sintered microcomposite cylinders were measured with an accuracy of ±0.2% using a horizontal-loading dilatometer (Netzsch, Model 402C) after calibration with standard alumina supplied with the instrument by the manufacturer. The CTE in the temperature range 50-350°C is reported here. The dielectric constant was measured with an accuracy of ±0.5% at a frequency of 1MHz using a LCR meter (Hioki, Model 3532-50 LCR Hitester) at 25°C. The instrument was calibrated previously by Suprasil-W silica glass ( $\varepsilon = 3.8$ ). XRD data of powder samples were recorded using XPERTPRO diffractometer with 20 varying from 10° to 80° using Ni filtered CuK $\alpha$  ( $\lambda =$ 1.5406 Å) at 25°C, generator power of 45 KV and 35 mA. FTIR spectra were recorded by dispersing the sintered glass and composite powders in KBr with a Perkin-Elmer FTIR spectrometer (Model 1615) at a resolution of ± 2 cm<sup>-1</sup> after 16 scans. It was calibrated with a polystyrene film supplied by the instrument manufacturer.

Glass properties such as Littleton softening point ( $T_{Lt}$ ), CTE, and  $T_g$  were theoretically calculated (predicted) using SciGlass (Glass Properties Information System, Version 6.7) software following the Priven-2000 method (Priven 2004; Priven 1998; Priven and Mazunin 2003; SciGlass Version 6.7) and dielectric constant by the method of Kharjuzov and Zorin (SciGlass Version 6.7).

# 3. Results and discussion

### 3.1 Particle size distribution

The extent of interaction of glass and fillers at the sintering temperature is largely depended on their particle size and its distribution. Thus, the particle size distribution of ZBIB glass powder,  $TiO_2$  and  $SiO_2$  fillers are shown in Fig.1. It is seen that all the

powders exhibit a bimodal particle size distribution. The median particle sizes ( $d_{50}$ ) of ZBIB glass powder, TiO<sub>2</sub> and SiO<sub>2</sub> fillers are found to be 14.4, 3.2 and 1.5 µm respectively.

#### 3.2 XRD analysis

As the reaction of fillers (SiO<sub>2</sub> and TiO<sub>2</sub>) with glass during firing at 560°C is the fundamental to the formation of filler-glass microcomposites, thus, they have been examined by XRD analysis. The variation of XRD pattern of microcomposites with added TiO<sub>2</sub> filler content is shown in Fig. 2. ZBIB glass is X-ray amorphous (Fig. 2, curve a). Since the added  $SiO_2$  filler is amorphous, so all the  $SiO_2$  containing microcomposites found to be X-ray amorphous and do not exhibit any characteristic XRD peak (not shown here). On the other hand,  $TiO_2$  filler is crystalline, rutile (see Fig. 2, curve f), so the TiO<sub>2</sub> containing microcomposites exhibit gradual development of XRD pattern of rutile  $TiO_2$  (JCPDS card No.: 21-1276) with suppressed amorphous character of the resultant composites. XRD patterns clearly depict that the filler has partially dissolved in glass during sintering leaving behind some residual filler in the glass matrix. This observation correlates well with those of FTIR spectral study as discussed later (see section 3.3). Thus, it is clear from XRD analysis that  $SiO_2$  (amorphous) and  $TiO_2$ (crystalline) filler containing microcomposites are of amorphous-in-amorphous and crystal (ceramic)-in-amorphous characteristics respectively.

