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Abstract:   GeO2+P2O5 co-doped step index multimode (SIMM) fiber having core diameter 

around 50 micron with numerical aperture around 0.21-0.22 proposed for the first time shows an 

excellent linear radiation response behaviour with sensitivity around 0.69 – 0.97 dB/m/100 rad at 

505nm wavelength within the dose rates of 10-100 rad/hr as well as very low recovery at room 

temperature using  60Co gamma radiation source.  This enables its practical application in fiber 

optic personal dosimeter for measurement of low dose gamma radiation.   

 
OCIS codes: (280.0280) Remote sensing and sensors; (060.0060) Fiber optics and optical 

communications; (060.2290) Fiber materials; (160.2220) Defect-center materials. 
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1. Introduction 

 
 
        The detection and measurement of gamma radiation using materials that are sensitive to 

such radiation has been a subject of intense investigation [1-6]. Optical fiber is found to be a 

good choice in this regard due to greater sensitivity at different dose levels compared to bulk 

glass dosimeters. The major advantage in using the fiber is that the radiation sensitivity can be 

adjusted to the dose or dose rate by selecting suitable fiber design, composition and operating 

wavelength. Under the action of nuclear radiation, point defects (colour centers) [7-9] arise in the 

glass network. As a consequence, the absorption of light propagating in the fiber increases. 

Hence, the possibility exists of measuring the dose of radiation by measuring the optical loss in 

the fiber. In general radiation induced loss of optical fibers [10,11] is largely dependent on the 

dopants used in the preform from which the fiber is manufactured as well as other parameters  

such as host glass composition, numerical aperture (NA), fiber design along with the type of 

radiation source and  surrounding parameters. 

 

        There are requirements for remote monitoring of hazardous [12] or difficult-to-access areas 

such as nuclear reactors [13,14] and waste storage facilities. A fiber optical radiation dosimeter 

that can be permanently incorporated into these facilities and optically addressed from a central 

monitoring station. These sensors reduce costs and improve safety by eliminating the need to 

send personnel into hazardous areas to collect and analyze samples.  In the last decades, extreme 

work have been carried out to study the radiation effects on optical fibers to use them as radiation 

sensors [12-19] under various radiation environments such as nuclear waste tanks, nuclear 

reactors, etc. 



 
 The radiation effects on P doped [20-21] bulk silica and fibers have been reported earlier. 

Some work on radiation sensitivity of P-doped fibers have been done at high dose rates to find 

out their suitability for use as fiber optic dosimeter in medical purpose [22-23].  Recently M. C. 

Paul et al. have reported the data of low dose radiation induced attenuation at infrared 

wavelengths for P-doped SIMM fiber [24]. The P doped SIMM fiber containing 12 mol% 

phosphorous shows sensitivity 0.55 dB/m/100 rad in dose rate range 1.0–100  rad/hr using 

Cobalt-60 emitting gamma rays with average photon energy of 1.25MeV. The high phosphorous 

doped SIMM fiber shows high sensitivity with much dose rate dependency at low dose rates 

below 100 rad/hr.  

 
 Remembering this problem, we have incorporated GeO2 as co-dopant in the core of high 

phosphorous doped SIMM optical fibers for use as radiation sensor in dosimetry application at 

low dose rates. At low dose rate, below 50 rad/hr P doped fiber without co-doping  of GeO2 

shows highly dose rate dependence behavior.  However high phosphorous with GeO2 co-doped 

SIMM fiber under suitable composition may improve such dose rate dependence behavior at low 

dose rates. We have examined the radiation response behavior at very low dose rates within 10-

100 rad/hr using Cobalt-60 emitting gamma rays with average photon energy 1.25 MeV. The 

dependence of their sensitivities on dose rates and transmission wavelength along with their 

recovery nature have been studied on the basis of their radiation induced attenuation for 

evaluation of their feasibility to use as radiation sensor in fiber optic personal dosimeter. 

