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Jankó . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

IP solutions for international kidney exchange programmes
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3D Reconstruction with Depth Prior

Using Graph-Cut ⋆

Hichem Abdellali and Zoltan Kato

Institute of Informatics, University of Szeged, H-6701 Szeged, PO. BOX 652.,
Hungary

Email: {hichem, kato}@inf.u-szeged.hu

Abstract. In this paper we propose a novel graph-cut based 3D recon-
struction method which is able to take into account partially available
depth data as a prior. We explored the possibility of using a prior infor-
mation to achieve an efficient 3D scene reconstruction using MRF Mod-
elling and graph-cut, which represent the disparity as an energy function.
We formulate the energy in two representations: 1) assignment-based,
which yields a standard binary energy; as well as 2) a multi-label one
which yields a non-binary energy. Both representations have its advan-
tages and disadvantages, which are analysed in detail through various
experiments on the Middlebury stereo data set. Results show, that the
use of depth prior information from different sources produces better 3D
reconstructions.

Keywords: 3D Reconstruction · Graph-Cut · MRF Modelling.

1 Introduction

By using a pair of rectified binocular images, it is possible to reconstruct the
3D scene by finding dense correspondences between the images and building
a disparity map. Depth information is useful for many application like model-
ing, monitoring, urban mapping, and autonomous navigation. Nowadays, various
depth sensors are available to capture a 3D scene, like Time-of-flight devices, or
Lidar. however, these are sensitive to lighting conditions and require a special
setup, while stereo camera systems are more flexible, cheaper and suitable for
disparity estimation. In this paper, we propose a new graph representable en-
ergy function based on the previous work of [4, 5, 3], with a new additional term
which takes into account a prior disparity map collected from other sources. In-
troducing this depth prior provides a soft way to improve the disparity. Recently,

⋆ This work was partially supported by the NKFI-6 fund through project K120366;
”Integrated program for training new generation of scientists in the fields of computer
science”, EFOP-3.6.3-VEKOP-16-2017-0002; the Research & Development Opera-
tional Programme for the project ”Modernization and Improvement of Technical
Infrastructure for Research and Development of J. Selye University in the Fields of
Nanotechnology and Intelligent Space”, ITMS 26210120042, co-funded by the Euro-
pean Regional Development Fund.
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other types of disparity estimation approaches have been proposed, such as mesh
alignment regularization as well as convolutional neural networks. While these
methods are quite powerful, it is not always possible to include meaningful prior
information about the 3D scene. The energy function assumes rectified image
pairs, hence the disparity estimation is reduced to one dimension (along with the
horizontal scan lines). Consequently, disparities between the images are in the
x-direction only. As disparity is inversely proportional to depth, having a dis-
parity map provides a 3D reconstruction of the pixels up to scale. Starting from
this point, we used two representations for disparity values. One is by assigning
a pixel from the left frame to a corresponding pixel on the right frame, which
yields a binary labeling problem [4]. The other way is to assign a multi-valued
label to each pixel in the left frame directly representing the disparity value [3].
Experiments confirm that using a depth prior improves disparity estimates in
both type of representation.

2 Energy Function and Graph-Cut

In this section, We will present two different representation: binary represen-
tation based on assignments [4] and multi-labeled pixel representation [3],
including the proposed prior term.

Binary Label Representation: The representation is based on [4], where
each pixel correspondence between the left and right images is represented as an
assignment a = (p, q) where a is a possible pixel pair in a limited disparity range,
considering that p and q lies on the same horizontal scanline and q (right) is a
possible corresponding pixel of p (left), A is the set of all assignments included
in L (left frame) and R (right frame). A (binary) configuration is any map
f : A → 0, 1. Then an active assignment is when f(a) = 1 meaning that p and q

correspond under the configuration f . If f(a) = 0, then a is inactive. According
to [6] the n binary variables function is graph-representable only if each term
of it satisfies the essentially sub-modularity condition, thus it can be minimized
using graph-cut, see [6, 4]. In this representation, node corresponds to pixel pairs
(assignments) rather than a single pixel, thus it handles occlusion and uniqueness
naturally. The final energy function that we minimize including our prior term
consists of five terms:

E(f) =
∑

a,f(a)=1

D(a) +
∑

a1∼a2

Va1,a2
S +

∑

a,f(a)=1

P (a) + EOcc(f) + EUni(f), (1)

S = T (f(a1) 6= f(a2)) and T(·) equals 1 when its argument is true. The
first term is the data cost D(a) = D(p, q) which measures the dissimilarity
between active assignment element p and q, we used the symmetric version of
the Birchfield and Tomasi’s Dissimilarity Measure [1]. EOcc(f) is the occlusion
term, EUni(f) is the uniqueness term. The smoothness term Va1,a2

is penalizing
disparity jumps where there are no jumps in the intensity:
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Va1,aa
=







3λ If max(|I1(p1)− I1(p2)| ,
|I2(q1)− I2(q2)|) < 8

λ Otherwise
(2)

The uniqueness term EUni is enforcing only one active assignment per pixel
by overflowing the energy when a pixel has more than one active assignment i.e.
if the configuration is non-unique, null otherwise, C1 = T (f(a1) = f(a2) = 1):

EUni(f) =
∑

a1=(p,q1)
a2=(p,q2)
q1 6=q2

∞C1 +
∑

a1=(p1,q)
a2=(p2,q)
p1 6=p2

∞C1 (3)

The occlusion term is penalizing inactive assignments by a penalty K. Then,
the fewer the occluded pixels, the smaller the occlusion term:

EOcc(f) =
∑

a

KT (f(a) = 0) (4)

The prior term P (a) = P (p, q) is the difference between the given disparity
and the prior disparity P

′

r at pixel p with ω being the unit penalty for disparity
difference:

P (p, q) = ω
∣

∣

∣
(px − qx)− P

′

r

∣

∣

∣
(5)

Since the data term D(p, q), prior term P (p, q) and the occlusion term are all
unary, it is possible to add them as in [6]. The sum is then trimmed for a
homogenous cost: Tr(D

′

(p, q)) = min(τ,D(p, q)+P (p, q)). The final unary term,
will be: D

′

r(p, q) = Tr(D
′

(p, q))−K

Multi-label Representation: This representation is based on [3], where dis-
parity is represented as multi-valued labels and each label is equal to a dis-
cretized disparity value which is the difference between the quantized pixel hori-
zontal coordinates from left and right frames. We consider here the widely known
α− expansion move, it produces a local minimum within a known factor of the
global minimum [3]. Note that this move works only in case of a metric pair-
wise interaction penalty. Our interest is about the vital discontinuity preserving
function given by the Potts model V (α, β) = KT (α 6= β) which is metric. This
approach does not treat the images symmetrically and thus may yield incon-
sistent disparities. Occlusions are also ignored and adding a special label for
occlusion would not use both images symmetrically [3, 5]. The energy function
including the prior has three terms:

E(f) =
∑

p∈P

Dp(fp) +
∑

{p,q}∈N

Vp,q(fp, fq) +
∑

p∈P

P (fp, fp
′) (6)

Dp(fp) is the data term which is a penalty for assigning a label d to a pixel
p, depending on the intensity of pixels p and q = p + d, with the same prior
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function defined previously. The final unary term, including the prior, will be:
min(Dp(fp) + |(xp − xp+fp)− f

′

p| ∗w, τ), where xp is the x-coordinate of pixel p
in one frame, xp+fp is the x-coordinate of pixel p plus a disparity on the second

frame, w is a constant weight, and f
′

p is the prior disparity at p. The smoothness
term Vp,q(fp, fq) guarantees that the overall labeling f is smooth. It is based on
the Potts model [3], without considering the second image. i.e. is more likely that
two neighboring pixels have the same labeling if they have a similar intensity.

∑

{p,q}∈N

Vp,q(fp, fq) =
∑

{p,q}∈N

u{p,q}T (fp 6= fp) (7)

where u{p,q} is a penalty for assigning different disparities to neighboring pixels
p and q, µ is the Potts model parameter.

u{p,q} =

{

2µ if |Ip − Iq| ≤ 5
µ Otherwise

(8)

3 Experiments

We used the provided code written in C++ from [4] for the binary representation,
and the Matlab wrapper - GCoptimization - software for energy minimization
with graph-cuts from [8, 6, 2] for the multi-label representation. For simplicity,
we refer to the Binary label representation as BL and to the Multi-label as ML

Middlebury Stereo Datasets: in our experiments, we used the Middlebury
Stereo benchmark. It has five sets, out of which we used the first four sets [7], in
total 37 rectified stereo image pairs. A ground truth disparity map is available for
each pair, which is the basis for quantitative evaluation of our disparity estimates.
As the Multi-label representation handle weakly the occlusion, only by adding an
extra label due to the nature of the model, the quantitative evaluation is limited
to the non-occluded pixels, while occlusion accuracy is subjectively evaluated.
In our experiments, the error rate is based on the number of bad matches with
the available ground truth disparity. For the depth prior we extracted randomly
a partial region from the ground truth, i.e. the prior is available in every image
pixel, except an arbitrary masked region, which corresponds to high-resolution
3D data with some occlusion/missing data. We run the binary-labeling test with
default parameters provided with the source code of [4], while the occlusion cost
and the data fidelity are tuned automatically. For the Multi-label, we used the
best parameter setting that we could achieve experimentally. The performance
of the algorithms has been quantitatively evaluated over regions where prior
depth data is available as well as over regions where prior information was not
available. In this way, we can separately characterize the efficiency of the model
where prior data is directly available and over regions where such information
is not directly available, but - due to the pairwise interactions- the prior has an
indirect effect. A first impression from the results is that our method performs
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much better than the classical one, the introduction of the prior term improves
the quality of the final result. Fig. 1 shows that the details come out and the
occlusion appears almost correctly. Fig. 2 shows an overall view of the results,
in particular, it shows how the bad matches were reduced over the Middlebury
dataset. Apparently, the prior is making the final disparity map accurate over
the whole dataset with an average error being below 8%, the experiments show
that it is also possible to obtain a perfect reconstruction. For some cases with
the higher error rate, the bad matches are due to the expansion of the size and
the disparity range. We can notice that with a right occlusion penalty for the
Multi-labeling representation, it is giving better results even if it is not perfect.
Note also, that using the prior is also improving the image regions where the
prior is not available, because of the pairwise interactions will propagate the
right disparity value over such regions too. A large disparity range may yield
more bad matches – this is also due to the fact that the optimization is global,
i.e. when a large number of matches are wrong, they can perturb the others and
end up with slightly worst matches.

4 Conclusion

We have proposed a novel energy function which handles prior depth information
in two different representations: one leads to a standard binary problem, while
the other one results in a multi-label energy. Experiments clearly show that our
new term can be used easily and the reconstruction result improves considerably.
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Fig. 1: Left: Error rate for the 2001, 2003 and 2005 Middleburry sets using both
representations Inside(In) and outside(out) the region where the Prior depth
is available. Right: Multi-label (red) & Binary Representation (blue) results on
Tsukuba without the prior (Left column) and after using the partial prior (Right
column). Colored pixels represent occluded pixels.
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Integer programming formulations for college
admissions with ties

Kolos Csaba Ágoston1,2, Péter Biró1,2, Endre Kováts3, and Zsuzsanna Jankó4

1 Institute of Economics, Hungarian Academy of Sciences, Hungary
2 Department of Operations Research and Actuarial Sciences, Corvinus University of

Budapest, Hungary
3 Budapest University of Technology and Economics

4 University of Hamburg, Germany
peter.biro@krtk.mta.hu

Abstract. When two students with the same score are competing for
the last slot at a university programme in a central admission scheme
then different policies may apply across countries. In Ireland only one
of these students is admitted by a lottery. In Chile both students are
admitted by slightly violating the quota of the programme. Finally, in
Hungary none of them is admitted, leaving one slot empty. We describe
the solution by the Hungarian policy with various integer programing for-
mulations and test them on a real data from 2008 with around 100,000
students. The simulations show that the usage of binary cutoff-score vari-
ables is the most efficient way to solve this problem when using IP tech-
nique. We also compare the solutions obtained on this problem instance
by different admission policies. Although these solutions are possible to
compute efficiently with simpler methods based on the Gale-Shapley al-
gorithm, our result becomes relevant when additional constraints are
implied or more complex goals are aimed, as it happens in Hungary
where at least three other special features are present: lower quotas for
the programmes, common quotas and paired applications for teachers
studies.

Keywords: integer programming · college admissions · stable matching.

1 Introduction

Gale and Shapley gave a standard model for college admissions [15], where stable
matching is was the solution concept suggested. Intuitively speaking a matching
is stable if the rejection of an application at a college is explained by the satura-
tion of that college with higher ranked students. Gale and Shapley showed that
a stable matching can always be found by their so-called deferred-acceptance
algorithm, which runs in linear time in the number of applications, see e.g.
[16]. Moreover, the student-oriented variant results in the student-optimal sta-
ble matching, which means that no student could get a better assignment in
any other stable matching. The theory of stable matchings have been inten-
sively studied since 1962 by mathematicians/computer scientists (see e.g. [16])
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and economists/game theorists (see e.g. [20]). The Gale-Shapley algorithm has
also been used in practice all around the world [8], first in 1952 in the US res-
ident allocation programme, called NRMP [18], then also in school choice, e.g.
in Boston [1] and New York [2]. In Hungary, the national admission scheme for
secondary schools follows the original Gale-Shapley model and algorithm [9],
and the higher education admission scheme also uses a heuristic based on the
Gale-Shapley algorithm [10].

The Hungarian higher education admission scheme have at least four impor-
tant special features: the presence of ties, the lower and common quotas, and the
paired applications. Each of the latter three special features makes the problem
NP-hard [11], only the case of ties is resolvable efficiently [12]. In a recent paper
[4] we studied the usage of integer programming techniques for finding stable
solutions with regard to each of these four special features separately, and we
managed to solve the case of lower quotas for the real instance of 2008. In this
follow-up work we develop and test new IP formulations for the case of ties. The
ultimate goal of this line of work is to suggest a solution concept for the college
admission problem where ties and common quotas are also present, together with
providing integer programming formulations that are suitable to compute this
solution for large scale applications, such as the Hungarian university admission
scheme with over 100,000 students.

First we start by investigating the basic Gale-Shapley model and then we
consider the case of ties. Due to the space limit we defer the description
of IPs to the full version of the paper, here we present only the results
of the simulations.

2 Model descriptions

In this section first we present the classical Gale-Shapley college admission prob-
lem and then the case of ties.

2.1 The Gale-Shapley model

In the classical college admissions problem by Gale and Shapley [15] the students
are matched to colleges.5 In our paper we will refer the two sets as applicants
A = {a1, . . . , an} and colleges C = {c1, . . . cm}. Let uj denote the upper quota
of college cj . Regarding the preferences, we assume that the applicants provide
strict rankings over the colleges, where rij denotes the ranking of the applica-
tion (ai, cj) in applicant ai’s preference list. We suppose that the students are
ranked according to their scores at the colleges, so college cj ranks applicant ai
according to her score sij , where higher score is better. Let E ⊆ A × C denote
the set of applications. A matching is a set of applications, where each student is
admitted to at most one college and each college has at most as many assignees

5 In the computer science literature this problem setting is typically called Hospital /
Residents problem (HR), due to the National Resident Matching Program (NRMP)
and other related applications.

12



and its quota, uj . For a matching M let M(ai) denote the college where ai is
admitted (or ∅ if ai is not allocated to any college) and let M(cj) denote the set
of applicants admitted to cj in M . A matching M ⊂ E is stable if for any appli-
cation (ai, cj) outside M either ai prefers M(ai) to cj or cj filled its seats with
uj applicants who all have higher scores than ai has. The deferred-acceptance
algorithm of Gale and Shapley provides a student-optimal stable matching in
linear time [15].

The notion of cutoff scores is important for both the classical Gale-Shapley
model and its generalisations with ties and common quotas. Let tj denote the
cutoff score of college cj and let t denote a set of cutoff scores. We say that
matching M is implied by cutoff scores t if every student is admitted to the
most preferred college in her list, where she achieved the cutoff score. We say
that a set of cutoff scores t corresponds to a matching M if t implies M . For a
matching M an applicant ai has justified envy towards another applicant ak at
college cj if M(ak) = cj , ai prefers cj to M(ai) and ai is ranked higher than ak
at cj (i.e. sij > skj). A matching with no justified envy is called envy-free (see
[22] and [21]).

It is not hard to see that a matching is envy-free if and only if it is implied
by some cutoff scores [3]. Note that an envy-free matching might not be stable
because of blocking with empty seats, i.e. when a student ai prefers cj to M(ai)
and cj is not saturated (i.e. |M(cj)| < uj). In this case a matching is called
wasteful. Again, by definition it follows that a matching is stable if and only if it
is envy-free and non-wasteful (see also [6]). To achieve non-wastefulness we can
require the cutoff of any unsaturated college to be minimum (zero in our case).
Alternatively we may require that no cutoff score may be decreased without
violating the quota of that college, while keeping the other cutoff scores. Fur-
thermore, we may also satisfy the latter condition by ensuring that we select the
student-optimal envy-free matching, which is the same as the student-optimal
stable matching [22]. To return this solution we only need to use an appropriate
objective function. We will use the above described connections when developing
our IPs.