The FTIR spectra of  $SiO_2$  and  $TiO_2$  containing microcomposites are depicted in Figs. 3 and 4 respectively. Their IR band positions along with assignments are also provided in Tables 2 and 3 respectively. The ZBIB glass exhibits three distinct bands around 1346, 954 and 685 cm<sup>-1</sup>, which are attributed to asymmetric stretching vibration of B-O-B bond of the trigonal [BO<sub>3</sub>] units, stretching vibration of B-O-B bond of the tetragonal [BO<sub>4</sub>] units, and bending vibration of B-O-B linkages respectively of the borate glass networks (Fuxi 1992; Kamitsos et al 1987; Motke et al 2002). The band at 685 cm<sup>-1</sup> is also due to the stretching vibration of Bi-O-Bi bond of [BiO<sub>6</sub>] octahedral units (Baia et al 2003; Kharlamov et al 1996). The SiO<sub>2</sub> filler also exhibits three intense bands at around 1115, 815 and 469 cm<sup>-1</sup> which are attributed to asymmetric stretching vibration of Si-O-Si bond, symmetric stretching vibration of O-Si-O bond and bending vibration of Si-O-Si bond of [SiO<sub>4</sub>] tetrahedral unit respectively (Fuxi 1992). It is seen from Fig. 3 that with increasing SiO<sub>2</sub> filler in the composites GS5 to GS20 all these three bands in microcomposites gradually become more intense along with the intensity decrease and changes of shapes of all the three bands of the ZBIB glass. These observations have been more clearly enlisted in Table 2. The bands at around 1246, 1069 and 946 cm<sup>-1</sup> are attributed to asymmetric vibration of B-O-Si bond (Fuxi 1992). The band at around 669 cm<sup>-1</sup> is assigned to Bi-O-Si asymmetric stretching vibration (Fuxi 1992). This fact clearly indicates the distinct interaction of ZBIB glass with SiO<sub>2</sub> filler at the sintering temperature and formation of bonds with SiO<sub>2</sub>.

The TiO<sub>2</sub> filler exhibit one very strong and doublet absorption band peaking at 654 and 546 cm<sup>-1</sup> which are due to stretching vibrations of Ti-O-Ti bond of  $[TiO_6]$ 

octahedra (Last 1957; Rao 1963). It is seen from Fig. 4 that with increasing TiO<sub>2</sub> filler content in the composites GT5 to GT20, the band at 685 cm<sup>-1</sup> of the ZBIB glass gradually undergo pronounced change and the bands of TiO<sub>2</sub> filler at 654 and 546 cm<sup>-1</sup> gradually become more intense. It indicates the formation of Ti-O-Bi bonds. In addition, the 1346 and 954 cm<sup>-1</sup> bands undergo changes with formation of medium intense band at around 1254, 1203, 1023 and 908 cm<sup>-1</sup> which are due to asymmetric vibration of B-O-Ti bond (Uma and Nogami 2007). This is clearly shown in Table 3. All these facts clearly indicate the distinct interaction of ZBIB glass with TiO<sub>2</sub> filler. It is seen from Figs. 3 and 4 that the nature of the spectra of microcomposites, in both SiO<sub>2</sub> and TiO<sub>2</sub> additions, gradually become closer to those of fillers. This indicates that the fillers have partially dissolved in the glass leaving behind residual fillers in resultant microcomposites. This is analogous to the observation of XRD analysis (see section 3.2).

#### 3.4 Softening point and glass transition temperature

The softening point  $(T_s)$  and glass transition temperatures  $(T_g)$  are gradually going up as the SiO<sub>2</sub> and TiO<sub>2</sub> filler content increases from 5 to 20 wt%. A similar trend is observed in the theoretically predicted Littleton softening point  $(T_{Lt})$  and glass transition temperature as well. However, the experimental values in both the cases are lower than those of theoretical predictions. These facts are depicted in Figs. 5 and 6. The close correlation between the experimental and theoretically calculated softening point and glass transition temperature trends clearly indicates that these properties are additive in nature with respect to the constituting chemical components. This is because of the fact that theoretical calculations of the  $T_{Lt}$  and  $T_g$  are based on additive mathematical formula (Priven 2004; Priven 1998; Priven and Mazunin 2003) as shown below.

$$P = \Box \begin{array}{ccc} N & N \\ P = \Box \begin{array}{ccc} g_{i,p} & m_i n_i \end{array} \\ & & i = 1 \end{array} \begin{array}{ccc} m_i n_i \end{array}$$
(1)

where *P* is the property being calculated; *i* is the index of the oxide; *N* is the number of types of oxides forming the glass in question;  $m_i$  is a molar fraction of the *i*<sup>th</sup> oxide;  $n_i$  is the number of atoms in the formula of the *i*<sup>th</sup> oxide and  $g_{i,p}$  is a partial coefficient for the *i*<sup>th</sup> oxide.