 
2. Experimental 
 
2.1 Fiber sample fabrication 
 
P2O5 co-doped SIMM optical fiber with and without GeO2 in the core was fabricated by the 



modified chemical vapour deposition (MCVD) [25] process.  The pure silica glass tube of 

OD/ID:14/11 mm dimension was taken for deposition of   SiO2-GeO2, SiO2-GeO2-P2O5 and 

SiO2-P2O5 soot layers to make different preform samples maintaining  suitable deposition 

temperature around 1500-15500C with the help of single-wavelength online IR Pyrometer ( Model: 

PRO 44-50C-FOV15in/100-21-SB-AP-40C, Williamson Corp, USA ) with an accuracy  of ± 50C. The 

details of fiber parameters are given in Table 1. The modified chemical vapor deposition 

(MCVD) [25] process was followed to fabricate P-doped SIMM optical fiber preforms 

containing different proportions of P2O5 in the core. The doping level of P2O5 in the deposited 

layer was increased by suitably modifying the process parameters. To increase the incorporation 

efficiency of P2O5, deposition temperature of SiO2–P2O5 soot layer was optimized for 

minimization of the evaporation of P2O5. To increase the doping region, number of soot layers 

was increased up to a certain label without distortion of the deposited tube. The refractive index 

profile of the preform was measured by the preform analyzer (Vertical Model: PKL 2600, 

Photon Kinetics made, USA) shown in Fig. 1.  

 
 
 
 

2.2 Induced loss measurement. 
 
The experimental setup for measurement of the radiation response behavior of P2O5 doped 

SIMM optical fiber was described in earlier work [24].  In our setup four meter length of each 

radiation sensitive fiber was wrapped around a test reel of 2.5 cm diameter and placed at the 

centre of the radiation field. Dose rate of the radiation source was varied by changing the 

distance between the fiber reel and the cobalt-60 source to measure the effect of dose rates on the 

fiber. Total dose was controlled by varying the exposure times for different dose rates. The light 



source was Quartz (100 W) halogen lamp and it's light stability is  ±0.1% over 8 hour. To detect 

the light coming out from the fiber within 400-1100 nm wavelength range silicon detector was 

used in our experiment. The 60Co-gamma radiation source was taken with constant energy 

1.25MeV to measure the radiation induced loss along with its sensitivity and recovery nature 

with different dose rates at 505nm and 560nm wavelengths. The dose rates of 60Co-gamma 

radiation source performed on each fiber are 10, 25, 50, 75 and 100 rad/hr with the total 

accumulated dose less than 100 rad.  

 

2.3  Material characterization. 
 
Study of the surface morphology of high P2O5 doped preform samples was done through 

scanning electron microscope (SEM) shown in Fig. 2. The core of GeO2+P2O5 doped SIMM 

optical fiber shows phase-separated regions. The cross sectional image of high P2O5 doped 

SIMM fiber NM-182 was given in Fig. 2. The electron probe micro analysis (EPMA) was 

performed to understand the distribution of different dopants into the whole core of two fiber 

preform samples NM-182 and PS-283 shown in Fig. 3. 

 
3. Results and discussions 
 
The radiation induced absorption spectra of two different P-doped SIMM fibers (NM-182 and 

PS-283) irradiated at dose rate of 100rad/hr are given in Fig. 4 to evaluate the suitable 

transmission wavelength at which the fiber shows the maximum radiation sensitivity. We have 

selected 505nm and 560nm transmission wavelengths from their radiation induced loss curves 

for study of radiation response behaviour. The radiation induced loss as well as sensitivity of two 

different fibers (NM-182 and PS-283) were measured at two different wavelengths 505 and 

560nm because at these wavelengths high induced loss and also high sensitivity observed. 