2.2 Case of ties

In many nationwide college admission programmes the students are ranked based
on their scores, and ties may appear. In Hungary, for instance, the students can
obtain integer points between 0 and 500 (the maximum was 144 until 2007),
so ties do occur. When ties are present then one way to resolve this issue is to
break ties by lotteries, as done in Ireland (so a lucky student with 480 point
may be admitted to law studies, whilst an unlucky student with the same score
may be rejected). However, the usage of lotteries can be seen unfair, so in some
countries, such as Hungary [12] and Chile [17] equal treatment policies are used,
meaning that students with the same score are either all accepted or all rejected.
In case of such a policy, there are two reasonable variants when deciding about
the last group of students without whom the quota is unfilled and with whom
the quota is violated. In the restrictive policy, used in Hungary, the quotas are
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never violated, so this last group of students is always rejected, whilst in Chile
they use a permissive policy and they always admit this last group of students.
For instance, if there are three students, a1, a2 and a3, applying to a programme
of quota 2 with scores 450, 443, and 443, respectively then in Hungary only a1
is admitted, whilst in Chile all three students are admitted. In Ireland, a1 is
admitted and they use a lottery to decide whether a2 or a3 will get the last seat.

Stable matchings for the case of ties were defined through the cutoff scores
in [12]. The usage of cutoff scores in case of ties make the solution envy-free,
meaning that no student ai may be rejected from college cj if this college admit-
ted another student with score equal to or lower than the score of student ai.
This allocation concept is called also equal treatment policy, as the admission of
a student to a programme implies the admission offer to all other students with
the same score. A matching is envy-free for college admission problem with ties
if and only if it is induced by cutoff scores [3]

For the restrictive policy used in Hungary, the stability of the matching can
be defined by adding a non-wastefulness condition to envy-freeness. Namely, a
matching induced by cutoff scores is stable if no college can decrease its cutoff
score without violating its quota, assuming that the other cutoff scores remain
the same. In the more permissive Chilean policy a matching is stable if by de-
creasing the cutoff score of any college there would be empty seats left there.
(We note that the stability of a matching can be equivalently defined by the lack
of a set of blocking applications involving one college and a set of applicants such
that this set of applications would be accepted by all parties when compared to
the applications of the matching considered. See more about this connection in
[14].)

Biró and Kiselgof [12] showed two main theorems about stable matchings for
college admissions with ties. In their first theorem they showed that a student-
optimal and a student-pessimal stable matchings exist for both the restrictive
policy (Hungary) and the permissive policy (Chile), where the cutoff scores are
minimal / maximal, respectively. Furthermore, they also proved the intuitive
results that if we compare the student-optimal cutoff scores (or the student-
pessimal ones) with respect to the three reasonable policies, namely the Hun-
garian (restrictive), the Irish (lottery), and the Chilean (permissive), then the
Hungarian cutoff scores are always as high for each college than the Chilean
cutoff scores and the Irish cutoff scores are in between these. When considering
the student-optimal stable matching, it turns out to be also the student-optimal
envy-free matching, as described in [3].

3 Simulations

In this section we present the main simulation results.

3.1 Gale-Shapley model

We took the 2008 data after breaking the ties randomly, by considering only the
faculty quotas and keeping only the highest ranked application of each student

14



for every programme (i.e. the application for either the state funded or the
privately funded seat). We used AMPL with Gurobi for solving the IPs.

IP formulations #variables #constraints #non-0 elem. size(Kb) run time(s)

SO-BB 287,035 381,115 73,989,595 1,319,663 1,139

SO-NW-CUT 291,935 673,050 2,463,808 69,464 81

MIN-CUT 289,485 668,150 2,169,423 64,254 5,062

MSMR-CUT 289,485 668,150 2,169,423 69,846 2,318

SO-NW-BIN-CUT 574,070 955,185 3,028,078 75,810 107

MIN-BIN-CUT 574,070 952,735 2,738,593 65,657 871

MSMR-BIN-CUT 574,070 952,735 2,738,593 66,467 4,325

MSMR-EF n.a. n.a. n.a. 8,667,403 n.a.

3.2 Case of ties

We used the 2008 data with the original ties by considering again the faculty
quotas and keeping only the highest ranked application of each student for every
programme.

IP formulations #variables #constraints #non-0 elem. size(Mb) run time(s)

MIN-CUT 289,485 668,150 2,169,423 59,694 5,247

MSMR-CUT 289,485 668,150 2,169,423 65,286 1,460

MIN-BIN-CUT 428,513 807,178 2,447,479 53,548 982

MSMR-BIN-CUT 428,513 807,178 2,447,479 57,106 1,362

SO-H-NW-CUT 578,970 1,694,333 4,793,409 114,882 1,310

SO-H-NW-BIN-CUT 861,105 1,813,840 5,352,772 118,828 165

Finally, we conducted the simulation on the same 2008 data, where we com-
pared the results for the Hungarian, Irish and Chilean policies. The results indeed
follow the theorems of [12] regarding the cutoff scores for the three different poli-
cies. The most interesting fact of the simulation is that for the Hungarian and
Irish policies the difference between the student-optimal and student-pessimal
solutions is minor, as demonstrated also in earlier paper for large markets, such
as [19]. However, for the Chilean policy this difference was more significant.

size of matching average rank average cutoffs # rejections

policies A-opt. C-opt. A-opt. C-opt. A-opt. C-opt. A-opt. C-opt.

Hungarian 86,195 86,195 1.2979 1.2979 58.3931 58.3931 37,698 37,698

Irish 86,410 86,410 1.2916 1.2916 58.2090 58.2106 36,802 36,804

Chilean 86,650 86,614 1.2824 1.2844 57.2502 57.5200 35,668 35,901
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Abstract. In kidney exchange programmes patients with end-stage re-
nal failure may exchange their willing, but incompatible living donors
among each other. National kidney exchange programmes are in opera-
tion in ten European countries, and some of them have already conducted
international exchanges through regulated collaborations. The exchanges
are selected by conducting regular matching runs (typically every three
months) according to well-defined constraints and optimisation criteria,
which may differ across countries. In this work we give integer program-
ming formulations for solving international kidney exchange problems,
where the optimisation goals and constraints may be different in the
participating countries and various feasibility criteria may apply for the
international cycles and chains. We also conduct simulations showing the
long-run effects of international collaborations for different pools and un-
der various national restrictions and objectives.

Keywords: integer programming · kidney exchanges · simulations.

1 Introduction

When an end-stage kidney patient has a willing, but incompatible living donor,
then in many countries this patient can exchange his/her donor for a compatible
one in a so-called kidney exchange programme (KEP). The first national kidney
exchange programme was established in 2004 in the Netherlands in Europe [9].
Currently there are ten countries with operating programmes in Europe [6], the
largest being the UK programme [11].

Typically the matching runs are conducted in every three months on pools
with around 50-300 patient-donor pairs. The so-called virtual compatibility graph
represents the patient-donor pairs with nodes and an arc represents a possible
donation between the corresponding donor and patient, that is found compati-
ble in a virtual crossmatch test. The exchange cycles are selected by well-defined
optimisation rules, that can vary across countries. The most important con-
straints are the upper limits on the length of exchange cycles, for examples, two

17



in France, three in the UK and Spain, and four in the Netherlands [6]. The main
goal of the optimisation in Europe is to facilitate as many transplants as possi-
ble, i.e. to maximise the number of nodes covered in the compatibility graph by
independent cycles. The corresponding computational problem for cycle-length
limits three or more is NP-hard, and the standard solution technique used is
integer programming [1].

International kidney exchanges have already started in Europe between Aus-
tria and Czech Republic [7] since 2016, between Portugal, Spain and Italy since
summer 2018, and between Sweden, Norway and Denmark in the Scandiatrans-
plant programme (STEP), built on the Swedish initiative [2]. The above men-
tioned first two collaborations are organised in a sequential fashion, first the
national runs are conducted and then the international exchanges are sought for
the remaining patient-donor pairs. A related game-theoretical model has been
studied in [8]. In the Scandinavian programme, however, the protocol proposed
is to find an overall optimum for the joint pool. In the latter situation, the
fairness of the solution for the countries involved can be seen as an important
requirement, which was studied in [10] with extensive long-term simulations by
proposing the usage of a compensation scheme among the countries. 5

In this study we will compare the sequential and the joint pool scenarios in
our simulations. We will not consider compensations, or any strategic issues, but
we will allow the countries to have different constraints and goals with regard
to the cycles and chains they may be involved in. In particular, we will compare
the benefits of the countries from international collaborations when they have
different upper bounds on their national cycles, and thus also possible different
constraints on the segments of the international cycles they are participating
in. As an example, we mention the Austro-Czech cooperation, where Austria re-
quires on having all exchanges simultaneously, so they allow short national cycles
and short segments only, whilst in Czech Republic the longer non-simultaneous
cycles and chains are also allowed. We formulate novel IP models for dealing
with potentially diverse constraints and goals in international kidney exchange
programmes and we test two-country cooperations under different assumptions
over their constraints, the possibility of having chains triggered by altruistic
donors, and the sizes and compositions of their pools.

2 Model of international kidney exchanges

In a standard kidney exchange problem, we are given a directed compatibility
graph D(V,A), where the nodes V = {1, 2, . . . n} correspond to patient-donor
pairs and there is an arc (i, j) if the donor of pair i is compatible with the
patient of pair j. Furthermore we have a non-negative weight function w on the
arcs, where wi,j denotes the weight of arc (i, j), representing the value of the
transplantation. (In most applications the primary concern is to save as many
patients as possible, so the value is simply equal to one.)

5 Similar situation arises in the US kidney exchange problem, where the transplant
centres are the strategic agents [4, 5, 3, 13].
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Let C denote the set of cycles allowed in D, which are typically to be of
length at most K. The solution of a classical kidney exchange problem is a set
of disjoint cycles of C, i.e. a cycle-packing in D. For cycle c ∈ C, let A(c) denote
the set of arcs in c and V (c) denote the set of nodes covered by c.6

In an international kidney exchange programme multiple countries (N) are
involved in the exchange, so the set of nodes is partitioned into V = V 1 ∪
V 2 ∪ · · · ∪ V N , where V k is the set of patient-donor pairs in country k. We
have the following modifications of the classical problem. Let Ak denote the
arcs pointing to V k (so the donations to patients in country k). Note that A =
A1∪A2∪· · ·∪AN . The weights of the arcs in Ak should reflect the preferences of
country k. (We may assume that these are scaled, e.g. by having the same average
score in order not to bias the overall optimal solution towards some countries.)
Finally, let AN and AI denote the national and international donations, i.e.
A = AN ∪AI .

In a global optimal solution, small cycles within the countries can have differ-
ent requirement than international cycles. Therefore, we separate the two sets of
cycles into C = CN ∪CI , where CN is the set of national cycles and CI is the set
of international cycles. We call the national parts of an international cycle seg-
ments, where a segment is a path within a country, and the segments are linked
by international arcs. A l-segment is a path of length l − 1, with all the l nodes
belonging to the same country. Let S denote the set of all possible segments,
and let Sk denote the set of segments allowed in country k. For s ∈ S, let A(s)
denote the set of (national) arcs and let V (s) denote the set of nodes covered
(in the same country). Note that a segment may also consist of a single node,
which corresponds to the case when an international donation is immediately
followed by another international donation. We can have the following natural
restrictions on the national and international cycles:7

1. different limits on the length of national cycles for each country;

2. different limits on the length of segments in international cycles for each
country;

3. limit on the total length of an international cycle;

4. limit on the number of countries involved in one cycle;

5. limit on the number of patient-donor pairs from a country in one cycle;

6. limit on the number of segments in a country within one cycle.

6 In addition, we can also consider altruistic donors, in which case we separate the
node set into patient-donor pairs Vp and altruistic donors Va, so V = Vp ∪ Va. The
solution may contain exchange cycles and chains triggered by altruistic donors. The
latter can be conducted non-simultaneously, so different restrictions may apply for
them. In this paper we focus on cycles, but we note that one can reduce the problem
of finding chains to the problem of finding cycles by adding artificial patients to the
altruistic donors, who are compatible with all donors.

7 We can also have different constraints for altruistic chains, and we may require that
an international chain may have to end in the same country where it started.
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Integer programming formulations and simulation plan: We propose
new integer programming formulations, where besides the standard edge- and
cycle-formulations [1], we introduce new variables for country segments. We defer
this part, together with the description of the simulation plan, to the journal
version of the paper. Below we only present one simulation.

3 A simulation example

To determine the benefits of international kidney exchange programmes (KEPs)
we conducted a case study involving two countries which aim to develop a joint
KEP and are concerned about the advantages and disadvantages of cooperation
between their KEPs. We compare the individual benefits from the no cooperation
case to the sequential matchings and merged pool scenarios.

The simulation involves 20 instances each containing the compatibility infor-
mation for 1000 patient-donor pairs. We assume that an extra 10% of this amount
are altruist donors. The length of the considered time-frame in the simulated kid-
ney exchange schemes is 5 years with matching runs occurring every 3 months
for each instance, as in [12]. Each agent is assigned an uniformly distributed
arrival time, and the patient-donor pairs stay in the KEP for a maximum of 1
year (or 4 matching runs) after which they leave the programme (which means
that they opt for an alternative solution, such as having a direct transplant after
desensitisation or getting an organ from a deceased donor).

Fig. 1. Graphic representation of the first KEP stage in one of the instances: altruist
donors are at the top, patient-donor pairs form circles for each country and arcs repre-
sent transplants. Left side, individual KEPs: 13/16 patients receive transplants in the
small country, 28/38 patients in the large country are transplanted. Right side, merged
KEP: the numbers are 15/16 for the small country, and 32/38 for the large one.
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In the illustrative simulation we have two countries. Country 1 is twice the
size of Country 2, meaning that it will have roughly twice as many patient-donor
pairs, as well as altruist donors. On average, each month will mean the arrival
of 33.33 patients to Country 1 and 16.66 to Country 2. Country 2 runs a smaller
programme and allows only 2-cycles and 3-chains, while country 1 allows for
3-cycles and 4-chains. When they collaborate, they allow international 2-cycles,
international 3-cycles where there is only one patient-donor pair involved from
Country 2 and chains that must end in the same country where the altruist
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donor is coming from. The objective is simply to maximise the number of trans-
plants. There are three settings for collaboration: no cooperation (i.e. separate
KEPs, baseline scenario), sequential matchings (each country runs a local KEP
optimisation and then the remaining patient pools enter a joint KEP) and full
collaboration (a single KEP for both countries). We present our findings in Fig.
1, Fig. 2 and Table 1.

Fig. 2. Average across 20 instances of transplants and
dropouts from the KEP recorded after each of the 20 stages
of the KEP.

2 4 6 8 10 12 14 16 18 20

5

10

20

30

40

KEP stage in country 1

tr
an

sp
la

nt
s

an
d

dr
op

ou
ts

pe
r

st
ag

e

merged KEP transplants merged KEP dropouts
sequential KEP transplants sequential KEP dropouts

local KEP transplants local KEP dropouts

2 4 6 8 10 12 14 16 18 20

5

10

20

30

40

KEP stage in country 2

tr
an

sp
la

nt
s

an
d

dr
op

ou
ts

pe
r

st
ag

e

merged KEP transplants merged KEP dropouts
sequential KEP transplants sequential KEP dropouts

local KEP transplants local KEP dropouts

Table 1. Average total
transplants (tr.) and to-
tal patients who drop out
(d.o.) of the programme
across all 20 instances af-
ter 5 years.

tr. d.o.

C1 local 600.2 42.15

C2 local 199.45 90.2

C1 seq. 611.45 36.35

C2 seq. 214.85 78.35

C1 joint 618.7 30.85

C2 joint 289.7 22.15

We observe firstly that the size of the KEP donor pool is important to increase
the number of compatible transplants: the smaller country struggles with a lower
rate of transplants than the larger one, and has a significant 31% drop out rate.
While the larger country does not see much benefit from entering a joining KEP
with the smaller country, we can observe that its number of transplants does
not decrease when international collaboration increases. However, the smaller
country benefits greatly, especially in the case of merged KEPs, where the drop
out rate is significantly lowered to about 7%, a value similar to the drop out
rate of the single larger country’s individual KEP scenario. This information
suggests that newly developing and smaller KEPs have much to gain from full
collaboration with a larger KEP. On the other hand, the improvement in the
sequential KEP scenario is much less than that of the fully joint KEP for the
smaller country.
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Abstract. We consider finite state Markov decision processes with undis-
counted total effective payoff. We show that there exist uniformly opti-
mal pure and stationary strategies that can be computed by solving a
polynomial number of linear programs. This implies that in a two-player
zero-sum stochastic game with perfect information and with total ef-
fective payoff there exists a stationary best response to any stationary
strategy of the opponent. From this, we derive the existence of a uni-
formly optimal pure and stationary saddle point. Finally we show that
the traditional mean payoff can be viewed as a special case of total payoff.

Keywords: Markov processes · Stationary strategies.

We consider finite state, finite action Markov decision processes with undis-
counted total effective payoff. We denote by V the set of states, and by vt ∈ V the
state at which the system is at time t. The controller (Max) chooses an action,
that results in a transition to state vt+1. Note that this transition is stochastic,
and thus vt, t = 0, 1, ... are random variables. Every transition vt → vt+1 results
in a local reward r(vt, vt+1) that is known in advance and depends only on the
pair of states.

