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Abstract   

        Glasses in the composition of 25K2O-25Nb2O5-50SiO2 (mol %) doped with Eu2O3 

(0.5 wt% in excess) have been prepared by melt quenching technique and nano-

ceramized isothermally at 800°C for different duration. The formed nanocrystalline 

KNbO3 phase, crystallite size and morphology are examined by X-ray diffraction, Fourier 

transform infrared reflection spectroscopy, field emission scanning and transmission 

electron microscopes. The frequency and temperature dependent dielectric constant and 

loss tangent are measured in the frequency and temperature ranges 0.1–1000 kHz and 

200-500°C respectively. The dielectric constant and loss tangent are found to decrease 

with increasing frequency and increase with increasing temperature. The dielectric 

constant and loss tangent versus temperature curve at different frequency revealed the 

phase transition of KNbO3 from paraelectric cubic to ferroelectric tetragonal around 425º 

and 397ºC (Curie temperature) for nano glass-ceramics obtained after 1 and 200 h 

ceramming respectively.  

 

Keywords: A. Nanostructures, C. X-ray diffraction, C. Infrared spectroscopy,                   
D. Dielectric properties, D. Ferroelectricity 

________________________________________________________________________  
*Corresponding author.  Tel.: +91-33 2473 3469; fax: +91-33 2473 0957 
 E-mail address: basudebk@cgcri.res.in (B. Karmakar) 



 

 2 

1.  Introduction 

 Ferroelectric potassium niobate (KNbO3) with ABO3-type perovskite crystal 

structure is characterized by large electro-optic coefficient, non linear optical coefficient, 

excellent photorefractive properties and moderate dielectric constant [1]. It has attracted 

much attention because of its many applications in photonic and opto-electronic devices 

such as frequency doubling, tunable wave guiding, active laser host, holographic storage 

and surface acoustic wave [2-3].  Recently, potassium niobate ceramics were revisited in 

the interest of a search for environmental friendly lead-free piezoelectric materials [4]. 

Ferroelectric KNbO3 exhibits three successive phase transitions similar to that of BaTiO3 

[5].  It shows structural phase transitions at -10ºC (rhombohedral to orthorhombic), 

225ºC (orthorhombic to tetragonal) and 420ºC (tetragonal to cubic) [6]. Studies on 

dielectric properties of pure and doped KNbO3 crystals and ceramics with variation of 

temperature have been reported [7-8]. As we aware, there is no report on variation of 

dielectric properties of KNbO3 containing nano glass-ceramics. There has been an 

increasing interest in crystallized glasses containing KNbO3 ferroelectric as an active 

crystalline phase because of cheaper and high-speed fabrication process of glass 

technology, in comparison to single crystal. Recently, we have reported the fluorescent 

properties of Eu3+: KNbO3 glass-ceramic nanocomposites [9].  

 In this paper, we address our investigation on the change of dielectric properties 

including phase transformation as a function of various frequencies and temperatures of 

Eu2O3 doped KNbO3 glass-ceramic nanocomposites obtained under isothermal 

crystallization in the K2O-Nb2O5-SiO2 glass system. In addition to these, the process of 

crystallization has been studied by differential thermal analysis (DTA), X-ray diffraction 



 

 3 

(XRD), Fourier transform infrared reflection spectroscopy (FTIRRS), field emission 

scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). 

 

2.  Experimental procedure 

         The glass in the chemical composition of 25K2O-25Nb2O5-50SiO2 (mol %) doped 

with 0.5 wt% Eu2O3 (in excess) was prepared using high purity K2CO3 (GR, 99.9%, Loba 

Chemie), Nb2O5 (GR, 99.9%, Loba Chemie), SiO2 (99.99%) and Eu2O3 (99.9%, Alfa 

Aesar) by melting the well mixed chemical batch for 300 g glass in a platinum crucible at 

1550°C for 2h. The melt was homogenized with an intermittent stirring and later it was 

quenched by pouring onto a pre-heated iron mould. The obtained glass block was 

subsequently annealed at 600°C for 1h in order to remove the internal stresses. The as-

prepared glass block was cut into desired dimensions and optically polished for 

undertaking different experiments and measurements. 