A similar increasing trend of glass transition temperature with increasing SiO<sub>2</sub> content has been demonstrated by Vernacotola and Shelby (Vernacotola and Shelby 1993; Vernacotola 1994) for potassium niobium silicate glasses. Some properties of added SiO<sub>2</sub> and TiO<sub>2</sub> fillers are provided in Table 4. It is seen that SiO<sub>2</sub> and TiO<sub>2</sub> have high melting points. The increase of  $T_s$  and  $T_g$  of microcomposites is due to high melting points of SiO<sub>2</sub> (1723°C) and TiO<sub>2</sub> (1850°C) fillers. It is also seen from Fig. 5 that SiO<sub>2</sub> filler has greater effect on softening point as compared to TiO<sub>2</sub> filler. This is due to higher Si-O bond strength (2.48) and Si field strength (1.54) than compared to Ti-O bond strength (2.05) and Ti field strength (1.05) (Volf 1984).

# 3.5 Coefficient of thermal expansion

Comparison of variation of experimental and theoretically predicted coefficient of thermal expansion (CTE) as a function of added  $SiO_2$  and  $TiO_2$  fillers is shown in Fig.7. The CTE gradually decreases as  $SiO_2$  filler content increases form 5 to 20 wt%. This

trend correlates well with that of theoretical prediction as obtained by following the Eq.1, whereas it is nearly unaffected as TiO<sub>2</sub> filler content increases. However, the experimental values are higher than those of theoretical predictions. In the latter case, theoretical prediction is slightly decreasing. It, thus, indicates that the change of CTE with addition of TiO<sub>2</sub> is not simple additive as formulated in Eq.1. Similar effects have been reported by Kim et al. (Kim *et al* 2005; Shin *et al* 2006b; Kim *et al* 2006) for BaO-ZnO-B<sub>2</sub>O<sub>3</sub> and BaO-ZnO-B<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses on addition of SiO<sub>2</sub> and TiO<sub>2</sub> fillers. It is seen from Table 4 that SiO<sub>2</sub> filler has very low CTE (5.5 x 10<sup>-7</sup>/K) as compared to the glass (82x10<sup>-7</sup>/K). Therefore, the resultant CTE of the composite decreases gradually. But in case of TiO<sub>2</sub> filler the CTE is nearly unchanged; this is due to its very near CTE (80-100 x 10<sup>-7</sup>/K) as compared to glass (82 x 10<sup>-7</sup>/K). This fact also supports the additive character of CTE of the composites with respect to their chemical components as seen earlier in the case of  $T_s$  and  $T_g$ .

The above fact can also be well understood from the bond strength values of Si-O and Ti-O bonds. The Si-O bond strength (2.48) is higher than that of Ti-O bond (2.05) (Volf 1984). The CTE in the former case decreases due to higher bond strength which results in strengthening of connectivity of the network of the resultant composites.

#### 3.6 *Dielectric constant*

Dielectric constant ( $\epsilon$ ) of the microcomposites has been evaluated by using the following formula (Rawlins *et al* 1993)

$$\varepsilon = cd/(0.0885\,A) \tag{2}$$

where *c*, *d* and *A* are capacitance in pico Farad (*pF*), thickness of glass or composite (in *cm*) and area of the dielectric (in  $cm^2$ ) respectively.