A policy (strategy) of Max is a mapping that to any time moment t and
state vt assigns a choice of actions. Such a policy maybe stochastic, may depend
on the history of previous choices, etc. We say that a policy is positional if this
choice depends only on the current state. We say that a policy is deterministic if
actions are chosen with 0/1 probabilities. Finally we say that a policy is uniformly
optimal, if it is an optimal policy for all possible initial states.

Once an initial state v0 ∈ V is fixed, and Max chooses a strategy s ∈ S, the
above process produces a series of states vt(s) ∈ V , t = 0, 1, . . ., which generally
are random variables. We associate to such a process the sequence of expected
local rewards and consider two payoff functions that measure the quality of such
an infinite process:

φs(v0) = lim inf
T→∞

1

T + 1

T∑
t=0

Es[r(vt, vt+1)], (1)
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ψs(v0) = lim inf
T→∞

1

T + 1

T∑
t=0

t∑
j=0

Es[r(vj , vj+1)]. (2)

The first one, called mean payoff, is classic [4], [1]. The second one, called
total payoff or total reward, was introduced by [8], as a “refinement” of the mean
payoff. For instance, if local rewards represent rate of return on our investment,
than maximizing φs(v0) provides us with an optimal investment policy. If how-
ever local rewards are transactions in and out of our account, then Ψs(v0) is
related to the current account balance, and maximizing it makes perfect sense.

We also consider the two person game version, in which Min is an adversary
of Max and tries to minimize the same objective. In this version it is assumed
that some states are controlled by Max, while the other states are controlled by
Min.

Our first result counters the intuitive heuristic view of [8] cited above:

Theorem 1. Mean payoff is a special case of total payoff, in the sense that to
every system with payoff function φ one can associate another system (roughly
twice as many states) with payoff function ψ such that there is a one-to-one
correspondence between policies and ψs(v0) = φs′(v

′
0) holds for corresponding

policies s and s′.

Our main result is about the existence and efficient computability of optimal
policies:

Theorem 2. In every MDP with total effective payoff ψ, Max possesses a uni-
formly optimal deterministic positional strategy. Moreover, such a strategy, to-
gether with the optimal value can be found in polynomial time.

For mean payoff MDPs, the analogous result is well-known, see, e.g. [5], [1],
[3], [7]. In fact there are several known approaches to construct the optimal
stationary strategies. For instance, a polynomial-time algorithm to solve mean
payoff MDPs is based on solving two associated linear programs, see, e.g., [3].

Our approach for proving Theorem 2 is inspired by a result of [9]. We extend
their result to characterize the existence of pure and stationary optima within
all possible strategies by the feasibility of an associated system of equations and
inequalities. Next, we show that this system is always feasible and a solution can
be obtained by solving a polynomial number of linear programming problems.

Theorem 3. Every two-person game with total effective payoff ψ has a value
and a uniformly optimal deterministic positional equilibrium.

For the mean payoff games with perfect information the analogous result is
well-known [4], [6].

The full version of our paper on these and additional results can be found at
[2].
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Abstract. In the stable exchange problem the agents are endowed with
a single good, e.g. a house or a kidney donor, and they have preferences
over the others’ endowments. The problem is to find an exchange of goods
such that no group of agents can block the solution in an exchange cycle.
An exchange is called stable if there is no blocking cycle where all the
agents involved strictly prefer the new solution. An exchange is strongly
stable if no weakly blocking cycle exists, where at least one agent im-
proves and neither of them gets a worse allocation. When the lengths of
the exchange cycles is not limited then a stable solution always exists and
can be found efficiently by Gale’s Top Trading Cycle algorithm. However,
when the length of the exchange cycles is limited then a (strongly) stable
solution may not exist and the problem of deciding the existence is NP-
hard. This setting is particularly relevant in kidney exchange programs,
where the length of exchange cycles is limited due to the simultaneity of
the transplantations, e.g. the maximum length of the cycles is 3 in the
UK and 4 in the Netherlands. In this work we develop several integer
programming formulations to solve the (strongly) stable exchange prob-
lem, which is a novel approach for this solution concept. We compare the
effectiveness of these models by conducting computational experiments
on generated kidney exchange data.
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ian Academy of Sciences under its Momentum Programme (LP2016-3/2018) and
Cooperation of Excellences Grant (KEP-6/2018), and by the Hungarian Scientific
Research Fund – OTKA (no. K129086).

26



1 Introduction
Barter exchange markets – such as kidney exchange programs – can be repre-
sented as directed graphs where agents are vertices and arcs indicate exchange
opportunities. A solution consists of a set of disjoint cycles. In this paper we
consider the case where agents have preferences, represented by ranks on outgo-
ing arcs. An exchange that contains no cycle with length more than k is a k-way
exchange. A k-way stable exchange is a k-way exchange such that there is no
cycle where all the vertices would be better off, according to their preferences,
than in the current solution. When strict preference in the blocking cycle is re-
quired only for one vertex then we speak about strongly stable exchanges. The
problem of deciding existence is NP-hard for both problems [2, 5]. In this work,
we present three novel integer programming formulations for these problems,
which is a novel approach in the literature. Preliminary computational results
highlight the efficiency of one formulation over the others.

1.1 Notation and definitions

Consider a digraph G = (V,A), where V is the set of vertices and A is the set of
arcs. Define also the preference list of i ∈ V as the set δ(i) = {j | (i, j) ∈ A} ⊆ V
where there is a strict preference order on its elements. Each j ∈ δ(i) is ranked
with value r ∈ {1, . . . , |δ(i)|}. For j, j′ ∈ δ(i) ranked with r, r′, respectively, we
say that vertex i prefers j to j′, and denote by j <i j

′, if r′ > r.
Within this context, a matching M ⊂ A is a set of pairs (i, j) where i ∈ V

and j ∈ δ(i). In addition, a vertex always prefers to be matched to any of the
elements in its preference list, rather than be unmatched. A vertex i is unmatched
if there is no vertex j such that (i, j) ∈M. Let C be a set of cycles in G of length
at most k. We denote by V (c) and A(c) the set of vertices and arcs, respectively,
that are involved in a cycle c ∈ C. We say that c ∈M if, and only if, A(c) ⊆M.
Let |c| denote the length of cycle c, i.e., |c| = |V (c)| = |A(c)|. Let C(i) ⊆ C
be the set of cycles that contain vertex i. We say that vertex i prefers cycle
c ∈ C(i) over cycle c′ ∈ C(i), and denote by c ≺i c

′, if for (i, j) ∈ A(c) and
(i, j′) ∈ A(c′), j <i j

′.Vertex i is indifferent between cycles c and c′ if there
exists a vertex j such that (i, j) ∈ A(c) ∩ A(c′), i.e., (i, j) is both in c and c′.
Finally, i weakly prefers c to c′ if it prefers c to c′ or it is indifferent between
them. We define the Stable (Strongly Stable) Exchange Problem as the problem
of finding in G a vertex-disjoint packing of directed cycles with length at most k
that corresponds to a stable (strongly stable) matching. The definitions of stable
and strongly stable matchings [2, 5] are provided below.

Definition 1. A blocking cycle c /∈M is a cycle such that every vertex i in V (c)
is either unmatched in M or prefers c to c′, where c′ ∈ C(i) ∩M. A matching
M is called stable if there is no blocking cycle c /∈M.

Definition 2. A weakly blocking cycle is a cycle c /∈M such that for every i ∈
V (c), i is either unmatched inM or weakly prefers c to c′, where c′ ∈ C(i)∩M,
with strict preference for at least one vertex. A matching M is called strongly
stable if there is no weakly blocking cycle c /∈M.
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2 Integer Programming Formulations

The Stable Exchange Problem can be seen as a optimization problem. In what
follows we propose three integer programming formulations for it.

2.1 Stable Cycle Formulation

For each pair (i, c), i ∈ V , c ∈ C(i) we define two sets of cycles: Bi,c = {c̄ ∈
C(i), c̄ 6= c : c̄ �i c}, which is the set of cycles that are different from c and better
or equally preferable for i than c, and Si,c = {c̄ ∈ C(i) : c̄ ≺i c}, which is the
set of cycles that are strictly better for vertex i than cycle c. Consider vector
x = (x1, . . . , x|C|) of variables such that xc = 1 if all arcs in A(c) are in M, 0
otherwise. The following set of constraints will define a stable matching M:∑

c:i∈V (c)

xc ≤ 1 ∀i ∈ V (1)

xc +
∑

s∈
⋃

i∈V (c) B(i,c)

xs ≥ 1, ∀c ∈ C, (2)

xc ∈ {0, 1} ∀c ∈ C, (3)

Constraints (1) guarantee thatM is a set of disjoint cycles. Constraints (2) mean
that either c ∈ M, or, for some vertex i ∈ V (c), there exists a cycle c′ ∈ B(i, c)
such that i ∈ V (c′) and c′ �i c. For a strongly stable matching, constraints (2)
are replaced by:

xc +
∑

s∈
⋃

i∈V (c) S(i,c)

xs ≥ 1,∀c ∈ C, (4)

Constraints (4) guarantee that either c is in the matching, or otherwise one of
its vertices is matched in a cycle strictly better than c.

The objective function considered maximizes the maximum number of cycles
in M and is described as follows:

F (x) =
∑
c:c∈C

|c| · xc. (5)

2.2 Stable Edge Formulation

To define the stable edge formulation, we depart from the edge formulation in
[1], where yi,j is a binary variable denoting whether arc (i, j) is included in
the solution, or not. A feasible solution with cycles of length at most k can be
formalized as follows: ∑

j:(j,i)∈A

yj,i −
∑

j:(i,j)∈A

yi,j = 0 ∀i ∈ V (6)

∑
j:(i,j)∈A

yi,j ≤ 1 ∀i ∈ V (7)

∑
(i,j)∈A(p)

yi,j ≤ k − 1 ∀p ∈ P. (8)
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where P is a set of all non-cyclic paths p in G with k arcs, and A(p) is the set
of arcs of G in p. Note that sub-cycles with more than k arcs are removed from
the set of feasible solutions by constraints (8). To achieve stability, according to
definition 1, we introduce the following set of constraints:

∑
(i,j)∈A(c)

yi,j +
∑

r:r<ij

yi,r

 ≥ 1, ∀c ∈ C. (9)

Strong stability can be achieved by replacing inequalities (9) by the following
set of constraints:

|c| ·

 ∑
(i,j)∈A(c)

∑
r:r<ij

yi,r

 +
∑

(i,j)∈A(c)

yi,j ≥ |c|, ∀c ∈ C. (10)

The inequality is satisfied for cycle c by the first term if there is an agent strictly
preferring her matching in the solution to what she would receive in c. The
second term ensures that a cycle already in the solution cannot be a blocking
cycle.

Since the sum of all binary variables yi,j is equal to |M|, the objective func-
tion can be written as:

F (y) =
∑

(i,j)∈A

yi,j . (11)

Note that, if the feasibility constraints from (6) to (8) and the stability con-
straints (9) or strong stability constrains (10) are satisfied, we obtain the maxi-
mum number of cycles in M by maximizing F (y) in (11).

2.3 Stable Cycle-Edge Formulation

In the stable (strongly stable) cycle-edge formulation, we use the integer variables
of the two formulations above in a consistent way. That is, for every cycle c ∈ C,
we require that xc = 1 if and only if yi,j = 1 for every (i, j) ∈ A(c). This
correspondence can be achieved by the basic feasibility cycle-constraints (1) and
edge-constraints (6), and by adding the following three sets of inequalities:

|c| · xc ≤
∑

(i,j)∈A(c)

yi,j ,∀c ∈ C, (12)

∑
(i,j)∈A(c)

yi,j − |c|+ 1 ≤ xc,∀c ∈ C, (13)

∑
j:(i,j)∈A

yi,j ≤
∑

c:i∈V (c)

xc,∀i ∈ V (14)

Stability and strong stability are assured by constraints (9) and (10), respec-
tively. Both (5) and (11) can be used as objective functions.
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Table 1. Stable exchange problem formulations: stable cycle formulation (SCF), stable
edge formulation (SEF) and stable cycle-edge formulation (SCEF).

Instances
Formulations

SCF SEF SCEF

n |A| |C| |P| k Rows Non-zeros Rows Columns Non-zeros Rows Columns Non-zeros

30 165

37 3,584 3 57 37 550 0.00 0.00 3,681 165 11,617 0.0274 0.03 189 202 1,295 0.00 0.00

153 17,477 4 177 153 14,016 0.01 0.02 17,690 165 72,772 0.1509 0.15 541 318 5,724 0.01 0.01

269 73,636 5 294 269 51,515 0.04 0.07 73,965 165 369,782 0.7135 0.69 890 434 10,913 0.01 0.02

50 617

584 82,009 3 632 584 88,616 0.05 0.14 82,693 617 265,292 0.60 1.16 1,900 1,201 27,089 0.03 0.06

5,236 951,322 4 5,284 5,236 10,188,648 5.80 126.70 956,658 617 4,028,087 7.25 49.64 15,856 5,853 317,803 0.23 1.56

38,591 11,004,062 5 38,639 38,591 794,566,412 525.10 n.m. 11,042,753 617 56,920,039 89.02 926.14 115,921 39,208 2,852,329 1.81 24.27

70 1135

611 174,480 3 662 611 80,809 0.04 0.19 175,231 1,135 548,667 1.31 5.16 2,019 1,746 33,321 0.05 0.13

6,700 2,135,151 4 6,753 6,700 14,035,100 7.81 150.48 2,141,991 1,135 8,876,487 15.88 191.83 20,288 7,835 458,502 0.36 5.70

48,762 26,135,720 5 48,815 48,762 1,092,827,519 721.96 n.m. 26,184,622 1,135 133,510,623 229.04 2061.98 146,474 49,897 4,081,818 2.82 60.31

90 2063

3,214 884,802 3 3,298 3,214 1,846,921 1.04 13.92 888,196 2,063 2,829,076 5.91 133.75 9,904 5,277 218,618 0.21 0.94

49,386 18,407,917 4 49,471 49,386 687,653,906 406.07 n.m. 18,457,483 2,063 77,174,437 141.18 1414.87 148,421 51,449 4,440,627 3.46 51.14

710,726 382,999,769 5 n.m. n.m. n.m. n.m. n.m. n.m. n.m. n.m. n.m. n.m. 2,132,441 712,789 78,912,742 52.86 1061.07

Column
s

Loading 
time (s)

Solver 
time (s)

Loading 
time (s)

Solver 
time (s)

Loading 
time (s)

Solver 
time (s)

Table 2. Strongly stable exchange problem formulations: strongly stable cycle formu-
lation (SSCF), strongly stable edge formulation (SSEF) and strongly stable cycle-edge
formulation (SSCEF).

Instances
Formulations

SSCF SSEF SSCEF

n |A| |C| |P| k Rows Columns Non-zeros Rows Columns Non-zeros Rows Non-zeros

30 165

37 3,584 3 57 37 490 0.00 0.00 3,681 165 11,617 0.02 0.00 189 202 1,295 0.00 0.00

153 17,477 4 177 153 11,181 0.01 0.00 17,690 165 72,772 0.09 0.02 541 318 5,724 0.01 0.00

269 73,636 5 294 269 40,684 0.02 0.01 73,965 165 369,782 0.41 0.10 890 434 10,913 0.01 0.00

50 617

584 82,009 3 632 584 81,497 0.05 0.02 82,693 617 265,292 0.40 0.09 1,900 1,201 27,089 0.03 0.01

5,236 951,322 4 5,284 5,236 9,293,007 5.20 3.60 956,658 617 4,028,087 4.58 1.87 15,856 5,853 317,803 0.23 0.12

38,591 11,004,062 5 38,639 38,591 725,505,674 437.41 385.29 11,042,753 617 56,920,039 56.87 28.57 115,921 39,208 2,852,329 1.85 1.38

70 1135

611 174,480 3 662 611 74,205 0.04 0.02 175,231 1,135 548,667 0.84 0.23 2,019 1,746 33,321 0.05 0.02

6,700 2,135,151 4 6,753 6,700 12,928,785 7.01 5.09 2,141,991 1,135 8,876,487 10.49 4.45 20,288 7,835 458,502 0.37 0.36

48,762 26,135,720 5 48,815 48,762 1,001,482,550 610.08 n.m. 26,184,622 1,135 133,510,623 134.24 67.56 146,474 49,897 4,081,818 2.81 3.56

90 2063

3,214 884,802 3 3,298 3,214 1,765,893 0.96 0.61 888,196 2,063 2,829,076 3.95 1.61 9,904 5,277 218,618 0.23 0.25

49,386 18,407,917 4 49,471 49,386 659,470,242 389.51 341.85 18,457,483 2,063 77,174,437 91.75 44.11 148,421 51,449 4,440,627 3.35 5.97

710,726 382,999,769 5 n.m. n.m. n.m. n.m. n.m. n.m. n.m. n.m. n.m. n.m. 2,132,441 712,789 78,912,742 53.14 104.28

Loading 
time (s)

Solver 
time (s)

Loading 
time (s)

Solver 
time (s)

Column
s

Loading 
time (s)

Solver 
time (s)

3 Computational Experiments

In this section, we compare the proposed formulations in terms of time needed
to find a solution, time needed to load the coefficient matrix associated with
each formulation (loading time) and the length of that matrix (number of rows,
columns and non-zeros elements). We consider four instances from the literature
[3], with 30, 50, 70 and 90 vertices (n), and consider that the maximum length
of cycles (k) allowed ranges from 3 to 5. We used C++ language and GUROBI
library [4], with default options, as integer programming solver. Tests were ex-
ecuted in a computer with 12 cores Intel(R) Xeon(R) CPU X5675/3.07GHz,
50GB of RAM memory, Ubuntu 16.04.3 LTS operation system and g++ ver-
sion 5.4.0. Preliminary tests on the (Strongly) Stable Cycle–Edge Formulation
(SCEF and SSCEF), showed that by using (11) as objective function, the model
was more efficient. Therefore, for the two formulations above, we only report
results obtained when this objective was considered.