Linearity measurements of fibers are taken up to a total dose of 100 rad at dose rate of 10 to 100 



rad/hr. Both fibers shows  well linear response behavior  under such low dose rates. The effect of 

dose rates on the radiation response behavior of optical fiber is the most important factor to study 

their suitability as radiation sensor in fiber optic dosimeter. The results of the effect of  dose rates 

on   GeO2,  P2O5 and GeO2+P2O5 doped fibers at 560nm  transmission wavelength are given in 

Fig. 5 which shows  well dose rates independent response behavior of GeO2+P2O5 co-doped 

SIMM fiber (NM-182) under such low dose rates. We have studied the effect of core diameter on 

the radiation response behavior of GeO2+P2O5 co-doped (NM-182) and P doped (PS-283) SIMM 

fibers. Such two P-doped fibers (NM-182 and PS-283) having core diameter of 50.0 and 40.0 µm 

shows the radiation sensitivities of 0.970dB/m/100rad and 0.6631 dB/m/100rad, respectively.   

Whereas  Ge doped fiber containing 10 mol% GeO2 and   core diameter around 42µm shows the 

radiation sensitivity of 0.16dB/m/100Rad which becomes very much lower than that of  P2O5 

and GeO2+P2O5 doped fibers as shown in Fig. 5. The results on the radiation response behavior 

of GeO2+P2O5 co-doped SIMM fiber (NM-182) containing 16 mol% P2O5 and 6 mol% GeO2 at 

two different wavelengths such as 560 and 505 nm under fixed dose rate of 100 rad/hr up to a 

total cumulative dose of 100 rad was shown in Fig. 6. The effects of dose rates on the sensitivity 

in the range 10 to 100 rad/hr with total dose up to 100 rad at 560nm transmission wavelength in 

the fibers NM-182 and PS-283 are shown in Fig. 7. The Ge+P co-doped SIMM fiber (NM-182) 

shows higher sensitivity than  P2O5 doped SIMM (PS-283) fiber. Sensitivity of the fiber also 

depends on the transmission wavelength shown in Fig. 8. The radiation response behaviour of 

such type of high phosphorous with germanium co-doped optical fibers containing 16 and 14 

mol% P2O5 can be explained based on the formation of P-related and Ge-related defect centres as 

well as their effects on the dose rates of radiation source. The defect centres mainly formed in 

P2O5 doped and GeO2+P2O5 co-doped fibers are POHCs and POHCm (where’s’ and ‘m’ represent 



the ‘stable’ and ‘metastable’, respectively) [26-28] along with GeE/ [29-30] defect. Fiber with 

larger core diameter (NM-182) shows higher sensitivity than lower core diameter fiber (PS-283) 

because of the formation of larger number of phosphorous oxygen hole centres (POHC) within 

the core region which is mainly responsible for high radiation induced loss of the fiber. 

P2O5+GeO2 co-doped fiber (NM-182) with larger core diameter shows excellent linear radiation 

response behaviour with dose rates independency within 10-100 rad/hr than P2O5 doped fiber 

(PS-283). The presence of GeO2 may prevent the rate of formation of POHC in a controlled way 

with increasing dose rates.  The sensitivity of two different fibers (NM-182 and PS-283) varies at 

different wavelengths due to their different radiation induced absorption behavior.  The result 

shows that the radiation induced loss at 560nm is greater than 505nm wavelength. The recovery 

nature of high P-doped SIMM fibers are evaluated at room temperature. The recovery nature of 

one P2O5-GeO2 co-doped fiber (NM-182) containing 16 mol% P2O5 was described after 

irradiation up to a cumulative dose of 100 rad irradiated at dose rates of 10-100 rad/hr under 560 

nm transmission wavelength shown in Fig. 9.  Such recovery of the irradiated fiber was taken up 

to one hour after irradiation and shows very low fading behavior. Such slow recovery reveals 

that P-related defects does not anneal very much at room temperature and yield no permanent 

change up to a total cumulative dose of 100 rad in presence of Ge-related defect centers.  During 

gamma-irradiation the interaction occurs between the germanium defects located in their core 

region and the electrons released by the phosphorous-oxygen double bond. The possible 

explanation about influence of  GeO2 co-doping in the core of phospho-silicate fibers on their 

radiation response behaviour will be based on the following reaction mechanism [31]. 