The comparison of variation of experimental and theoretically predicted (Kharjuzov and Zorin method (SciGlass Version 6.7)) dielectric constant as a function of added SiO<sub>2</sub> and TiO<sub>2</sub> fillers is shown in Fig. 8. It is seen that the dielectric constant of the composites gradually decreases with increase in SiO<sub>2</sub> filler content. On the other hand, dielectric constant of composites increases with the TiO<sub>2</sub> filler addition. All these trends correlate very well with those theoretical predictions. However, the experimental values are higher than those of theoretical predictions. Results reported by Kim et al. (Kim et al 2005; Shin et al 2006b; Kim et al 2006) for SiO<sub>2</sub> and TiO<sub>2</sub> filler addition to BaO-ZnO-B<sub>2</sub>O<sub>3</sub> and BaO-ZnO-B<sub>2</sub>O<sub>3</sub>-SiO<sub>2</sub> glasses are quite similar. It is seen from Table 4 that the dielectric constant of  $SiO_2$  filler is 3.8 which is lower than that of the glass (11.2) whereas the dielectric constant of  $TiO_2$  filler is very high (80-100) than the glass. So the resultant dielectric constant of SiO<sub>2</sub> filler added composites gradually decrease whereas it increases in case of TiO<sub>2</sub> filler addition as expected. This is due to high polarizibility ( $\alpha$ ) and refractive index (n) of TiO<sub>2</sub> ( $\alpha = 0.46$  and n = 2.5-2.9) than those of SiO<sub>2</sub> ( $\alpha = 0.08$  and n = 1.46) (see Table 4) (Volf 1984). Dielectric constant ( $\varepsilon$ ) is related with these properties by the following Lorentz- Lorenz (Eq. 3) and Maxwell equations (Eq. 4) (Scholze 1991).

$$\alpha = 3M_{av} (n^2 - 1)/4(n^2 + 2)\pi N_A \rho$$

$$\varepsilon = n^2$$
(3)

where  $N_A$  is the Avogadro's number, and  $M_{av}$  and  $\rho$  are average molecular weight and density of the glass or composite respectively. This once again supports in favour of the additive nature of dielectric constant like other properties such as  $T_s$ ,  $T_g$  and CTE as described earlier, that is, there is a direct relationship between the property values of fillers and the resultant microcomposites.

### 4. Conclusions

In this effort to develop a lead-free eco-friendly material alternative for the white back (rear glass dielectric layer) of plasma display panels, the effect of two types of ceramic fillers (TiO<sub>2</sub> and SiO<sub>2</sub>) on the softening point, glass transition temperature, coefficient of thermal expansion and dielectric properties of ZnO-Bi<sub>2</sub>O<sub>3</sub>-B<sub>2</sub>O<sub>3</sub> (ZBIB) glass system has been investigated. Based on qualitative XRD and FTIR analyses, both the fillers investigated here have been found to be partially dissolved in the glass at the sintering temperature (560°C), and thus the specimen successfully formed ceramic filler particulate-reinforced glass matrix microcomposites with a strong interfacial bonding. The  $SiO_2$  filler has decreased the dielectric constant of the ZBIB glass (11.2), while the addition of  $TiO_2$  has to be limited about 10 wt% in order to ensure that the dielectric constant of the filler-glass composite is less than the currently used PbO-based glass (15). In terms of CTE, only the addition of TiO<sub>2</sub> filler could successfully achieve the CTE of the composite  $(82 \times 10^{-7} \text{ K}^{-1})$  to match with the currently used PDP glass substrate such as PD 200 glass ( $83x \ 10^{-7} \ \text{K}^{-1}$ ). By considering all aspects of the properties, the addition of TiO<sub>2</sub> fillers of about 10 wt% to ZBIB glass is in general the most desirable of type of filler investigated in the current work. It has yielded a softening point of 560°C, CTE of  $82 \times 10^{-7} \text{ K}^{-1}$  and dielectric constant of 14.6, which are very close to those of the currently used PbO-based white back. The close correlation of theoretical predictions and experimental values strongly advocates the additive nature of the physical properties with respect to the chemical constituents of the composites.

# Acknowledgements

This research has been supported in part by the NMITLI scheme of CSIR, New Delhi. The authors gratefully thank Dr. H. S. Maiti, Director of the institute for his keen interest and kind permission to publish this paper. They also acknowledge the XRD and Ceramic Membrane Sections of this institute for carrying out the XRD and particle size measurement experiments.