 The DTA curve of powdered glass was recorded on a Netzsch STA 409 C/CD 

instrument from the room temperature to 1000°C at a heating rate of 10° C/min. The 

polished samples were heat-treated (ceramized) at 800°C for 0, 1 and 200 h after 

nucleating at 720°C temperature for 2 h. The XRD pattern was recorded using a Xpert-

Pro diffractometer (CuKα) with nickel filtered and anchor scan parameters wavelength of 

1.54060 Å at 25°C having the source power of 40 kV and 30 mA to identify the possible 

phases. The FTIR reflectance spectra of glass and glass-ceramics were recorded using a 

Perkin Elmer FTIRR spectrometer (Model 1615) in the wavenumber range 400-1500 cm-

1 with a spectral resolution of + 2 cm-1 and at a 15° angle of incidence after 16 scans. 
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The nanocrystallinity of the heat-treated glasses was examined by both FESEM 

and TEM.  A Carl Zeiss high resolution Field Emission Electron Microscope (FESEM), 

model SUPRA 35 VP detector (lithium doped silicon) with the parameters Gun vacuum = 

3×10-10 mbar, System vacuum = 2.65×10-5 mbar, Extractor current = 159.3 µA for 

FESEM measurement. Freshly fractured surfaces of the heat-treated glasses were etched 

in 1% HF aqueous solution for 60 s and were coated with a thin carbon film for the above 

measurements. The TEM of powdered samples was done on FEI (Technai 30ST) 

instrument.   

Rectangular samples of 10 x 8 x 1 mm3 size were coated with gold by sputtering 

technique and subjected to weak field dielectric measurements using HP4194A 

impedance analyzer. The dielectric constant and loss tangent were measured at various 

frequencies between 0.1–1000 kHz in the temperature range of 200-500°C. A 

programmable temperature controller (Eurotherm 902) was used to display and control 

the sample temperature with a heating/cooling rate of 2oC/min. The temperature 

measurement was carried out with an accuracy of ±0.1oC using a chrome-alumel 

thermocouple. All the dielectric data were recorded during cooling cycle. 

 

3.  Results and discussion 

3.1 Physical and thermal properties 

 The prepared glass and heat-treated samples were transparent with tints of yellow. 

The recorded DTA curve of the powdered glass sample is shown in Fig. 1, which 

exhibited an inflection in the temperature range 650-730°C followed by two exothermic 

peaks at 763°C (Tp1) and 945°C (Tp2) corresponding to the potassium niobate (KNbO3) 



 

 5 

and potassium niobosilicate (KNbSi2O7) phase crystallization respectively. The glass 

transition temperature (Tg) estimated from the DTA curve is 676°C. From the DTA data, 

the glass thermal stability factor (∆ = Tp1 - Tg) has been determined and found to be 87°C. 

The reasonably high glass stability factor specifies the ability of this glass in forming 

nano-structured glass-ceramic under controlled heat-treatment. The first exothermal peak 

in the DTA thermogram can be attributed to the growth of KNbO3 crystallites from nuclei 

in the glass bulk as well. 

 

 3.2  XRD analysis  

 The X-ray diffractograms of as-prepared glass along with the glass ceramic 

samples are depicted in Fig. 2. The XRD pattern of the as-prepared glass consists of only 

a broad hump around diffraction angle 2θ = 29° indicating its amorphous nature. The 

structuring of this hump takes place in the XRD pattern of the heat treated glass ceramic 

samples along with the appearance of other well defined peaks around 15°, 16°, 25°, 29°, 

and 51° diffraction angles (2θ), which confirms the appearance of crystalline phase in the 

amorphous matrix. The diffraction pattern of glass-ceramics to some extent resembles 

known potassium niobate crystal phase JCPDS card file No. : 32-821. From the full width 

at half maximum (FWHM) values of the intense diffraction peak detected in the traces of 

the heat-treated samples of Fig. 2, the average crystallite sizes (diameter, d) were 

calculated by conventional procedure using the Scherrer’s formula [10]  

                                         d = 0.9λ/β cosθ    (1) 

where, λ is the wavelength of X-ray radiation (CuKα = 1.5406Å), β is the full width at 

half maximum (FWHM) of the peak at 2θ. The diffraction peak located at 2θ = 29° has 
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been considered for this estimation. The calculated average crystallite sizes are 6 and 12 

nm for 1 and 200 h heat-treated samples respectively.  

 

3.3 Fourier transform infrared reflectance spectroscopy 

 The FTIR reflectance spectra of the as-prepared and heat-treated samples in the 

wavenumber range 400-1500 cm-1 are shown in Fig. 3. From this figure, it is seen that the 

FTIRR spectrum of the as-prepared glass exhibits a broad reflection band centered at 933 

cm-1 as a result of wider distribution of silicon structural units. This is an indication of the 

structural disorder existing in the amorphous network with the presence of SiO4 

tetrahedra and NbO6 octahedra having different number of non-bridging oxygens, which 

is attributed to overlapping of Si-O and Nb-O stretching vibrations. In spite of the 

transparent nature of the heat-treated samples, their FTIR reflectance spectra reveal 

narrowing of the main reflection band with additional features arising at 1115, 748 and 

400-600 cm-1 in comparison to the as prepared glass [11].   