30



In Tables 1 and 2, |C| and |P| are the number of cycles of length at most
k and the number of non-cyclic paths with k arcs, respectively. Entries “n.m.”
indicate that execution was halted due to insufficient memory.

Table 1 shows the experiments results for stable formulations. Notice that for
k = 3, SCF presents better times then SEF. This fact can be explained by the
number of rows and non-zero elements in the coefficient matrix. SEF has more
rows because of constraints (8), that are written for all paths in P. However, for
k = 4 and k = 5, the number of non-zero elements in SCF matrices considerably
increased, as well as loading times and solver times. This is due to the number
of elements in sets Bi,c that increases according to k and to the number of arcs
and vertices which are common to cycles in C. Table 1 also shows that, for all
k, there is a reduction in the number of rows, columns and non-zero elements in
SCEF. This happens because, in this formulation, 1) the path constraints (8) are
no longer required; 2) since the stability constraints are written in terms of yij ,
the number of columns and non-zero elements are reduced. Table 2 shows the
corresponding results for strongly stable formulations. The observations made
for Table 1 also hold here.

4 Conclusion

In this work, we presented three new integer formulations for modeling k-way
stable exchange problems. Computational tests were done with small instances
selected from [3]. Results show that the number of rows, columns and non-zero
elements of the coefficient matrix associated with each formulation increases
the loading time, the solver time and the memory usage with increasing values
of k. Furthermore, SCEF and SSCEF outperform the other formulations for
all instances, independently of k. These formulations do also request for less
memory.
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Abstract. Allocation of scarce resources is a typical problem often encountered by 

managers, and linear programming (LP) is a widely used tool for supporting 

decision making in this area. Since many of the parameters involved in the models 

are generally approximations, expectations or forecasts based on statistically 

available data, managers must deal with the uncertainty of the available data.  

Although LP sensitivity analysis provides valuable information to support 

management decisions, many papers demonstrate erroneous management decisions 

based on the misinterpretation of sensitivity analysis results. Koltai and Terlaky 

classified three types of sensitivity information. Most of the commercial LP solvers 

provide only Type I sensitivity information but from a management standpoint Type 

III sensitivity information are far more important. Type III sensitivity provides 

information about the invariance of the rate of change of the objective value 

function and thus is independent of the optimal solution found and depends only on 

the problem data.  

This paper discusses some practical problems related to the implementation of Type 

III sensitivity information in practice. 

Keywords: Decision support, LP Sensitivity analysis, Type III sensitivity 

1 Introduction 

Organizations all over the world use business analytics (BA) to gain insight in order to 

drive business strategy and planning. With the increasing amount of available data larger 

models are created to support decision making, but managers also must deal with the 

uncertainty of the input parameters. In this perspective LP models have two valuable 

properties: the required computation time allows large models to be solved and further 

valuable insight can be gained about the problem using sensitivity analysis. 

Every linear programming problem, referred to as a primal problem, can be converted 

into a dual problem, which provides an upper bound to the optimal value of the primal 

problem. The optimal solution of an LP problem provides the optimal allocation of 

limited resources, while the optimal solution of the dual problem provides information 

about the marginal change of the objective function of the primal problem (shadow price), 

if a right-hand-side parameter changes.  
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Sensitivity analysis provides information about the validity range of the primal and 

dual optimum. The validity range of the objective function coefficients (OFC) provides a 

range for each coefficient, within which the primal optimal solution will not change. 

Validity range of the right-hand-side (RHS) elements provides a range for each right-

hand-side element. Within this range the dual optimum will not change. 

If the optimal solution of the primal problem (dual degeneracy) or the dual problem 

(primal degeneracy) is not unique the resulting sensitivity information can be misleading 

for managers.  

There is a wide range of available tools to solve LP problems. Many of these tools use 

an implementation of the simplex method and provides an optimal solution related 

sensitivity information. The sensitivity information generated by such solvers are often 

used by managers to support decisions.  

Evans and Baker [3] provided examples to show that under degeneracy the 

interpretation of sensitivity information calculated by commercial LP solvers can be 

erroneous and have significant managerial implications. Problems and possible solutions 

related to LP Sensitivity analysis has an extensive literature since then.  

Aucamp and Steinberg [2] demonstrated that shadow prices are not necessarily equal to 

dual variables except in the case when the primal problem is nondegenerate and suggested 

an alternative definition for the shadow price. Akgül [2] differentiated between the 

positive and negative shadow prices. Gal [4] made an extensive survey on the managerial 

interpretation problem of shadow prices. Many papers demonstrate erroneous 

management decisions based on the misinterpretation of sensitivity analysis results [6] 

[10].  

Koltai and Terlaky [7] classified three types of sensitivity information. In non-degenerate 

cases the three types of sensitivities are identical, but in degenerate cases different 

sensitivity information could be provided by LP solvers. Type I sensitivity determines 

those values of some model parameters for which a given optimal basis remains optimal. 

Most of the commercial LP solvers provide only Type I sensitivity information but from a 

management standpoint Type III sensitivity information are far more important. Type III 

sensitivity provides information about the invariance of the rate of change of the objective 

value function. This information is independent of the optimal solution found and depends 

only on the problem data. 

A practical approach to calculate Type III sensitivity information was presented by Koltai 

and Tatay [7]. The suggested approach uses additional LP’s to calculate the related 

sensitivity ranges.  

To create a tool which makes easily accessible this valuable information for 

management decision making some further practical issues need to be addressed. The first 

column of Table 1 contains the standard form of a primal linear programming problem, 

while the last column contains the standard form of the dual linear programming problem 

[5]. The second column contains a perturbed primal problem, where δ can take both 

positive and negative values. 
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 Table 1. Primal, perturbed primal and dual linear programing problems 

primal problem  perturbed primal problem  dual problem  

𝐀𝐱 ≤ 𝐛 

𝐱 ≥ 𝟎 

𝐦𝐚𝐱(𝐜𝐓𝐱) 
(1) 

𝐀𝐱 ≤ 𝐛 + δ𝒆𝒋 

𝐱 ≥ 𝟎 

𝐦𝐚𝐱(𝐜𝐓𝐱) 

(2) 

𝐀𝐓𝐲 ≥ 𝐜 

𝐲 ≥ 𝟎 

𝐦𝐢𝐧(𝐛𝐓𝐲) 
(3) 

Table 2 contains the additional LP’s required to calculate Type III sensitivity intervals. 

If λ=1 maximal increase will be calculated, while calculating the maximal decrease 

requires the λ parameter to be set to -1. 𝛾𝑖  and 𝜉𝑗  are the decision variables used to 

calculate maximal decrease/increase allowed for the ci OFC and bj RHS parameter. 

Table 2. Additional LP problems for sensitivity analysis 

Sensitivity analysis of OFC 

parameters 

 Sensitivity analysis of 

RHS parameters 

 

𝐀𝐓𝐲 ≥ 𝐜 + λ𝛾𝑖𝒆𝒊 
𝐛𝐓𝐲 = 𝑂𝐹∗ + λ 𝛾𝑖𝒙𝒊

∗ 

𝛾𝑖 ≥ 𝟎 

max(𝛾𝑖) 

(4) 

𝐀𝐱 ≤ 𝐛 + δ𝒆𝒋 + λ 𝜉𝑗𝒆𝒋 

𝐜𝐓𝐱 = 𝑂𝐹∗ + λ 𝜉𝑗𝑦𝑖
∗ 

𝜉𝑗 ≥ 𝟎 

max(𝜉𝑗) 

(5) 

The remainder of this paper is organized as follows. First the question related to the 

size of the perturbation used to calculate Type III sensitivity ranges of RHS elements is 

discussed. Next, a possibility to decrease the calculation time of the validity ranges is 

proposed. Finally, a practical tool for implementation is presented. 

2 Perturbation size 

Under degeneracy the effect of increase and the effect of decrease of the RHS elements 

can be different. Consequently, information about the marginal increase and the marginal 

decrease of each RHS parameter are necessary. To calculate the linearity intervals related 

to the increase of an RHS element a δ >0 perturbation is used while a δ<0 perturbation is 

used to calculate sensitivity range related to the decrease of an RHS parameter in LP 

problem (5). If the value of δ is set overly small numerical error could occur, while setting 

δ overly large could result an erroneous validity range.  

Figure 1 shows the objective value function related to an RHS parameter. If the 

perturbation (δ2) is larger than the validity range related to the shadow price at the original 

value of the RHS parameter (value of the RHS parameter set to b2), the calculated Type 

III interval is erroneous. The root cause of the problem is that the original RHS parameter 

value (b) is outside the validity range of the shadow price related to the perturbed primal 

LP problem. 
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This problem could be considered just theoretical since in practice, for a given LP 

problem, decision makers could set perturbation sizes which are small enough to consider 

smaller changes irrelevant.  

 
Fig. 1. Objective value function related to the b right-hand-side element. 

To create a general solution for calculating Type III sensitivity information the size of 

the perturbation must be set automatically and based only on the LP parameters. An initial 

δ value could be set by defining an arbitrary function on the parameters of the LP 

problem. Then, to prevent the problem of setting an overly large perturbation value, the 

Type I validity range of the perturbed LP (2) must be calculated. If the original value of 

the RHS parameter is inside the Type I interval of the perturbed LP problem, then no 

further steps are required. Figure 2 presents the situation when the original value of the 

RHS parameter is outside the Type I interval of the perturbed problem 

 
Fig. 2. Calculation of proper perturbation size. 
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In this case a new perturbation size must be calculated using the following formula: 

 𝛿2 =
𝛿1−𝜉1

2
, (6) 

where 𝛿2 is the size of the new perturbation, 𝛿1 is the size of the previous perturbation and 

𝜉1  is the difference between the original perturbation and the edge of the left validity 

interval of the perturbed dual LP. This step is repeated until the original RHS parameter 

value is inside the validity interval of the shadow price of the perturbed LP.  

3 Decreasing the calculation time 

To calculate the sensitivity information for all RHS and OFC parameters in case of I 

variables and J constraint at least 2I+6J additional LP problems must be solved. The 

number of additional LP problems to be solved could increase if for some RHS parameter 

the initial perturbation level was set too high. One way to decrease the required 

computation time is to calculate Type III sensitivity information just for those parameters 

that are important from a managerial stand point.  

Calculation time can be further decreased by taking advantage of the possibility to 

initialize solver runs. The vector 𝐱′ = (𝐱∗, 0) is a feasible solution for the additional LP 

problems related to the calculation of the Type III sensitivity ranges of RHS parameters 

(5), where 𝐱∗  is the optimal solution of the perturbed primal LP (2). The vector 𝐲′ =
(𝐲∗, 0) is a feasible solution for the additional LP problems related to the calculation of 

the Type III sensitivity ranges of OFC parameters (4), where 𝐲∗ is the optimal solution of 

the dual LP problem (3). By instructing the solver to initialize the solver run using this 

information the calculation of the additional LP problems can be accelerated.  

4 A practical tool 

To support decision makers with Type III sensitivity information, a tool is required which 

can solve the numerous LP’s presented in Table 1 and Table 2, and has good algorithmic 

capabilities to connect the models and collect the resulting information. Such a tool is 

provided by the AIMMS Prescriptive Analytics Platform, which is often used for solving 

commercial optimization problems in a wide range of industries including retail, 

consumer products, healthcare, oil and chemicals, steel production and agribusiness [8]. 

AIMMS Prescriptive Analytics Platform is a tool for those with an Operations 

Research or Analytics background and offers a straightforward mathematical modelling 

environment and a wide range of available solvers. AIMMS also features an advanced 

graphical user interface editor which allows the creation of optimization application to 

individuals without a technical or analytics background. AIMMS own structural language 

allows the creation of procedures to connect the multiple models required to calculate 

Type III ranges for all the parameters. The list of available solvers also includes simplex 

method-based solvers such as CPLEX which can be used to calculate Type I sensitivity 
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information required to check the perturbation size. CPLEX can also be instructed to use 

an initial solution indicated in section 3 and this way the calculation time can be 

significantly decreased.  

With the use of the build-in user interface editor, a user-friendly interface can be 

created for decision makers to choose the relevant parameters of the model. 

5 Conclusion 

When sensitivity information of LP parameters is important for management decision 

making, then Type III sensitivity information must be calculated. In this case the 

erroneous conclusions triggered by degenerate solutions can be avoided. The 

mathematical models for generating Type III information are well known. The practical 

implementation of the calculation, however requires the solution of some numerical and 

computational problems.  

In this paper the setting of proper perturbation size and the possibilities to decrease 

calculation time was discussed.  

The findings presented in this paper are important steps to the development of a 

practical tool, which can be used by manager when LP models are applied for the 

allocation of scares resources.  
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Abstract. In this paper a complex scheduling problem is dealt with.
Several types of products should be produced with a heterogeneous re-
source set: some resources have the same operating capabilities, some of
them are quite different, while others have similarities regarding their
capabilities but they have different parameters (like operation time).
Setup time is also considered in the model. The production of the prod-
ucts follows different workflows, allowing also assembly lines. The goal is
to produce all the products in minimum time.
Because of the complexity of the problem exact solvers require too much
time to solve the problem. A compound heuristic algorithm is introduced
that finds a near-optimal solution very fast. The method follows the idea
of ”Divide et Impera”: the basic problem is divided into smaller sub-
problems that are easier to solve. During the solution process simplifica-
tions are applied, and first a preemptive version of the simplified problem
is solved. Then a rounding procedure results in a non-preemptive solu-
tion. Finally, for improving the solution, several kinds of local search are
applied.
The efficiency of the heuristics is demonstrated on multiple problem
classes. A multitude of instances were solved and analyzed according
to different aspects.

Keywords: scheduling · heuristics · problem splitting.

1 Introduction

This paper introduces a special scheduling problem where predetermined job
sequences have to be scheduled on unrelated machines for obtaining different
products. Some papers with related topic are mentioned below. Precedence con-
straints are applied in [1], too, but on a single machine. [2] contains a review of
various metaheuristic methods for solving different kinds of models with huge
size. A classical work in this topic is [3]. Generally in these models there is only
one resource, but the model can be extended by different constraints.
The considered problem can be approached from the theory of scheduling. In the
three-field-notation, the problem can be denoted as Rm|prec|Cmax, i.e. given m
unrelated machines, there are precedence constraints between the jobs, and the
makespan has to be minimized. In the model presented in this paper the length
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of the chains in the precedence graph is short (contains only chains of length at
most 3). Other related works dealing with unrelated machines are [4, 5], none of
them considers the same model that is treated here. There are only a few papers
considering unrelated machines in the presence of precedence constraints, except
under special conditions, like the one where the precedence constraints are in
fact chains. But it is worth to note that in our model some components are as-
sembled, it means that there are points in the precedence graph with more than
one predecessor. Among the few exceptions, [6] provides a heuristic algorithm
for problem Rm|prec|Cmax, and gives computational experiments.

2 Presentation of the problem

For the presentation of the complexity of the problem that is intended to solve
a small number of jobs (also called tasks) and resources is enough, this way the
presentation is also easily understandable. In this model there are two types
of workflows, they differ only in one task as it can be seen in Figure 1. Both
types of workflows have to be executed several (n1 and n2, respectably) times as
the prescribed quantity of products defines. The model of the problem includes

Fig. 1. Workflows of the applied model.

also the description of resources and their capabilities. Here 8 resources are
applied, some of them are of similar types, some of them share some capabilities,
while others differ totally from each other as table 1 shows. Important to note
that p(R3, T2) < p(R6, T2) and p(R3, T3) > p(R6, T3). It means that resource
R6 is better (quicker) in performing tasks with type T3 than resources R3-R5,
but worse in executing tasks with type T2. Moreover, there is a setup time for
resources R3, R4, R5 and R6 if they switch between the task types they are able
to carry out (setup(T2, T3) from T2 to T3 and setup(T3, T2) from T3 to T2).
The goal is to find the schedule with minimal makespan.
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Table 1. Resource capabilities of the model /p(R, T ) denotes processing time of task
T by resource R; ’-’ means that a resource is not able to perform the task/.

T1 T2 T3 T4

R1 p(R1, T1) - - -
R2 p(R1, T1) - - -
R3 - p(R3, T2) p(R3, T3) -
R4 - p(R3, T2) p(R3, T3) -
R5 - p(R3, T2) p(R3, T3) -
R6 - p(R6, T2) p(R6, T3) -
R7 - - - p(R7, T4)
R8 - - - p(R7, T4)

3 The proposed solution method: ”Divide et Impera”

The main idea was to separate the problem into sub-problems that can be solved
one after one easier than the whole problem. During this separation parts have
to be handled carefully that are not independent from each other in the resource
allocation process. Since resources R3-R6 are able to substitute each other just
like R1-R2 and R7-R8, regarding the jobs they can carry out; the problem was
divided into 3 sub-problems /rooms/ as Figure 2 shows.