# References

Baia L, Stefan R, Popp J, Sinon S and Keifer W 2003 J. Non-cryst. Solids 324 109

Chang M S, Pae B J, Lee Y K, Ryu B G and M. H. Pork 2001 J. Inf. Display 2 39

- Dakin T K, Insulating Materials-General Properties, in Standard Handbook for Electrical Engineers, eds. Fink D G and Beaty H W 1993, 13<sup>th</sup> Edn. (New York: Mc Graw-Hill) pp. 4-117
- Fuxi G 1992, Optical and Spectroscopic properties of Glass (Berlin: Springer-Verlag)
- Hiromitsu W, Hiroyuki O, Masahiko O and Kazuo H 2000 US patent 6010973

Hwang G -H, Kim W -Y, Jeon H -J and Kim Y -S 2002 J. Am. Ceram. Soc. 85 2961

- Kamitsos E I, Karakassides A M and Chryssikos D G 1987 Phys. Chem. Glasses **91** 1073
- Kharlamov A A, Almeida R. M and Heo J 1996 J. Non-cryst. Solids 202 233
- Kim S -G, Park J -S, An J -S, Hong K S, Shin H and Kim H 2006 *J. Am. Ceram. Soc.* **89** 902
- Kim S G, Shin H, Park J S, Hong K S and Kim H 2005 J. Electroceram. 15 129
- Kim T Y and Sunnoo J H 2000 US patent. 6097151
- Last J T 1957 Phys. Rev. 105 1740
- Lim E -S, Kim B -S, Lee J –H and Kim J-J 2006 J. Electroceram. 17 359
- Masahi A and Shinji K 1999 US patent. 5977708
- Motke S G, Yowale S P and Yawale S S 2002 Bull. Mater. Sci. 25 75
- Naoya H and Kazuhiro N 1999 JP patent. 11246233

Priven A I 1998 Glass Phys. and chem. 24 67

Priven A I and Mazunin O V 2003 Glass Technol. 44 156

Priven A I 2004 Glass Tehnol. 45 244

Rao C N R 1963 Chemical Application of Infrared Spectroscopy (New York: Academic Press)

Scholze H 1991 Glass, *Nature, Stucture and Properties*, 3<sup>rd</sup> edition (New York: Springer) SciGlass (Glass Properties Information System), *Version 6.7* 

- Shin H, Kim S -G, Park J -S, An J -S, Hong K S and Kim H 2006 *J. Am. Ceram. Soc.* **89** 3258
- Shin H, Kim S -G, Park J -S, Jung H S, Hong K S and Kim H 2006 *J. Mater. Res.* **21** 1753
- Shinoda T, Wakitani M, Nanto T, Awaji N and Kanagu S 2000 *IEEE Trans. Electrons. Electron Dev.* **47** 77
- Shiro T, Hideaki M, Tadahiko U and Koji K 1998 JP patent, 10338547
- Song J Y and Choi S Y 2006 Display 27 112
- Song J -Y, Park T –J and Choi S –Y 2006 J. Non-Cryst. Solids 352 5403
- Uma T and Nogami M 2007 J. Phys. Chem. C. 111 16635
- Vernacotola D E and Shelby J E 1993 Ceram. Trans. 29 215
- Vernacotola D E 1994 Key Engg. Mater. 94-95 379
- Volf M B 1984 Chemical Approach to Glass (Amsterdam: Elsevier)

| Sample identity | Composition (wt.%) |                               |                               |  |  |  |  |
|-----------------|--------------------|-------------------------------|-------------------------------|--|--|--|--|
|                 | Glass (ZBIB)       | Added SiO <sub>2</sub> filler | Added TiO <sub>2</sub> filler |  |  |  |  |
|                 |                    |                               |                               |  |  |  |  |
| G <sup>a</sup>  | 100                |                               |                               |  |  |  |  |
|                 |                    |                               |                               |  |  |  |  |
| GS5             | 95                 | 5                             |                               |  |  |  |  |
| GS10            | 90                 | 10                            |                               |  |  |  |  |
| GS15            | 85                 | 15                            |                               |  |  |  |  |
| GS20            | 80                 | 20                            |                               |  |  |  |  |
|                 |                    |                               |                               |  |  |  |  |
| GT5             | 95                 |                               | 5                             |  |  |  |  |
| GT10            | 90                 |                               | 10                            |  |  |  |  |
| GT15            | 85                 |                               | 15                            |  |  |  |  |
| GT20            | 80                 |                               | 20                            |  |  |  |  |