 Considering the stronger force constant of the Si-O bonds than that of Nb-O ones, 

the reflection bands can be assigned in the FTIR reflectance spectra [12]. In the FTIRR 

spectra, the stretching modes of the Si-O-Si bonds of the SiO4 tetrahedra with 

nonbridging oxygen (NBO) atoms are active in 1000-1100 cm-1 range and the stretching 

modes of the Nb-O bonds in the NbO6 octahedra occur in the 700-800 cm-1 range. 

 According to the literature reports, in alkali niobium silicate glasses, NbO6 with 

octahedra Nb-O bonds present as a lattice former in the Si-O bonds containing SiO4 

tetrahedral network. The alkali ions (K+) play the role of charge compensators of excess 

negative charge at Nb5+ cations [13, 14]. In the present study, the observed systematic 
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variation of the FTIRR spectra of the as-prepared glass from that of the heat-treated 

glasses reveals the structural modifications occurring in the glass matrix as a result of the 

heat-treatment. Hence, it can be indicated that the heat-treatment changes the 

composition of the glassy matrix by forming two phases: the one, in the higher 

wavenumber side enriched of SiO4 tetrahedra with n bridging oxygen atoms; the other, in 

the lower wavenumber side mainly containing less-distorted NbO6 octahedra with no 

nonbridging oxygens. In order to maintain neutral charge condition, the latter phase 

contains a higher amount of K+ ions as the NbO6 octahedra are negatively charged. 

Hence, the rearrangement of the glassy matrix is an indicative of the fact that the alkali 

enriched phase begins to crystallize producing a nanostructure with the heat-treatment. 

The reflection bands around 1075 - 1130 cm-1 are associated with the ν3 antisymmetric 

stretching vibration modes of the SiO4 tetrahedra. The symmetric stretching mode ν1 is 

assigned for the reflection bands lying in the range 840-970 cm-1 wavenumber. The 

reflection band at 1115 and 930 cm-1 wavenumber can be related to the asymmetric and 

symmetric stretching vibration modes of Si-O bonds in SiO4 tetrahedra respectively, 

while the one at 748 cm-1 is due to the Nb-O stretching modes of distorted NbO6 

octahedra [15, 16]. Hence, it is revealed that in a phase separated matrix of the heat-

treated samples, the crystallization starts at the interface between the two phases 

originating a redistribution of both types of structural units such as NbO6 octahedra and 

SiO4 tetrahedra. This corroborates that the reflection band centered at 748 cm-1 

wavenumber is assigned as KNbO3 crystal formation. The intensity of this reflection 

band increases with increase of heat-treatment time very slowly indicating that the further 

growth of KNbO3 nanocrystallites at the interface is prevented for longer heat-treatment 
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times to satisfy the chemical composition required by the crystallizing phase [12]. 

Finally, all FTIRR spectra in Fig. 3 exhibit a band around 598 cm-1, which is assigned to 

ν2 bending vibration mode of the Si-O bond in the SiO4 tetrahedron. Thus from the 

investigations carried out on the measured FTIR reflectance spectra of potassium 

niobium silicate glass and glass-ceramics as described above provide the information of 

crystallization with initial phase separation followed by advancement of KNbO3 crystal 

formation in the glass matrix.  

 

3.4 FESEM and TEM image analysis 

The morphology and crystallite size in glass-ceramic samples have been 

examined by FESEM and TEM image analysis. Figs. 4 (a, b) present the FESEM 

micrograph of the sample heat-treated at 800°C for 1 and 200 h duration respectively. 

From the FESEM micrographs, it is clearly observed that the glassy matrix of the heat-

treated samples initially phase separated on nanometric scale followed by incipient 

precipitation of defined crystallites within the Nb – K rich phase regions on the prolonged 

heat-treatments. The droplets have irregular shape and are spread out uniformly thought 

out the bulk glass matrix (volume crystallization). The size of the droplets was estimated 

to be about 20-40 nm. The TEM and HRTEM images of the sample heat treated for 1 and 

200 h have been presented in Figs 5 (a, b, c, d) respectively. From these figures, 

precipitated crystallites and their atomic or lattice fringes are clearly observed. A 

comparison of the FESEM and TEM micrographs with the XRD data gives rise to 

another interesting result. The size of the crystallites estimated from the XRD patterns 

and TEM (6-12 nm) are lesser than the droplets observed in FESEM (20-40 nm), 
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suggesting that the crystallization starts at the interface between the droplets and the 

matrix followed by the growth of the crystallites inside these droplets. Because of these 

phenomena, there is a change of the matrix composition, which prevents the further 

growth of the crystallites, regardless of the increase in the heat-treatment time, and a 

stable transparent biphasic structure by a change of the density of inhomogeneities in the 

matrix is formed [12, 17]. The results of the FESEM and TEM are in good agreement 

with that of XRD and FTIRRS studies. 