Fig. 2. The separation of the initial problem into sub-problems.

3.1 Room1

To find the optimal schedule for room1 is easy. There are 2 identical machines
with the same capabilities. Since there is no previous sub-task, the execution of
a task can begin as soon as there is a free machine. So, here a trivial greedy
algorithm that can be applied to solve the first sub-task.
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3.2 Room2

To solve the second sub-problem is challenging. There are 4 machines, the capa-
bility of one of the four machines differs from that of the others, the remaining 3
machines have identical parameters. All the 4 machines are able to execute both
task types of the sub-problem. A heuristic algorithm is applied for this room.
When a machine executes different tasks, the change from one type of job to
another requires some time (the setup time), the number of switches between
the different types of tasks (in this case T2 and T3) of the resources should be
minimized: it should happen maximum once for each resource. Each resource
type has to start its operation on the job type it is able to handle with smaller
processing time. Based on the model of the problem in case of resources R3-R5

it is a task with type T2, while for resource R6 it is a task with type T3.
It means that for resources R3-R5 the task sequence should be like T2, T2, ...,
T2, T3, ..., T3 and for resource R6 that is T3, T3, ..., T3, T2, ..., T2. It also has
to be noted that if there is an R3-R5 resource that executes task with type T3

and R6 also has T2 task in its queue then these tasks have to be swapped for
reaching a better solution. It results, that the task queue of resources is:

1. T2, T2, ..., T2, T3, ..., T3 for R3-R5 resources and T3, T3, ..., T3 for R6, or
2. T2, T2, ..., T2 for R3-R5 resources and T3, T3, ..., T3, T2, ..., T2 for R6.

Suppose that the first case happens (in the opposite case the solution is very
similar). Then the job sequences (and the definition of x and y) are as it is illus-
trated in Figure 3. As the first step a preemptive solution should be found, where

Fig. 3. A half-ready job sequence in Room2 resulted by some steps of the heuristics.

all resources finish their job sequences at the same time. So, for determining the
values of x and y the following equation system has to be solved:

p(R3, T3)∗y = ((n1+n2)∗p(R2, T2)+setup(T2, T3)∗3+(n1−y)∗p(R3, T3))/3 (1)

x = n1/3 (2)

Since x and y are not surely integers, a rounding process has to be done. Both
numbers are rounded into the integer that is less or equal to them. Then the
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remaining tasks are concatenated to the job sequences in the following way: the
remaining T3 jobs are added to the queue of resource R6 and the remaining T2

tasks are concatenated to the job sequence of resources R3-R5, starting from R5

backwards to R3.
In the final step local search is applied to improve the obtained solution: The
makespan of the solution is calculated, then a random job is selected that is
assigned to a different machine. If the makespan of the resulted solution is better,
then it is kept, otherwise the change is discarded.

3.3 Room3

The 3rd sub-problem is similar to the first sub-problem: there are two machines
with identical capabilities. However, for starting the execution of a task not only
a free machine is required but ready raw material pair from the previous rooms
is also needed. Nevertheless, finding the optimal solution for this sub-problem is
easy, the classical list scheduling is applied for this room.

4 Results

The proposed heuristic was tested both on deterministic data and on stochastic
data, too. For the deterministic case three different problem classes were created
that differ in the size of the problem: in the small sized problem n1 = 20, n2 = 15,
in the medium sized problem n1 = 50, n2 = 50 and in the large sized problem
n1 = 150, n2 = 100. For the stochastic case both numbers were selected in such
a way that n1 + n2 = 100. The details of the parameters (the constant values
for the deterministic way, and the interval from were the random values were
selected in the stochastic way) are highlighted in Table 2.
In the calculation it turned out that local search phase of the heuristic is im-

Table 2. Parameter values of the test cases /values mean time unit; p(R, T ) denotes
processing time of task T by resource R/.

deterministic case stochastic case

p(R1, T1) 6 [2, 6]
p(R3, T2) 6 [4, 8]
p(R3, T3) 10 [10, 15]
p(R6, T2) 10 [9, 13]
p(R6, T3) 6 [5, 7]
p(R7, T4) 4 [2, 4]

setup(T2, T3) = setup(T3, T2) 6 [0, 5]

portant, it can improve the quality of the result. It was obtained, too, that
10 iterations of local search were enough to find a good solution for the 2nd
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sub-problem in all the small, medium and large sized problem cases. The same
problems were solved also using CPLEX that helped to judge the quality of the
heuristics: in most of the cases the distance of the results to the optimum was
less than 5% related to the optimal makespan and in more than 50% of the cases
the proposed algorithm resulted in the optimum. Moreover, the heuristic algo-
rithm provided the result quickly: in all cases (even for the large sized problems)
the execution time was below 1 second.

5 Conclusion

In this paper a heuristic algorithm has been presented for scheduling a com-
plex problem of unrelated machines. For the solution the original problem was
divided into smaller sub-problems. Some of the sub-problems could be solved
in a trivial way (greedy algorithm and list scheduling), while one sub-problem
required a more complex heuristic. In this heuristic a preemptive solution was
created, then that was improved by rounding and local search. Some compu-
tation were made with different problem classes (both the problem size and
the deterministic/stochastic manner of the problem were varied). The proposed
heuristic produces the result fast.
A challenge for the future is to examine more general cases (with arbitrary num-
ber of resources and with different process structure).
One interesting direction of further research could be the investigation of the
separability of complex workflows into smaller sub-problems.
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Abstract. We reconsider an exponential lifetime model obtained by
modifications of exponential distributions. We investigate the copula of
the resulting multivariate distribution function, and we provide some re-
sults concerning certain stochastic orderings, namely the convex order,
the increasing convex order and the Lorenz order. Furthermore, we em-
ploy the joint lifetime model for quantifying systemic risk in financial
systems.
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1 Introduction

We consider a system of n entities and their dependent lifetimes as it has been
already presented in Pflug and Guzmics [8], and first has been published (for
n = 2 ) by Freund [2]. Our overall motivation is to suggest a model for banking
systems, where the default of an institution affects the remaining lifetime of other
institutions. The lifetime variables are linked to loss variables, and we define risk
functionals as functions of the loss variables in order to quantify systemic risk.

The lifetime model has the following setting: initially we assume individ-
ual exponential lifetimes for each entity, and when an institution defaults, the
lifetime distributions of all other institutions are modified, as an effect of this
default. Regarding the underlying exponential marginal distributions, our model
can be understood as a multivariate extension of the exponential distribution,
even though the resulting marginals, in general, will not be exponentially dis-
tributed any more, but they are mixtures of two exponential distributions.

The paper is organized as follows. In Section 2 we recall the model and its
basic properties. In Section 3 we give a brief review about the convex, increasing
convex and the Lorenz order, which are going to be relevant for our analysis.
In Section 4 we explore some properties of our lifetime model regarding the
above mentioned stochastic order relations. In Section 5 we suggest a model for
systemic risk based on the lifetime model presented in Section 2.
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2 The bivariate model

Pflug and Guzmics [8] have recently suggested a multivariate lifetime model,
which for n = 2 had been worked out by Freund [2]. Consider two independent
exponential lifetime variables, Y1 ∼ Exp(λ1), Y2 ∼ Exp(λ2). Assume that in
a certain realization the first institution defaults earlier (Y1 < Y2). Then the
remaining lifetime of the second institution will be continued according to an-
other variable Z2 ∼ Exp(λ2 + a2), for some fixed a2 ≥ 0, where a2 is called
shock parameter. The r.v. Z2 is independent of both Y1 and Y2. We impose an
analogous modification, when Y2 < Y1, by introducing a r.v. Z1 ∼ Exp(λ1 +a1),
where a1 ≥ 0 is a fixed shock parameter. The resulting, already modified lifetime
variables X1, X2 are given by{

X1 = Y1 · 1{Y1<Y2} + (Y2 + Z1) · 1{Y2<Y1} ,

X2 = Y2 · 1{Y2<Y1} + (Y1 + Z2) · 1{Y1<Y2} .
(1)

The joint cdf of (X1, X2) is given by (2). For more details look at [8].

H(x, y) =



1 +
λ1

λ1 − a2
· e−(λ1−a2)x · e−(λ2+a2)y +

a1
λ2 − a1

· e−(λ1+λ2)x−

λ2
λ2 − a1

· e−(λ1+a1)x − λ1
λ1 − a2

· e−(λ2+a2)y when 0 ≤ x ≤ y ,

1 +
λ2

λ2 − a1
· e−(λ2−a1)y · e−(λ1+a1)x +

a2
λ1 − a2

· e−(λ1+λ2)y−

λ1
λ1 − a2

· e−(λ2+a2)y − λ2
λ2 − a1

· e−(λ1+a1)x when 0 ≤ y ≤ x .
(2)

We are interested in exploring the dependence structure of this bivariate
distribution, and examine how the dependence structure changes as we let the
shock parameters a1, a2 vary. To this aim we have considered the copula of
(X1, X2) for a symmetric parameter setting (λ1 = λ2 = 1, a1 = a2 = a), and
showed that Ca′ dominates Ca for 0 ≤ a ≤ a′ in the upper orthant order, which
clearly justifies, that as parameter a gets larger, the lifetime variables X1, X2

are more positively dependent. For the details of this analysis look at [8].
In this current paper we will investigate the lifetime variables (X1, X2) with

respect to three closely related stochastic orders: the convex order, the increasing
convex order and the Lorenz order.

3 Convex, increasing convex and Lorenz order

Stochastic order relations have an extensive literature, here we only mention
some selected items. In the bibliographies of the listed works one can find nu-
merous other sources. The books by Shaked and Shantikumar [3], [5] are general
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comprehensive works; Denuit et al. use the notion of stochastic dominance (of
several kinds) for applications in actuarial theory; concerning the topic of our
present work (convex order and Lorenz order) the most highlighted references
are Scarsini [4], and Kämpke and Radermacher [7].

Throughout this section x, y ∈ Rn; X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn)
denote n-variate random vectors, Z and W denote random variables.

3.1 The multivariate convex and increasing convex orders

The definition of convex order and increasing convex order is given in a merged
form in Definition 1. (We use the term ’increasing function’ in the weak sense.)

Definition 1. A random vector X is said to be smaller than the random vector
Y in the (increasing) convex order, in notation X �CVX Y resp. X �ICV X Y,
if for all (increasing) convex functions g : Rn → R

E(g(X)) ≤ E(g(Y )). (3)

Remark 1. It is easy to see that if two random vectors are ordered in the (in-
creasing) convex order, then each of their components are also ordered in the
(increasing) convex order. The converse does not hold, look at Example 1.

Remark 2. It is also easy to verify that both the convex order and the increasing
convex order are partial order relations.

3.2 The Lorenz order and its relation to the convex order

For the sake of simplicity, in the rest of the paper we restrict our discussion to
random variables which are non-negative and not almost surely 0. We use the
same assumptions for the components of the appearing random vectors, too.

The notion of Lorenz curve [1] has been originally established in economics
to compare the households by their income, wealth, etc. distributions.

Definition 2. For a r.v. Z with cdf F the Lorenz curve is defined as L : [0, 1]→

[0, 1], LZ(u) =

u∫
0

F−1(s)ds

E(Z)
, where F−1 is the generalized inverse of F .

Remark 3. The Lorenz curve of a non-negative (and not almost surely 0 ) r.v. is
an increasing convex function on [0, 1] and it can be seen as a way of describing
unevenness. For an egalatarian distribution (where each household has exactly
the same income, the Lorenz curve is given by L(u) = u. The larger the differ-
ences in the incomes are, the more the Lorenz curve deviates from L(u) = u.
Notice that the Lorenz curve is invariant under positive scaling, i.e. if Z is a
non-negative r.v. and λ > 0, then Z and λ · Z have the same Lorenz curves.

There is a univariate stochastic order relation which is obtained by compar-
ison of Lorenz curves, that is the Lorenz order. For a reference look at [7].
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Definition 3. Let W and Z be non-negative random variables with E(W ) > 0,
E(Z) > 0. W is said to be dominated by Z in the Lorenz order, in notation
W �L Z, if LW (u) ≥ LZ(u) for all u ∈ [0, 1].

Remark 4. Notice that all (positive) egalatarian distributions are dominated by
any other distributions in the Lorenz order. However, there is no such distribu-
tion that would dominate all other distributions in the Lorenz order.

We cite an important equivalence relation between the univariate convex
order and the Lorenz order, which is in the core of our upcoming investigations
in Section 4. The statement can be found in [7], Theorem 3.

Proposition 1. Let W and Z be non-negative r.v.-s with E(W ) = E(Z). Then
W �L Z if and only if W �CVX Z.

Finally, we give an example as it has been announced in Remark 1.

Example 1. Let us consider the bivariate vectors X and Y with the joint distri-
butions given in following tables.

@
@@X1s
X2sg

9/10 12/10

sg

1 2/3 1/3

@
@@Y1s
Y2sg

4/5 7/5

sg

3/5 0 1/3
sg

6/5 2/3 0

One can show that Xi �CVX Yi for i = 1, 2, but X �CVX Y . The Lorenz
curves of Xi, Yi (i = 1, 2) are plotted in Figure 1. According to Proposition 1 the
pointwise orderedness of the corresponding Lorenz curves means that Xi �CVX
Yi for i = 1, 2. The bivariate convex functions g(z1, z2) = z21+z22 and h(z1, z2) =
max{0,−z1−z2+2} show that X and Y are not comparable in the (multivariate)
convex order.

(a) LX1(u) ≥ LY1(u) for all u ∈ [0, 1],
therefore X1 �L Y1 and X1 �CV X Y1

(b) LX2(u) ≥ LY2(u) for all u ∈ [0, 1],
therefore X2 �L Y2 and X2 �CV X Y2

Fig. 1: Componentwise Lorenz dominance illustrated by Lorenz curves
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4 Convex and Lorenz order relations in our model

We consider the model (2) for a symmetric parameter setting, i.e. when λ1 =
λ2 = 1, a1 = a2 = a. (Although the formula (2) is not valid for λ = a = 1, this
case does not need to be excluded, neither, as [8] explains in details.)

Now we are ready to examine the model w.r.t the following three order rela-
tions. We denote the vector of the lifetime variables by Xa = (Xa

1 , X
a
2 ).

Proposition 2. Let 0 ≤ a < a′. Then Xa and Xa′ are not ordered in the
multivariate convex order.

Proof. Pflug and Guzmics [8] as well as Freund [2] showed that Ea(X1) =
Ea(X2) = 1

2 ·
a+2
a+1 . The necessary condition for the convex order i.e. E(Xa) =

E(Xa′), does not hold. (Cf. Remark 2.)

Proposition 3. Let 0 ≤ a < a′. Then Xa
i and Xa′

i (i = 1, 2) are not ordered in
the Lorenz order.

Sketch of the Proof. The Lorenz curves should have pointwise orderedness in
order that the Lorenz order relation holds, which is not case, as the two panels
of Figure 2 show.

Fig. 2: Lorenz curves of Xa
i for different a values. For 0 ≤ a < a′ ≤ a0:

Xa′

i �L Xa
i (left). For a0 ≤ a < a′: Xa

i �L Xa′

i (right).

Remark 5. There exists a certain turning point a0, such that for 0 ≤ a < a′ ≤ a0
the relation Xa′

i �L Xa
i (i = 1, 2) holds, and for a0 ≤ a < a′ the relation

Xa
i �L Xa′

i (i = 1, 2) holds. According to our investigations up to now, a0 ≈ 2.4.

Proposition 4. Let 0 ≤ a < a′. Then Xa
i and Xa′

i (i = 1, 2) are ordered in the

increasing convex order: Xa′

i �ICV X Xa
i (i = 1, 2.)

Proof. According to Denuit et al. [6], Proposition 3.4.6 it is enough to examine,
whether E((Xa′

i − t)+) ≤ E((Xa
i − t)+) for all t ∈ R. One sees by elementary

computation that a 7→ E((Xa
i − t)+) = e−(1+a)t

1−a2 − a
2(1−a) · e

−2t is a decreasing

function of a for each fixed t, which proves the statement.
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5 A possible model for systemic risk

In this section we relate our lifetime variables to loss variables via a simple
idea: the longer the lifetime is, the less the losses are. Look at Example 2 as an
illustration. For more examples see [8]. Such a relation enables us to translate
the notion of ’financial risk’ into the ’volume of losses’, which can be quantified.

Definition 4. Let us consider a risk functional R : S → R, where S is a
suitable space of real-valued random variables. Let (L1, . . . , Ln) be the vector of
losses, which are defined through the lifetime variables (X1, . . . , Xn), and let C
the copula of (X1, . . . , Xn). Then the systemic risk R is defined as

R(C,R; L) = R

(⊕
a
C
Li

)
−R

(⊕
a
Π
Li

)
, (4)

where L defines the loss variables in terms of the lifetime variables, and
⊕

a
C

denotes the sum of Li-s, when Xi-s are coupled by copula C.