Table 1. Composition of microcomposites derived from glass

<sup>a</sup>Composition (wt.%) of glass (G): 19ZnO- 46Bi<sub>2</sub>O<sub>3</sub>-35B<sub>2</sub>O<sub>3</sub> (ZBIB)

| Sample identity / Band position (cm <sup>-1</sup> ) |           |           |           |           |                         | Band                                |  |
|-----------------------------------------------------|-----------|-----------|-----------|-----------|-------------------------|-------------------------------------|--|
| G                                                   | GS5       | GS10      | GS15      | GS20      | SiO <sub>2</sub> filler | assignment                          |  |
| 1346(s,b)                                           | 1346(s,b) | 1346(s,b) | 1346(m,b) | 1346(m,b) |                         | B-O-B(as-s)                         |  |
|                                                     | 1246(w)   | 1246(w)   | 1213(m)   | 1215(m,b) |                         | B-O-Si(as-s)                        |  |
|                                                     | 1069 (b)  | 1023 (b)  | 1108(m)   | 1115(s)   | 1115(v,s)               | Si-O-Si(as-s),<br>B-O-Si(as-s)      |  |
| 954(b)                                              | 946(b)    | 946(b)    | 946(w)    | 939(sh)   |                         | B - O - B(s-v),<br>B - O - Si(as-s) |  |
|                                                     |           |           | 815(w)    | 815(m)    | 815(s)                  | O-Si-O(s-s)                         |  |
| 685(s)                                              | 685(s)    | 685(s)    | 669(s)    | 669(s)    |                         | Bi-O-Bi(s-v),                       |  |
|                                                     | 469(m)    | 469(s)    | 469(s)    | 469(s)    | 469(v,s)                | Si-O-Si(b-v)                        |  |

Table 2. IR band position and its assignment in glass, composites and SiO<sub>2</sub> filler

s = strong, b = broad, m = medium, w = weak, sh = shoulder, v = very as-s = asymmetric stretching vibration, s-s = symmetric stretching vibration, s-v = stretching vibration, b-v = bending vibration

| Sample ide | Band      |                     |                     |                     |                            |                               |
|------------|-----------|---------------------|---------------------|---------------------|----------------------------|-------------------------------|
| G          | GT5       | GT10                | GT15                | GT20                | TiO <sub>2</sub><br>filler | assignment                    |
| 1346(s,b)  | 1346(s,b) | 1346(s,b)           | 1346(s,b)           | 1346(s,b)           |                            | B-O-B (as-s)                  |
|            | 1023(m)   | 1254(w),<br>1023(m) | 1254(w),<br>1023(s) | 1254(w),<br>1023(s) |                            | B-O-Ti(as-s)                  |
| 954(s,b)   | 908(m)    | 923(m)              | 923(w)              | 900(sh)             |                            | B-O-B(as-s),<br>B-O-Ti(as-s)  |
| 685        | 669(s)    | 669(s)              | 669(s)              | 669(s)              |                            | Bi-O-Bi(s-v),<br>Ti-O-Bi(s-v) |
|            | 531(sh)   | 531(b)              | 539(m)              | 539(s)              | 654(vs),<br>546(vs)        | Ti-O-Ti(s-v)                  |

Table 3. IR band position and assignment in glass, composites and  $TiO_2$  filler.

s = strong, b = broad, m = medium, w = weak, sh = shoulder, v = very, as-s = asymmetric stretching vibration, s-v = stretching vibration

| Table 4. Some | properties | of added | SiO <sub>2</sub> | and | $TiO_2$ | fillers |
|---------------|------------|----------|------------------|-----|---------|---------|
|---------------|------------|----------|------------------|-----|---------|---------|

| Filler           | Crystallinity           | Melting       | CTE            | Dielectric | Si or Ti   | Si-O or   | Polariza | Refrac  |
|------------------|-------------------------|---------------|----------------|------------|------------|-----------|----------|---------|
|                  |                         | point         | $(x10^{-7}/K)$ | constant,  | Field      | Ti-O bond | -bility, | -tive   |
|                  |                         | $(^{\circ}C)$ |                | 3          | strength,  | strength, | α        | index,  |
|                  |                         |               |                |            | $Z/a^{2*}$ | Z/a*      |          | n       |
| SiO <sub>2</sub> | Amorphous               | 1723          | 5.5            | 3.8        | 2.48       | 1.54      | 0.08     | 1.46    |
| TiO <sub>2</sub> | Crystalline<br>(Rutile) | 1850          | 80-100         | 80-100     | 2.05       | 1.05      | 0.46     | 2.5-2.9 |