 
≡P=O ---------- ≡P−O. + e- -------- ≡P−O 
 
≡Si-Ge≡ --------- ≡Si + GeE/ -------- ≡Si-Ge≡ 

hv 

hv 



 
     At high dose rates most of the POHC related defects transforms to the P1 related defect 

centers which are responsible for high sensitivity of such P2O5 doped SIMM fiber at low 

dose rates [24]. Germanium codoping will create the germanium defects (GeE/) which are 

induced by the rupture of Ge-Si or Ge-Ge wrong bonds [31]. Such formation of GeE/ centers 

will prevent the transformation of POHC related defect centers to the P1 related centers at low 

dose rates. As a result of it, P2O5+GeO2 doped SIMM fibers shows almost dose rate 

independent behaviour within the dose rates of 10-100 rad/h.   

 
4. Conclusions 
 
We are able  to   make  50.0  micron   core  diameter  fiber  having  16.0  mole% doping levels of 

P2O5 and 6.0 mole% of GeO2 for study of radiation response behavior at room temperature. The 

radiation sensitivity of high phosphorous with germanium oxide co-doped optical fiber was 

found to be 0.69 – 0.97dB/m/100 rad with varying the dose rates from  10 to 100  rad/hr at 

505nm wavelength and shows very low recovery at room temperature using  60Co gamma 

radiation source.  The sensitivity of the fiber is found to be very much related to the doping core 

region as well as the doping levels. Such type of large core high P2O5 with GeO2 co-doped fiber 

shows good linearity in radiation response behavior as well as dose rate independency followed 

by low recovery in nature with high sensitivity which enables its practical application in fiber 

optic personal dosimeter for measurement of low dose gamma radiation . 
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Tables 
 

 
 
 
Table 1: Different parameters of the tested fibers  
 

 
 
 
 
 
 
 
 

Fibers Core 
composition 

Core 
diameter 

(µm) 

NA P2O5 
content 
(mol%) 

GeO2 content 
(mol%) 

NM-182 
 

GeO2+P2O5 50 0.21-0.22 16 6 

PS-283 
 

P2O5 40 0.17-0.18 16 0 

PS-234 GeO2 42 0.17-0.18 0 10 
 



 
 
 
 
 
 
 
Figure captions 
 
Fig. 1: RI profile of high P2O5 doped SIMM preform (NM-182). 
 
Fig. 2: SEM image of  (A) high P2O5 doped NM-182 preform sample  and  (B) cross section 

image of the same  fiber.  

Fig. 3: The distribution of  dopants of  (A) high P2O5 doped (NM-182) and (B) high P2O5 with 

GeO2 co-doped (PS-283)  preforms.  

Fig. 4: Radiation induced loss of different P-doped SIMM fibers (NM-182 and PS-283) after     

      1 hour radiation at the dose rate of 100 rad/hr (total dose 100 rad). 

Fig. 5: Radiation response behavior of  (A) GeO2+P2O5 (NM-182) ; (B) P2O5 (PS-283); and  (C) 

GeO2 (PS-234) doped fibres. 

Fig. 6:  Wavelength dependence of the radiation induced loss of high P2O5 doped with GeO2 co-  

doped SIMM fiber (NM-182) against dose rate of 100rad/hr. 

Fig. 7: Radiation sensitivity of high P2O5 doped (NM-182) and high P2O5 with GeO2 co-doped 

fiber (PS-283) at 560nm. 

Fig. 8: The radiation sensitivity of GeO2+P2O5 co-doped SIMM fiber (NM-182) at different 

wavelengths. 

Fig. 9: Recovery nature of GeO2+P2O5 co-doped SIMM fiber (NM-182) containing 16 mol%  

P2O5 and 6 mol% GeO2 at 505 nm transmission wavelength with different dose rates. 
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Figure 3 
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Figure 5 
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Figure 7 
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Figure 9 
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