Example 2. Let (X1, X2) ∼ H , where H is according to (2) with λ1 = λ2 = 1.
Let us define now the loss variables via Li = ci · e−r·Xi (i = 1, 2), where ci
is the initial capital of institution i , and r is the risk-free interest rate. In the
numerical study c1 = c2 = 1, and r = 0.05. For the risk functional R let us choose
Rt(L) := E(L− t |L > t ), where L is a loss variable, and t is a threshold, whose
excess is considered as a ”bad” event. In this example we observe a moderate
increase in systemic risk as the shock parameters a1, a2 are getting increased.

(a1, a2) (0,0) (0,1) (1,1) (1,3) (2,3) (5,5) (10,10) (100,100)

R(⊕CLi) 1.9049 1.9163 1.9275 1.9334 1.9373 1.9432 1.9466 1.9508

R(C,R; L) 0 0.0114 0.0226 0.0285 0.0324 0.0383 0.0417 0.0459

rel.incr. 0% 0.59% 1.19% 1.49% 1.70% 2.01% 2.19% 2.41%
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Abstract. From the practical point of view, long-term scheduling, i.e.
planning for a few months, holds a great importance. However, the
scheduling of most production systems is a mathematically complex
problem, thus, approaches relying on exact methods can usually pro-
vide the optimal solution for only up to a few days of planning period
within a reasonable time.
The approach of cyclic scheduling assumes the schedule of the whole
planning horizon to have a repeating nature. While the optimal solution
may be lost if the cycle time is limited, this approach brings the problem
to a manageable level, and provides solutions that are easier to execute
and manage in practice.
Cyclic scheduling is a reasonable trade-off between solution quality and
computational complexity, however, it also introduces new modeling chal-
lenges. This work focuses on interlacing, which is the overlapping of con-
secutive cycles. Allowing such overlaps may provide significantly better
schedules, however, modeling them appropriately is not self-evident.
In this work, we emphasize the importance of interlacing, and present a
novel model to address this issue.

Keywords: cyclic scheduling · no intermediate storage · mixed-integer
linear programming.

1 Introduction and literature review

Cyclic scheduling assumes that a long-term schedule consists of the same re-
peating parts. As the exact methods for short-term scheduling problems are
inadequate for long-term problems, this approach was introduced to bring them
to a manageable complexity, while sacrificing optimality by only considering a
subset of solutions. Moreover, cyclic schedules have the additional benefit of
simpler manageability over non-cyclic schedules that may be more profitable.

The usual objective in cyclic scheduling is to maximize the hourly profit, how-
ever, that introduces an undesired non-linearity in the objective function. Many
approaches tackle this difficulty by solving a series of MILP models, where either
the cycle time or the quantity of products is fixed. Thus, a well-studied subprob-
lem in the field is minimizing the cycle time for a given amount of products,
which is the focus of this paper.

Cyclic scheduling, however, introduces another modeling difficulty: it does
not assume anything about the ”continuity” of a cycle within a machine. In a
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repeatable solution, the execution of the operations of a cycle may overlap with
the same operations in the next cycle, or any other cycles, a phenomenon called
interlacing. Disregarding solutions with interlacing may lose optimality, however,
modeling them is not a trivial feat.

Brucker and Kampmeyer [1] proposed a general model for different varia-
tions of the cyclic machine scheduling problem. They presented 3 methods for
modeling the interlacing of subsequent repetitions of the cyclic schedule.

The first method, first published by Hanen [2] has a parameter H∗0, which
tells how many different repetitions can coincide with each other. When H∗0 = 1,
the first task of repetition k + 1 can only start after the last task of repetition
k is finished. This way, the problem is equivalent to non-cyclic makespan mini-
mization. If H∗0 = h, then h subsequent cycles may coincide such that any task
in repetition k + h− 1 may precede any task in repetition k.

The second method, job repetition was first introduced in [3] but it is not
widely used in the literature. Here, each job has its own cycle, that may be shifted
from each other. The cycle time is the maximum flow time among jobs. Param-
eter Hjob = h is used to limit the interlacing between tasks of h consecutive
repetitions of a job.

The third method is called machine repetition, and was first presented in
[4]. It is widely used for periodic scheduling applications, along with the idea
of MPS (Minimal Part Set). An MPS includes one or more batches from each
job, and each cycle produces 1 MPS. The operations of an MPS-cycle on a
certain machine may start later than the tasks of the same MPS on a different
machine. This way, different machines may work on distinct MPSes at the same
time but one machine cannot start operating on the next MPS until it finishes
its last task from the current MPS (unless interlacing is allowed). It follows
that the cycle time is the maximum workload among machines. In the model of
[1], parameter HMPS denotes the number of MPSes that can be present in the
system in unfinished state at any time.

As it can be observed, interlacing cycles often require intermediates to be
stored for a long time. To the case where No Intermediate Storage is available
(NIS), [5] proposed a model, which is generalized to the above 3 interlacing
methods in [1]. If a machine has no storage buffers, materials must be stored
inside the machine after they are processed, until they are transported to the
next stage. During this time, the machine cannot perform any processing tasks.

The model of [1] introduces the following constraint to ensure task i is block-
ing its machine:

ti′ − ts(i) ≥ pi − αKs(i)i′ ∀i, i′ ∈ O,M(i) = M(i′)

Here, ti is the start time of task i, pi is its processing time, s(i) is its successor,
α is the cycle time (to be minimized), Kii′ is the binary variable denoting the
disjunctive arc between tasks i and i′, and M(i) is the machine which processes
i. Kii′ = 1 if task i is started before i′ during a cycle, and Kii′ +Ki′i = 1. The
possible values of variables K can be efficiently enumerated by a tabu search
metaheuristic or a search with constraint propagation technique, and with K
fixed, the problem becomes an LP.
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While above constraint ensures that M(i) cannot process any other tasks un-
til s(i) is started, it allows cross-transfer of materials between M(i) and M(s(i)).
As it was discussed in [6], this may be infeasible in practice. Switching the con-
tents of 2 machines without intermediate storage is impossible in certain produc-
tion systems. For example, if the materials are liquids, or if one of the machines
is single-gripper robotic arm, or hoist, simultaneously loading and unloading a
machine.

2 Mathematical model

2.1 Input data

The proposed model is designed for the cyclic scheduling of job-shop problems.
To ease the presentation and understanding of the model, the following assump-
tions are made:

– each operation has dedicated units, e.g., no unit-assignment is to be made
during the optimization process

– each job has a single batch in the MPS
– no intermediate has a dedicated storage unit

Lifting these assumption would require minor modifications of the model,
that could be done by anybody having moderate experience in scheduling and
MILP formulations.

The exact input sets and parameters describing the problem are:

J set of jobs
M set of machines
sj ∈ Z+ the number of steps needed to produce j ∈ J
mj,s ∈M the machine needed for the s-th step of j ∈ J (s ∈ {1, 2, . . . , sj})
ptj,s ∈ R0,+ the processing time of the s-th step of j ∈ J (s ∈ {1, 2, . . . , sj})

To further ease notation, the following sets are derived from the above:

O = {(j, s) | j ∈ J, s ∈ {1, . . . , sj}} the set of all operations
C = {((j1, s1), (j2, s2)) ∈ O×O | (j1, s1) 6= (j2, s2)∧mj1,s1 = mj2,s2} the set of

operations sharing the same unit

2.2 Variables

The most important continuous variable in the model is TCT that denotes the
time offset, by which a cycle can be repeated without any overlapping in the
schedule. The goal of the model is to minimize this variable.

The continuous variables T s
m ∈ [0,∞] denote the start of a cycle in machine

m ∈ M . No operations can be started in m before T s
m. The interval [T s

m, T
s
m +

TCT [ is regarded as the ”own cycle” of the schedule. If an operation is scheduled
within the interval [T s

m + k · TCT , T s
m + (k + 1) · TCT [, it is said to overlap with
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the kth cycle, i.e., it will be carried out during the cycle of the kth repetition of
the schedule.

In the proposed model, there are two sets of non-negative continuous timing
variables assigned to each operation to indicate this:

ts,Rj,s , t
f,R
j,s the real starting and finishing times of the operation (j, s) ∈ O

ts,Vj,s , t
f,V
j,s the virtual starting and finishing times of the operation (j, s) ∈ O

If an operation is within the cycle of the schedule, then its virtual and real
times are equal, otherwise, they have the difference of k · TCT . The core idea of
the proposed model is, that while the real timing of operations are calculated
ordinarily, the starting and finishing times are ”shifted back” to the cycle of the
schedule to express sequencing constraints and avoid overlaps within the unit.

There are two types of discrete variables used in the model:

kj,s ∈ N is the offset of operation (j, s) ∈ O
x(j1,s1),(j2,s2) ∈ {0, 1} are the sequencing variables

Variable x(j1,s1),(j2,s2) takes the value of 1, if and only if operation (j1, s1)
precedes (j2, s2) if shifted to the same cycle.

2.3 Constraints and objective function

The first constraints set the relation between the real and virtual starting times,
and the shifting variables:

ts,Vj,s = ts,Rj,s + kj,s · TCT ∀(j, s) ∈ O (1)

tf,Vj,s = tf,Rj,s + kj,s · TCT ∀(j, s) ∈ O (2)

The following timing constraints need to be added to ensure processing times
and NIS policy:

tf,Rj,s ≥ t
s,R
j,s + ptj,s ∀(j, s) ∈ O (3)

ts,Rj,s+1 = tf,Rj,s ∀(j, s) ∈ O, s 6= sj (4)

As mentioned above, the scheduling constraints are made on the shifted,
virtual starting and finishing times:

ts,Vj2,s2
≥ tf,Vj1,s1

−M · (1− x(j1,s1),(j2,s2)) ∀((j1, s1), (j2, s2)) ∈ C (5)

M is a sufficiently large number. To enforce scheduling in one direction the
following constraints are needed:

x(j1,s1),(j2,s2) + x(j2,s2),(j1,s1) = 1 ∀((j1, s1), (j2, s2)) ∈ C (6)

Finally, the starting of the own cycle are set by the following to constraints:

T s
m ≤ t

s,V
j,s ∀(j, s) ∈ O (7)

T s
m + TCT ≥ tf,Vj,s ∀(j, s) ∈ O (8)

Last, the objective is to minimize the variable TCT .
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2.4 Linearizing the model

Due to constraints (1) and (2), the model described in the previous chapter
is quadratic. Let us refer to this MIQP model as M. An MILP model, M∗ is
proposed based on M as follows:

1. The variable TCT is replaced by a parameter with the same name.
2. A new continuous variable T I is introduced, that refers to the minimal idle

time at the end of the own cycle the machines have
3. Constraint (10) is slightly altered: T s

m + TCT − T I ≥ tf,Vj,s ∀(j, s) ∈ O
4. The objective is to maximize T I

A feasible solution to M∗ proves, that the cycle time TCT is feasible for the
required products, thus the optimal solution of M is less than TCT Moreover,
it is easy to see, that an upper bound for M∗, tu provides the lower bound of
TCT − tu for the minimal cycle time.

Consequently, if the optimal solution of M∗ is 0, then TCT is the minimal
cycle time.

Note, that a non-zero optimal solution for M∗ does not guarantee that there
exists a solution for M with less cycle time than TCT .

3 Illustrative example

The capabilities of M∗ is illustrated via an illustrative literature example by
Brucker and Kampmeyer[1]. This problem has three products, all of which take
3 steps to be produced in the 3 available units.

In the subsections below, two cases with different number of products are
investigated. All of the test runs were executed on a computer with 4 GB or
RAM, and a 4-core Intel i5 processor running Ubuntu 18.04. The applied MILP
solver is Gurobi 8.0.1.

The (1,1,1) case The sum of the processing times is 15, thus the optimal cycle
time is definitely below that, so it can be used for TCT in the first run.

It took 29.13 seconds for the solver to find the optimal solution of 8. This
result ensures, that the minimal cycle time is between 7 and 15.

In the second run, TCT was changed to 7. The purpose of this run is to verify,
whether 7 is a feasible cycle time or not, which means, that if a feasible solution
is found, there is no need to wait until it is proven optimal. The solver found
the optimal solution and proved its optimality in 0.75 seconds.

The (1,3,2) case To test a more complex case, 2 and 1 additional batches of
products 2 and 3 are added respectively. Similarly to the (1,1,1) case, TCT is set
to the sum of the processing times in the first run, i.e., 30.

The solver could find a feasible solution with T I = 17, and reduce the upper
bound to 18, however, it could not finish within 60 seconds. From this run, we
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know, that 30 is a feasible cycle time, and the optimal cycle time is greater or
equal to 12.

Running the model the second time with TCT = 12 did not provide a feasible
solution within 60 seconds. When TCT was changed to 13, the solver reported
the expected optimal solution of 1 in 34.09 seconds.

Although the proposed model could not find the optimal solution with this
approach, it provided a solution 1 hour close to optimality within around two
minutes.

4 Conclusion

Interlacing is a feature of cyclic schedules, that is not trivial to model, however,
allowing it may result in better solutions. In this paper, a MIQP model was
presented for cycle time minimization. A modified, linear version of the model
was presented to check the feasibility of a provided cycle time, and provide
a lower bound on the optimal cycle time. The proposed approach of running
the linear model iteratively proved to be efficient in finding schedules with the
optimal or close-optimal cycle time, that allow interlacing.
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Tibor Illés1 and Sunil Morapitiye1

Budapest University of Technology and Economics, Budapest, Hungary
sunil@math.bme.hu

Abstract. The class of sufficient matrices (SU) are important in the
theory and solvability of the linear complementarity problems (LCP)
as it was proven that SU-LCPs can be solved in polynomial number of
iterations using interior point algorithms (IPA) that depends on the size
of problem n, bit length L and the value κ ≥ 0 that characterise the
matrix property. Furthermore, the SU-matrices are the wider class of
matrices for which criss-cross algorithms (CCA) solves the problem in
finite number of iterations. Important deficiency of the published IPAs for
SU-LCPs is that in most publications there are no numerical examination
at all. Main reason for this might lie in the fact that only few SU matrices
are known that does not fall into the classes of PSD and P matrices.
Our goal is to generate different SU (but not PSD or P) matrices and
test problems on which the different IPAs can be tested and the results
can be compared.

Keywords: sufficient matrices · linear complementarity problems · interior-
point algorithms

1 Introduction

The class of P0 matrices and its subclasses play an important role in the theory of
the LCP. We say that a matrix is in P0 if all the principal minors are nonnegative.
Couple of decades ago two subclass were defined: the class of SU matrices in
1989 by Cottle et al. [2] and the class of P∗(κ) matrices in 1991 by Kojima,
et al. [1]. Kojima, et al. [1], Guu and Cottle [3] and Valiaho [4] in a series of
publication proved that these matrix classes are equivalent, i.e. P∗ = SU.

For different variants of CCAs and IPAs for SU-LCPs good survey can be
found in Csizmadia [7] and M. Nagy [8], respectively.

Our goal is to generate sufficient matrices, therefore we need to find different
ways to construct SU-matrices. By building a set of SU-matrices, test set prob-
lems for SU-LCPs can be defined, thus practical, computational performance of
the IPAs can be tested. Important definitions, some lemmas and some construc-
tions for SU-matrices are summarized. Finally, we illustrate a way we generated
SU-matrices using the discussed lemmas and constructions.

In this paper we omit the proofs of the known lemmas and Construction 1,
because those can be found in the literature. For our own, new results, sketch of
the proofs are included for most of the cases.

We distinguish between the scalar product (xTy ∈ R), and the Hadamard
(coordinate-wise) product (x y ∈ Rn) of two vectors x,y ∈ Rn.

56



2 Definitions, lemmas, constructions

Definition 1. A matrix A ∈ Rn×n is called a PSD-matrix if for every vector
x ∈ Rn

xTAx ≥ 0. (1)

Now, we are ready to introduce the classes P∗(κ) and P∗ as a generalization of
PSD-matrices (for details see Kojima et al. [1]).

Definition 2. A matrix A ∈ Rn×n is called a P∗(κ)-matrix (for some κ ≥ 0)
if for every vector x ∈ Rn

(1 + 4κ)
∑

i∈I+(x)

xi yi +
∑

i∈I−(x)

xi yi ≥ 0 (2)

where y = Ax, I+(x) = {i : xi yi > 0} and I−(x) = {i : xi yi < 0}.

If κ = 0 we get back the definition of PSD-matrices. Now, we can introduce

P∗ = ∪κ≥0P∗(κ). (3)

The classes CSU, RSU and SU were defined by Cottle et al. [2].

Definition 3. A matrix A ∈ Rn×n is called column sufficient matrix (or belongs
to the CSU class of matrices) if for every vector x ∈ Rn it satisfies the following
condition

xy ≤ 0 ⇒ xy = 0, (4)

where y = Ax.

It is easy to see that a matrix is a sufficient matrix, if I+(x) = ∅ implies that
I−(x) = ∅. Furthermore, any sufficient matrix has the property that if ∃i ∈ I−(x)
then there should be another index j ∈ I+(x).

Definition 4. A matrix A ∈ Rn×n is called row sufficient matrix (or belongs to
the RSU class of matrices) if AT ∈ CSU.

A matrix A ∈ Rn×n is called sufficient matrix (or belongs to the SU class of
matrices) if A ∈ CSU ∩RSU.

In most cases the complexity of the IPAs depends on the handicap of the matrix,
therefore testing the algorithm on a matrix with zero handicap is not appropriate,
thus our goal is to generate sufficient matrices with positive handicap.