\* Z = formal charge (valency), a = nuclear distance

# **Figure caption**

Figure 1. Particle size distribution of ZBIB glass, filler SiO<sub>2</sub> and TiO<sub>2</sub> powders.

Figure 2. Variation of XRD patterns with added  $TiO_2$  filler content: (a) glass, G, (b) GT5, (c) GT10, (d) GT15 and (e) GT20 (for composition see Table 1). XRD pattern (f) of added  $TiO_2$  filler is also shown for comparison.

Figure 3. FTIR spectra of glass and composites: (a) glass, G, (b) GS5, (c) GS10, (d) GS15, (e) GS20 (for composition see Table 1). FTIR spectra (f) of added  $SiO_2$  filler is also shown for comparison.

Figure 4. FTIR spectra of glass and composites: (a) glass, G, (b) GT5, (c) GT10, (d) GT15, (e) GT20 (for composition see Table 1). FTIR spectra (f) of added  $TiO_2$  filler is also shown for comparison.

Figure 5. Comparison of variation of experimental and theoretically predicted softening point temperature ( $T_s$ ) as a function of added (a) SiO<sub>2</sub> and (b) TiO<sub>2</sub> fillers (for composition see Table 1).

Figure 6. Comparison of variation of experimental and theoretically predicted glass transition temperature ( $T_g$ ) as a function of added (a) SiO<sub>2</sub> and (b) TiO<sub>2</sub> fillers (for composition see Table 1).

Figure 7. Comparison of variation of experimental and theoretically predicted coefficient of thermal expansion (CTE) as a function of added (a)  $SiO_2$  and (b)  $TiO_2$  fillers (for composition see Table 1).

Figure 8. Comparison of variation of experimental and theoretically predicted dielectric constant ( $\epsilon$ ) as a function of added (a) SiO<sub>2</sub> and (b) TiO<sub>2</sub> fillers (for composition see Table 1).



Figure 1. Particle size distribution of ZBIB glass, filler SiO<sub>2</sub> and TiO<sub>2</sub> powders.



Figure 2. Variation of XRD patterns with added  $TiO_2$  filler content: (a) glass, G, (b) GT5, (c) GT10, (d) GT15 and (e) GT20 (for composition see Table 1). XRD pattern (f) of added  $TiO_2$  filler is also shown for comparison.



Figure 3. FTIR spectra of glass and composites: (a) glass, G, (b) GS5, (c) GS10, (d) GS15, (e) GS20 (for composition see Table 1). FTIR spectra (f) of added  $SiO_2$  filler is also shown for comparison.



Figure 4. FTIR spectra of glass and composites: (a) glass, G, (b) GT5, (c) GT10, (d) GT15, (e) GT20 (for composition see Table 1). FTIR spectra (f) of added  $TiO_2$  filler is also shown for comparison.



Figure 5. Comparison of variation of experimental and theoretically predicted softening point temperature ( $T_s$ ) as a function of added (a) SiO<sub>2</sub> and (b) TiO<sub>2</sub> fillers (for composition see Table 1).



Figure 6. Comparison of variation of experimental and theoretically predicted glass transition temperature ( $T_g$ ) as a function of added (a) SiO<sub>2</sub> and (b) TiO<sub>2</sub> fillers (for composition see Table 1).



Figure 7. Comparison of variation of experimental and theoretically predicted coefficient of thermal expansion (CTE) as a function of added (a)  $SiO_2$  and (b)  $TiO_2$  fillers (for composition see Table 1).



Figure 8. Comparison of variation of experimental and theoretically predicted dielectric constant ( $\epsilon$ ) as a function of added (a) SiO<sub>2</sub> and (b) TiO<sub>2</sub> fillers (for composition see Table 1).