 

3.5 Dielectric constant and dielectric loss 

The variation of dielectric constant (ε) and loss (tan δ) with temperature and 

frequency for KNbO3 nano glass-ceramics, heat-treated (ceramized) at 800°C for 1 and 

200 h are shown in Figs. 6(a, b) and 7(a, b), respectively. Although the dielectric 

measurements were carried out on seven different samples heat-treated at 800 °C for 

different durations between 1 to 200 h, but the data of only two samples are presented for 

the sake of clarity.  It has been observed that room temperature dielectric constant and 

loss (tan δ) are virtually independent of heat-treatment time. The room temperature 

dielectric constant for all the samples is around 34, while loss value is 0.05. At higher 

temperatures the dielectric constant and the loss show an anomalous increase. This 

increase is further enhanced with increase in probing frequency. This anomalous increase 

in dielectric constant and loss at high temperature is associated with the DC conductivity 

of the samples due to large accumulation of K+ ions during heat-treatment [7,18-19]. Due 

to high DC conductivity the cubic to tetragonal phase transition associated with 

potassium niobate is suppressed. However, a weak anomaly near 400°C due to cubic to 
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tetragonal phase transition is observed for both the samples. The dielectric permittivity 

shows a hump at temperatures 425° and 397°C in case of 1 and 200 h heat-treated 

samples respectively. This hump is very close to the phase transition temperature (420°C) 

of bulk KNbO3 from cubic to tetragonal phase [6-8]. The variation in phase transition 

temperature is due to two different reasons. Firstly, the glass ceramic samples can be 

considered as nano-composite of KNbO3 crystallites and the glass matrix. The 

temperature dependence of dielectric constant will show a combined effect of glass and 

the crystallites. Because of this combined effect the phase transition is smeared. 

Secondly, the size of crystallites is increasing with heat-treatment time as shown by XRD 

data. This leads to a different set of glass and crystallite (KNbO3) matrix as the samples 

are heat-treated at different durations. Thus, the composite effect observed in dielectric 

behavior will be different in the samples heat-treated for 1 and 200 h. This will also shift 

the peak temperature in the dielectric behavior observed due to phase transition in 

KNbO3 crystallites. A weak relaxation in phase transition temperature is observed in both 

the samples. However, this requires further investigation of dielectric behavior after 

removing the DC conductivity effect. 

 

4. Conclusions 

We summarize that Eu2O3
 (0.5 wt%) doped nanometric KNbO3 crystallites 

containing glass-ceramics have been prepared from the glass of chemical composition 

25K2O-25Nb2O5-50SiO2 (mol %) by a melt quenching technique followed by an 

isothermal heat-treatment at 800°C for different durations. The results on XRD, FTIRRS, 

FESEM, TEM and dielectric properties confirm the formation for nano-crystallite of 
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KNbO3 in the glass matrix.  The crystallite size estimated from XRD and TEM is found 

to be in the range of 6–12 nm. The dielectric constant and loss tangent versus temperature 

at different frequency revealed that the phase transition of KNbO3 from cubic to 

tetragonal is around 425º and 397ºC (Curie temperature) for nano glass ceramic obtained 

from 1 and 200 h heat-treatment respectively. 
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Figure Captions 

Fig. 1. DTA curve of as-prepared glass powder. 

 

Fig. 2. XRD patterns of as-prepared glass and those of heat-treated glasses at 800°C for 1 

and 200 h. 

 

Fig. 3. FTIRR spectra of the as-prepared (a) glass and heat-treated glasses at 800°C for 

(b) 1 and (c) 200 h. 

 

Fig. 4. FESEM microphotographs of heat-treated glasses at 800°C for (a) 1 and (b) 200 h 

(scale bar = 100 nm). 

 

Fig. 5. TEM images of heat-treated glasses at 800°C for (a) 1 and (b) 200 h. HRTEM 

images of lattice fringe of heat-treated glasses at 800°C for (c) 1 and (d) 200 h.      

 

Fig. 6. Variation of dielectric constant (ε) as a function of temperature at different 

frequencies of heat-treated glasses at 800°C for (a) 1 and (b) 200 h. 

 

Fig. 7. Variation of dielectric loss (tan δ) as a function of temperature at different 

frequencies of heat-treated glasses at 800°C for (a) 1 and (b) 200 h. 
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