Definition 5. A ∈ Rn×n, x ∈ Rn where xTAx < 0 and let us define the follow-
ing function

FA(x) = − xTAx∑
i∈I+(x) xi(Ax)i

. (5)
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The handicap of a SU matrix A is denoted by κ(A), and

κ(A) =

{
0 if A ∈ PSD
1
4 sup{FA(x)|xTAx < 0} otherwise

(6)

If A /∈ PSD then there exists a vector x for which xTAx < 0 therefore κ(A)
is well defined. The handicap of a SU matrix A is basically the smallest κ for
which A ∈ P∗(κ).

Definition 6. The principal pivot operation (PPO) transforms the equation
system y = Ax (A ∈ Rn×n, x,y ∈ Rn) into an equivalent one, where the variables
xi and yi are exchanged for certain indices i ∈ R.

If R = {1, 2, ..., j} for some j ∈ {1, 2, ..., n}, then the coefficient matrix of the
new equation system is:

PRA =

(
A−1RR −A−1RRARR

ARRA
−1
RR ARR −ARRA

−1
RRARR

)
. (7)

The Lemmas 1-5 and Construction 1 can be found in Cottle, Pang and Stone
[5].

Lemma 1. Every principal submatrix of a sufficient matrix is also sufficient.

Lemma 2. If A ∈ Rn×n, P = diag(p1, ..., pn), Q = diag(q1, ..., qn), where
piqi > 0 for all i, and B = PAQ, then

1. If A ∈ SU then so is B.
2. If A ∈ P∗(κ) for some κ ≥ 0, then B ∈ P∗(κ

′), where κ′ ≥ κ is such that

1 + 4κ′

1 + 4κ
=

maxi(pi/qi)

mini(pi/qi)
. (8)

Lemma 3. The matrix classes CSU, RSU, SU, P∗(κ), P∗ are closed under
the PPO and the principal permutations of rows and columns.

Lemma 4. The handicap of a sufficient matrix is at least as large as the hand-
icap of any of its principal submatrix.

Lemma 5. The handicap is invariant under the PPO.

Lemma 6 (Construction 1). If A ∈ Rn×n is in SU then so is the following
matrix (

A I
−I D

)
, (9)

where I,D ∈ Rn×n, and I is the identity matrix and D is a diagonal matrix with
nonnegative elements.

Now, we summarize two of our constructions which were used during the suf-
ficient matrix generation process. From now on let I = {1, 2, . . . , n} and Jk =
{n+ 1, n+ 2, . . . , n+ k} be set of indices.
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Lemma 7 (Construction 2). Let a sufficient matrix A ∈ Rn×n be given. Let
us define the matrix C ∈ R(n+k)×(n+k) in the following way

cij =


aij if 1 ≤ i, j ≤ n

1 if i = 1 and j ∈ Jk
−1 if j = 1 and i ∈ Jk

0 otherwise

(10)

where k ∈ N is arbitrary. Then the matrix C is sufficient.

Proof. First we prove the column sufficiency using the definition. Let x ∈ Rn+k,
x̃ = xI , y = Cx and ỹ = Ax̃. The Hadamard product

xy =



x1ỹ1 + x1
∑
i∈Jk

xi
x2ỹ2

...
xnỹn
−xn+1 x1

...
−xn+k x1


. (11)

If −xi x1 > 0 for some i ∈ Jk then I+(x) 6= ∅. Otherwise −xi x1 ≤ 0 for all
i ∈ Jk so

∑
i∈Jk

xix1 = x1
∑
i∈Jk

xi ≥ 0. In this case (as A ∈ SU) we know
that among the first n coordinate of the vector xy there must be at least one
positive, or every coordinate is zero. This proves the column sufficiency, and the
row sufficiency can be proved exactly in the same way. �

Note, that if A /∈ PSD then C /∈ PSD.

Lemma 8. The matrix E ∈ Rn×n of ones is sufficient.

Proof. Let x ∈ Rn, y = Ex and the corresponding Hadamard product

xy =

x1
∑n
i=1 xi
...

xn
∑n
i=1 xi

 . (12)

If
∑n
i=1 xi = 0 then xy = 0. If

∑n
i=1 xi is positive (negative) then ∃i ∈ I for

which xi is positive (negative) so i ∈ I+(x), therefore I+(x) 6= ∅. �

Previous lemma gives us a useful tool in proving the following statement.

Lemma 9 (Construction 3). Let a matrix D ∈ R2n×2n is defined as follows

dij =


1 if (i, j) ∈ I × I ∪ Jn × Jn ∪ (n, n+ 1)

−1 if (i, j) = (n+ 1, n)

0 otherwise.

(13)

Then D is sufficient matrix.

59



Proof. Let x ∈ R2n, y = Dx and the corresponding Hadamard product

xy =



x1
∑n
i=1 xi
...

xn−1
∑n
i=1 xi

xn
∑n
i=1 xi + xnxn+1

xn+1

∑2n
i=n+1 xi − xnxn+1

xn+2

∑2n
i=n+1 xi
...

x2n
∑2n
i=n+1 xi


. (14)

If xnxn+1 = 0 then D is sufficient because of Lemma 8. Considering Lemma 8 we
can also see that if xnxn+1 is positive (negative) there must be a positive element
among the first (second) n coordinate of the vector xy, and this is exactly what
we needed. Again, the row sufficiency can be proved exactly the same way so we
omit that. �

This construction can be generalized: if A,B ∈ Rn×n are in P0 of rank 1, and
F = diag(A,B), then fn,n+1 and fn+1,n can be chosen such that F is sufficient
(and fn,n+1 fn+1,n < 0).

3 Example: building a sufficient matrix

Matrices of order 1 are sufficient if the (only) element is nonnegative. Sufficient
matrices of order 2 were characterized by Guu and Cottle in [3]. Deciding whether
a matrix of order 3 is in SU can be calculated on paper, or even in head quite
fast, using the lemmas in [6]. (It takes less than a minute after some practice.)
We calculated several sufficient matrices of order 3, and then we applied the
mentioned lemmas and constructions to increase its size and to hide the original
structure.

Let us illustrate the construction of a larger sufficient matrix from smaller
ones using Constructions 1-3. and some of Lemmas 1-5. Let us start with a given
sufficient matrix A. (Sufficiency of A can be checked using the definition.)

A =

 1 2 −2
−1 1 −3

2 1 1

 B =


1 2 −2 1 1
−1 1 −3 0 0

2 1 1 0 0
−1 0 0 0 0
−1 0 0 0 0

 C =



1 2 −2 1 1 1 0
−1 1 −3 0 0 0 1

2 1 1 0 0 0 0
−1 0 0 0 0 0 0
−1 0 0 0 0 0 0
−1 0 0 0 0 2 0

0 −1 0 0 0 0 3
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The sufficient matrix B can be obtained from A by applying Construction 2.
From matrix B, the sufficient matrix C can be built by using Construction 1.

D =



1 −2 −3 −1 1 −1 2
1 1 5 −1 1 −1 −1
3 −3 0 −3 3 −3 3
−1 2 3 1 −1 1 −2

2 −4 −6 −2 2 −2 4
−1 2 3 1 −1 1 −2
−1 −1 −5 1 −1 1 10


Applying PPO (Lemma 3) to matrix C and some scaling (Lemma 2) the resulting
matrixD is sufficient matrix, as well. Due to the scaling, the handicap of matrices
C and D, might be different.

All our sufficient matrix examples can be downloaded from the internet. Cur-
rently there are 10 pieces of matrices of order 10 and 20, and one matrix of order
700. As every principal submatrix of a sufficient matrix is sufficient (Lemma 1),
the 700×700 matrix grants us an immense amount of sufficient matrices. By the
time of the Vocal conference we are going to choose additional test examples, so
the IPAs can be tested uniformly.
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garian Research Fund, OTKA (grant no. NKFIH 125700) and the Higher Ed-
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Abstract. The Fisher type market exchange model is a special case of
the Arrow-Debreu type market exchange model. In this case, the players
are divided into two groups, consumers and producers. Producers sell
their products for money, and the consumers have an initial amount of
money that they can use to buy a bundle of goods which maximizes their
utility functions. In his article in 2006, Yinyu Ye presented and analyzed
an interior point algorithm to solve the Fisher type market exchange
models (MEMs) with linear and Leontief utility functions. He generalized
the Eisenberg-Gale convex optimization formulation of the Fisher type
MEM to a weighted analytic center problem, and then presented an
interior point algorithm to solve it. We introduce a new interior point
algorithm (IPA) to solve the weighted analytic center problem (WACP)
discussed by Yinyu Ye. We discuss a new way to find the solution of the
Fisher type linear and Leontief MEMs.

Keywords: Fisher type market exchange models · Interior point algo-
rithms · Convex optimization.

1 Introduction

The Arrow–Debreu MEM was first formulated by Walras in 1874 [1]. In this
model, there are m players with an initial endowment of n divisible goods and
a utility function for every players. Every player sells his or her goods at the
market and then uses the revenue to buy a bundle of goods which maximizes his
or her utility function value. Our goal is to find the market clearing prices (i.e.
equilibrium solution), meaning that every product is sold and every money is
spent in the end. We consider pure exchange economies, therefore no production
is involved in the model.
The existence of the market clearing prices was proved by Arrow and Debreu in
1954 [2], under some mild conditions and assuming that the utility functions are
concave. The proof is not constructive and therefore the algorithms to compute
the equilibrium solution are still commonly investigated topics in the literature.
Even in case of Leontief utility functions, determinining an equilibrium solution
is at least as hard as computing a Nash-equilibrium for two-player nonzero sum
games, where the latter class is PPAD-complete (Polynomial Parity Arguments
on Directed graphs, [5]). However, there are efficient algorithms for special classes
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of Arrow–Debreu MEMs. In case of linear utility functions, Jain gave a convex
optimization formulation for the problem, and proved that the problem class is
polynomially solvable [13]. Based on this formulation, a more efficient polyno-
mial IPA was given by Ye in [4]. The convergence of this algorithm follows from
the theory of Nesterov and Nemirovski on self-concordant barrier functions [7].
In the Fisher market equilibrium problem, the players are divided into two
groups, producers and consumers. The producers bring their goods to the mar-
ket, and each consumer has an initial amount of money. Similarly to the Arrow–
Debreu case, every consumer has a utility function, which he or she wants to
maximize. This problem can be considered as a special case of the Arrow–Debreu
market exchange model, where money is the product brought to the market by
the consumers.
Klafszky [15] in 1981 for Fisher type MEMs with linear utility functions intro-
duced a combinatorial algorithm, very similar to that of the Hungarian Method
[18] for the transportation problem. Furthermore, Klafszky studied the connec-
tion between the corresponding Eisenberg-Gale problem [3] with the geometric
programming problem [17]. Recently, Eisenberg-Nagy et al. [16] generalized some
of Klafszky’s results [15] for Fisher type MEMs with homogenuos utility func-
tions.
In this paper, we consider the Fisher MEM with linear utility functions. Al-
though there are several efficient algorithms to solve this problem, we introduce
a very simple, new IPA.

2 The Fisher exchange market equilibrium problem

In case of the Fisher type MEM ([8],[9]), the players are divided into two groups,
producers and consumers. Let us denote the number of producers by pr, and the
number of consumers by c. Without loss of generality we may assume that each
producer has one unit of her good, and each consumer has an initial endowment
of money (wi, i ∈ C = {1, 2, . . . , c}). The vector xi represents the bundle of
goods bought by consumer i, and ui(xi) is her utility function (i ∈ C). Every
consumer uses her money to buy a bundle of goods which maximizes her utility
function value. We would like to determine the prices (pj , j ∈ P = {1, 2, . . . , pr})
for the products so that in the end every money is spent and every product is
sold (market clearing prices).
This problem is indeed a special case of the Arrow–Debreu MEM, if we consider
money as the product brought to the market by the consumers.
With the above notations, and assuming that the utility functions are linear, the
problem can be formulated as follows:

max
xi

ui(xi) =
∑
j uijxij∑

j pjxij ≤ wi,
xij ≥ 0 ∀j

 (FCi) ∀i

∑
i xij = 1 ∀j ∈ P
pj ≥ 0 ∀j ∈ P


(FL)
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From now on, we make the following assumptions:

A1. Every consumer’s initial endowment is positive (wi > 0 ∀i ∈ C).
A2. Every consumer has at least one product that she like (at least one uij > 0

for every i ∈ C).
A3. Every good is valuable for at least one consumer (at least one uij > 0 for

every j ∈ P ).

Eisenberg and Gale [3] proved that the solution can be obtained by solving the
following convex optimization problem:

max
∑
i∈C

wi log ui

subject to
∑
i∈C

xij = 1 ∀j ∈ P

ui −
∑
j∈P

uijxij = 0 ∀i ∈ C

ui, xij ≥ 0 ∀i, j


(EGP )

and the the optimal Lagrange multipliers of this problem for the first pr condi-
tions are the market clearing prices. In [4], Ye considered a more general problem,
and gave a polynomial time IPA to determine the market clearing prices:

max

n∑
j=1

wj log xj

subject to Ax = b

x ≥ 0,

 (WCPP )

where A ∈ Rmxn has full row rank, b ∈ Rm, wj ≥ 0 is the nonnegative weight
on the jth variable. The KKT-system is the following:

sx = w

Ax = b, x ≥ 0

−ATy + s = 0, s ≥ 0

(1)

where y and s are the Lagrange-multipliers.
Let F = {(x,y, s) ∈ R{n+m+n} : Ax = b,x ≥ 0, s = ATy ≥ 0} be the set
of feasible solutions for (1), F+ = {(x, s) ∈ R2n : ∃y ∈ Rm, (x,y, s) ∈ F ,x >
0, s > 0} is the set of strictly feasible solutions. The following theorem of Illés
[11] provides that system (1) has a unique solution:

Theorem 1 (Illés [11]). Let A ∈ Rmxn with full row rank, b ∈ Rm and F+ 6=
∅. Then ∀w ∈ Rn+ ∃!(x, s) ∈ F+ : sx = w.

Ye [4] used a more general version [12] of Theorem 1. to argue that (1) can
be solved in polynomial time. Furthermore, Ye [4] pointed out that a strictly
feasible solution (x0, s0),y0 always can be determined easily.
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2.1 The IPA of Ye

In [4], Ye gave the following primal-dual path following IPA to solve the problem:

Input: A, b, w
x ∈ P+, (s,y) ∈ D+

µ ≥ 0 error measure, 0 < η < 1 constant parameter,
ε > 0, ŵj = max{µ,wj} ∀j

while ηµ ≥ ε do
x := x +∆x;
s := s +∆s;
y := y +∆y;

µ :=
(

1− η√
n

)
µ;

ŵj := max{µ, ŵj} ∀j
end

The parameter settings suggested by Ye in [4] were η = 1
4 and µ = maxj wj .

To determine the ∆x, ∆s, ∆y Newton-directions, the following system of linear
equations has to be solved:

s∆x+ x∆s = w − xs

A∆x = 0

−AT∆y +∆s = 0

(2)

The algorithm of Ye can determine an ε-optimal solution for the Fisher type
MEM with linear utility functions in at most

O
(√

cp log
(

(c+ p) max
i

(wi)/ε
))

+O(c)

iterations ([4],[10]).

3 The new interior point algorithm

Our goal is to give a new and simple IPA for the Fisher type MEM, that doesn’t
use the information obtained from the central path and furter refines the con-
structive proof of Theorem 1. So our main question is the following: under some
additional special constraints, can we define an IPA without using the informa-
tion provided by the central path, and ensure the polynomial computation time
of the new IPA? The algorithm is based on formulation (1) by Ye, and uses the
strictly feasible starting point from [4]. So from now on, we assume that we have
a strictly feasible solution (x0, s0): x0s0 = w0.
Before introducing the algorithm, we need the definition of the hyperrectangle
generated by two vectors:

Definition 1. Let a,b ∈ Rn. Then

T (a,b) = {u ∈ Rn : ai ≤ ui ≤ bi or bi ≤ ui ≤ ai ∀i}

is the hyperrectangle defined by the vectors a and b.
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In each iteration, we consider the hyperrectangle generated by our current wi

and the w vector given by the model (or its subset if it is not included in the
feasible set), and assume that int(T (wi,w)) 6= ∅ ∀i. We determine the Newton-
directions from system (2).

Theorem 2 (Illés, [11]). Let (xi, si) ∈ F+, wi = xisi, and intT (wi,w) 6= ∅,
where vector w ∈ Rn+ be given in (1). Then there exists an α > 0, such that

wi+1 = (xi + α∆x)(si + α∆s) ∈ intT (wi,w),

where (∆x,∆y,∆s) solves (2).

The theorem provides that there exists an α steplength, for which if we take the
xi + α∆x, si + α∆s steps, wi+1 = (xi + α∆x)(si + α∆s) stays in the T (wi,w)
hyperrectangle.
Based on this theorem, we think that with the fine tuning of the step length an
algorithm can be introduced. The pseudo-code of the algorithm is the following:

Input: A, b, w
(x0, s0) ∈ F+, y0 : (x0, s0,y0) ∈ F
ε > 0, i := 0
x := x0, s := s0, w0 := xs

while ‖w − xs‖2 ≥ ε do
Determine ∆x,∆y,∆s from (2) ;

α := argminα>0

{
‖w − (x + α∆x)(s + α∆s)‖22 :

(x + α∆x, s + α∆s) ∈ T (wi,w) ∩ F+
}

;
x := x + α∆x;
s := s + α∆s;
y := y + α∆y;
i := i+ 1;
wi := xs

end

With the formulas given in [4], a strictly feasible (x0, s0,y0) solution can be
computed from the data exactly. The existence of a proper α at every iteration
follows from Theorem 2. By construction, the feasibility of (x, s,y) is always
maintained.
If we consider the T (wi,w) series of hyperrectangles, it is clear from the con-
struction (α is always strictly positive) that

T (wi,w) ⊃ T (wi+1,w) ∀ i ∈ N.

The volumes of the T (wi,w) hyperrectangles form a strictly decreasing sequence
in a compact set. The sequence constructed from the ‖w−wi‖2 distances form
a strictly decreasing sequence as well. Thus the convergence of the algorithm
can be shown. The computational performance of this simple algorithm needs
further investigations.
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Abstract. Kidney Exchange Programs (KEP) allow an incompatible
patient-donor pair, whose donor cannot provide a kidney to the respec-
tive patient, to have a transplant exchange with another pair in a similar
situation if there is compatibility.
In this paper we propose two matching algorithms that address the wait-
ing times of the pairs in a pool, by hierarchically maximizing the number
of transplants giving preference to the pairs that have waited longer. The
algorithms differ in the strategies used for finding feasible exchanges, as
follows. One algorithm runs periodically (e.g. every 3 month); the other
runs as soon as the pool is updated allowing for a new exchange. The two
algorithms are compared to similar approaches in the literature, that aim
at maximizing the number of transplants, through computational exper-
iments.

Keywords: Greedy hierarchical algorithm · Integer programming · Kid-
ney exchange programs · Simulation · Waiting time

1 Introduction

Kidney transplantation is currently the most effective treatment for patients with
end-stage renal disease, but finding a suitable kidney can be difficult. There are
two different sources for kidneys: from deceased donors and from living donors.
However, for the case of living donation the patient and willing donor often do
not meet compatibility requirements. This deadlock can be overcome by kidney
exchange programs (KEPs) that allow incompatible pairs to perform an exchange
between them if the donor in one pair is compatible with the patient in the other
pair and vice versa. This is the simplest case, resulting in the so called 2-cycle
exchange. However, the size of exchange cycles can be increased, following the
same reasoning.

Another possible organization for exchanges is a chain initiated by an altru-
istic donor, i.e. a donor with no associated patient that donates a kidney for
no return. The altruistic donor donates a kidney to a patient of the first pair
in the chain, his/her donor to the patient in the following pair and so forth.
The last donor in the chain can either donate to the deceased donors waiting
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list or act as a bridge donor for the next matching. Due to the several practical
constraints the length of a cycle, and frequently of a chain have to be limited by
some constant k. In most programs k is set to 3.

KEPs are managed by central or local authorities that collect the incom-
patible pairs or altruist’s registrations and try to identify the exchanges that
optimize a given objective. The dynamics of the evolving matching pool, where
pairs enter and leave over time, is captured by several models. In [1] the au-
thors conduct simulations that aim at maximizing the number of transplants
performed under different time intervals between matches. In [2] authors study
how dynamic policies affect the waiting times. Three different settings of feasible
solutions are considered: only 2-cycles, 2 and 3-cycles, and a single unbounded
chain. Average waiting time is considered as a measure of efficiency; results show
that a greedy policy, where exchanges are done as soon as they are available, is
nearly optimal.

In our work we propose to address the waiting time of pairs in the pool
by hierarchically maximizing in the exchange the number of pairs that waited
longer. We develop two matching algorithms that aim at addressing this objec-
tive. Matchings are performed either periodically, or as soon as possible (similarly
to the work in [2]). We compare results with the cases where maximization of
the number of transplants is the only objective considered.

2 Kidney exchange pool and hierarchical waiting times’
optimization

We consider a dynamic KEP pool where pairs and altruistic donors appear over
time. The pool is represented by a directed graph G = (V,A). The set of vertices
V = P ∪N is composed by a set of incompatible pairs P and a set of altruistic
donors N . The set of arcs A represent compatibility between vertices: (i, j) ∈ A
if the donor in vertex i ∈ V and the patient in vertex j ∈ V are compatible. A
feasible exchange is a set of disjoint cycles or chains, where cycles are formed
with vertices from set P and chains are initiated by an altruistic donor from set
N , followed by vertices from set P . We assume that the maximum size of cycles
and chains is limited by a value k (for the case of chains this limit is on the
number of vertices involved in a chain, including the altruistic donor). The last
donor in a chain donates to the deceased donor’s waiting list.

In this sections we describe the two matching approaches proposed. The
first one, presented in subsection 2.1, is referred in [2] as greedy. In this case
the matching algorithm is run whenever a new incompatible pair or an altruistic
donor joins the pool. In the second matching algorithm, subsection 2.2, exchanges
are found periodically, i.e., the algorithm is run periodically.

2.1 Greedy hierarchical algorithm

A myopic greedy algorithm was proposed in [2] in the following way: exchanges
are performed whenever a cycle or a chain is formed with an arriving altruistic
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donor or incompatible pair. Possible ties are broken randomly, and the last donor
in the chain acts as an altruistic donor in the following matching. We adapt this
algorithm for our settings. Namely, we consider that the maximum length of
cycles and chains is the same (k), and choose (randomly in case of multiple
possibilities) the one with the largest number of transplants. Furthermore, we
assume that the last donor in a chain donates to the deceased donors waiting
list. We will refer to this version of the greedy algorithm as Greedymax.

Furthermore, we propose a new algorithm where instead of randomly choos-
ing a solution that maximizes the number of transplants, we aim at maximizing
the number of transplants while reducing patient’s waiting time in the pool.
Upon arrival of a pair or of an altruistic donor to the pool, the algorithm checks
if new cycles or chains are created with the new arrival. If they are, in case the
arrival promotes the creation of more than one cycle or chain, preference is given
to the one which contains the pair that has been in the pool for a longer time.
Ties are broken by considering the pair with the second longest waiting time,
and so forth. For the case of chains, the altruistic donor’s waiting time is only
considered after pairs are considered, i.e., when we have chains that only differ
in the altruistic donor. This case happens when there is more than one altruistic
donor in the pool and, upon a new pair arrival, more than one chain (initiated
by different altruistic donors, but containing exactly the same pairs) is created.
When a potential solution can be either a cycle or a chain and the solution only
differs in the fact of the chain having the altruistic donor, priority is given to
cycles. This case can happen when an unmatched altruistic donor is already in
the pool when a new pair arrives. We will refer to this version of the greedy
algorithm as GreedyWT .

2.2 Hierarchical integer programming

In another approach we consider that the matching is performed periodically,
within given intervals of time (this value is set to 3 months in many countries).
In our work this problem is modeled and solved with integer programming (IP)
using the cycle formulation [3,4].

Considering the compatibility graph G = (V,A), let C be a set of cycles and
chains with at most k vertices in G. Let V (c) denote the set of vertices that
belong to cycle/chain c. By associating the variable xc for each c ∈ C, where xc

= 1 if cycle/chain c is selected, 0 otherwise, we can write the following IP model:

Maximize
∑

c∈C(k)

wcxc (1a)

Subject to:
∑

c:i∈V (c)

xc ≤ 1 ∀i ∈ V (1b)

xc ∈ {0, 1} ∀c ∈ C(k). (1c)

The objective function (1a) maximizes the weighted sum of transplants to be
performed and constraints (1b) ensure that each vertex is in at most one of the
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selected cycles (i.e., each donor may donate, and each patient may receive only
one kidney). We will refer to this IP model as IPmax.

Similarly to the previous greedy algorithms, we will also consider an IP model
where the waiting times of the patients in the pool are addressed. For doing so,
for each matching period t we first find exchanges that maximize the number
of pairs that waited for t running periods. This can be done by replacing wc in
formulation (1a)-(1c) by wt

c, where wt
c is the number of pairs in cycle c that have

been in the pool for t matching periods. The optimal value of this problem is
denoted by v∗t . Then, in case there are multiple optimal solutions that provide
v∗t , we choose the ones that maximize the number of patients that waited for
t−1 periods, similarly, by considering coefficient wt−1

c , that will provide optimum
value v∗t−1, in the objective function (1a) and imposing the following additional
constraints: ∑

c∈C
wt

cxc ≥ v∗t (2)

The process is repeated until t = 0 by, adding to the IP problem constraints (2)
in each iteration, with wt

c replaced by wt−1
c , . . . , w0

c .

3 Computational analysis

In this section we validate and compare the four matching policies described
in section 2: Greedymax, GreedyWT and IPmax, IPWT . Computational results
were obtained for 100 instances, generated with the simulator developed in [5],
considering an horizon of 6 years. For the periodic matching algorithms, the
interval between matchings was set to 90 days (3 months). We assumed that
each patient has only one associated donor, and that pairs and altruistic donors
do only leave the pool when matched. Furthermore, if more than one pair or
altruistic donor enters the pool in the same day, we prioritize pairs that have
O-blood type patients and, if necessary, with a higher value of Panel-reactive
antibody (PRA). The maximum length of cycles and chains was set to 3.

Figure 1 illustrates the average waiting times within each period of 90 days
for: 1) matched pairs (lower part of the graph), 2) pairs remaining in the pool
after matching is performed (upper part of the graph) and, 3) all pairs in the pro-
gram (matched and not matched). As shown, average waiting times of matched
pairs for approaches that prioritize pairs that have been in the pool for a longer
time is higher when compared to the other algorithms (Greedymax and IPmax).
The reason for this is the fact, from all potential solutions, the selected solution
is the one that has pairs with longer waiting times. We can also observe that
at the beginning of the simulation the IP algorithms have higher waiting times.
That can be justified by the time pairs have to wait until the match day arrives.
The average waiting time for the pairs remaining in the pool is lower for ap-
proaches that take into account the waiting time. This can be justified by the
reason presented before. The same happens for the average time of pairs in the
program.
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Fig. 1. Average waiting times (AvgWT) for matched pairs, unmatched pairs in the pool
and all pairs in the program (matched and unmatched) using four different approaches.
Greedy approaches are represented by black lines and IP approaches by grey. Solid lines
represent algorithms that consider pairs’ waiting times and dashed lines represent those
that only consider the maximization of the number of transplants.

In table 1 we present the average number of matched pairs at the end of each
simulation year. We can observe that, at the end of the simulation, the appli-
cation of the Greedy algorithms result in less transplants when compared with
IP algorithms. Moreover, the approaches that consider waiting times present in
average a lower number of transplants when compared with those that neglect
waiting times.

Table 1. Average number of pairs matched at the end of each simulation for each
approach.

Year
1 2 3 4 5 6 Total

GreedyWT 153.53 163.92 165.06 165.71 163.89 166.53 978.64
Greedymax 154.1 164.74 166.06 166.21 164.67 167.38 983.16

IPWT 159.88 164.84 165.07 165.77 163.79 165.92 985.27
IPmax 163.32 166.4 166.48 167.03 165.48 168.49 997.2
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4 Conclusions

In this work we simulate different matching policies in order to identify how
they affect pairs waiting time. We propose approaches based on greedy and
periodic matching and as evaluation criteria we consider the maximization of the
number of transplants and minimization of waiting times of patients. Preliminary
computational results show that average waiting times of unmatched patients
are reduced for approaches that consider pairs waiting time. This is achieved
by slightly sacrificing the total number of transplants performed and increasing
average waiting times of matched pairs. As future work we intend to implement
a lexicographic procedure that first maximizes the number of transplants and,
in a second stage, select the solution involving the pair(s) with longer waiting
times. Furthermore, we intend to extend computational results by considering
graphs of different density and different frequencies for pair and altruistic donor’s
arrival.
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Abstract. The power plant scheduling is one of the main tasks of the
energy traders and electric transmission system operators worldwide. It is
a cardinal question to achieve a feasible and suboptimal integer solution
in a heck of time usually in a daily period regularly, where the objective
is the cost of the produced energy to be minimized. Due to the more
or less precise short-term electric consumers’ forecasts, in practice the
schedule generation is handled as a mixed integer programming problem.
In this paper, it will be shown that the constructed optimization model
contains a discretized form of a differential equation system covering the
most important technical constraints, including the gradients and the
bounds of the performance of each unit. It will also be proven that the
mixed integer programming model has a network matrix, thus it can be
solved in strongly polynomial time.

Most of the technical and/or financial constraints make the feasibility
problem NP-complete as it will be shown here later. Some of them are
very common - however, in practice, adding a strict subset of such con-
straints still keeps the necessary resources low for solving the schedule
generation model. In 2004 the author proved in his MSc thesis that the
polynomial part of the model, namely the LP relaxation, has a totally
unimodular matrix. In 2006, he also proposed the results above including
network property of the LP matrix.

Contributed relevant AMPL/GMPL model files to the open-source solver
called GNU Linear Programming Kit (GLPK) in 2017, and merged since
version 4.64 [1].

1 Introduction

Several models were constructed for generating electric power plants’ schedules.
They are quite varied and could be classified by several criteria, for example:

– model categories (LP, MILP, SP. . . )
– solution generating methods, selected algorithms etc.
– objective types and count
– objectives’ perspective (economic, environmental, safety. . . )
– included (or ignored) constraints (network topology, spatial or temporal de-

pendencies, economic, technical. . . )
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For a general model with one objective function, the following optimization
model stands:

minC(x(t)) (1)

x(t) ∈ F (2)

It is assumed without loss of generosity that the objective function C is to be
minimized. The F set of functions is the so-called feasibility region. The x(t)
denotes a vector function, which maps time (t) to Rn, where n is the total
number of plant units to schedule. Basically x(t) is composed of xi(t) : R→ R
functions, and each of them are piecewise analytical, and the dimension of Rfi(x)

is in megawatt (MW ) ∀i ∈ [1, n] ∩ Z.

1.1 Evolution of the model

Related models in this paper had been tested and/or used in Hungary before
2000[2][3] and around 2004-2008 at the balancing group department at MVM
Rt. which was the Balancing Group Responsibe at that time. The latter title
means a conductor-like role, and defines several responsibilities and tasks, one
of them is to create and commit a daily electric power plant schedule on the
preceeding day to the Transmission System Operator.

After 2000, all of the used models become more and less unusable due to
several reasons including but not limited to: the increasing number of production
units and consumers and the decreasing of time interval resolution of a schedule;
the latter property will be defined later in this paper.

2 The model

An affordable assumption is that a schedule is determined by the measured
generation or consumption within enough dense time intervals. According to
the laws, contracts and regulations, it was 15 minutes around 2004 for a daily
schedule, changed from 1 hours some years earlier. Due to the denser timescale,
former models fail to work and the change produced several technical constraints.

2.1 Further allowed assumptions

According to the model composed by expressions (1),(2), the following assump-
tions had been made:

– The objective function is a sum composed of independent R → R linear
mappings

– Network transmission system topology is contractive with no constraints -
implying that the overall sum of input and output energy must be 0 in every
moment
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So the cost function become an ordinary inner product. Spinning reserves, re-
source barriers like reservoir levels, fuel etc. and all start-up and shut-down sce-
narios are ignored, the reason: other planning steps ensured most of them, keep-
ing reliability. Some constraints had remained: the conservative property of the
network - enforcing the power balance, signed performance bounds on consumers
and units, and a new constraint type that is usually ignored in former planning
models with hourly time resolution: ramp-down and ramp-up constraints - but
only in nearest time units.

2.2 Discretization

Now comes the transformation scheme of objective(3) and constraints:

minC(x(t)) =⇒ inf
∫
t

ci(t) · xi(t)dt =⇒ min cTx (3)

x(t) ∈ F =⇒
∑
i

xi(t) = 0 =⇒ ∀t :
∑
i

xi,t = 0 (4)

x(t) ∈ F =⇒ x(t) ∈ [bLO(t),bUP (t)] =⇒ bLO,i,t ≤ xi,t ≤ bUP,i,t (5)

x(t) ∈ F =⇒ d
dtx(t) ∈ [gLO(t),gUP (t)] =⇒ gLO,i,t ≤ ∆xi,t ≤ gUP,i,t (6)

where ∆xi,t
def
=xi,t − xi,t−1 ∧ t > 0, and x ∈ RP×T , where P is the set of units

and T
def
= Z ∩ [0, |T | − 1] is the set of discrete time interval endpoints. xi,t is the

only variable in the model.
The above linear constraints defined by the rightmost parts of (4),(5) had

been defined in [4] as second and fourth inequalities, respectively, but with an
important remark: in the new model, it is assumed that the daily per time
demand based on a very precise estimation in practice can be defined as a virtual
consumer, with the same upper and lower performance bounds in (5) and without
”gradient” barriers (no (6)).

There is only one thing to finish our model: determining the variable types.
If we allow arbitrary types other than continuous or integers, the problem might
contain the Subset-sum problem proving that it is NP-complete as a feasibility
problem.

Lemma 1 Let use constraints (4), (5), let |T | = 1, and also let xi,t ∈ {0, ai} ∀i ∈
Z ∩ [2..|P |] and let x1,t = −b; the latter variable denotes the demand, the
virtual consumer. With these restrictions, this model is equivalent with the
Subset sum problem.

Proof Trivial. Let ai > 0(i > 1) be given positive numbers and the sum is
b > 0. Q.E.D.

Corollary The Start-up-Shut-down problem, where temporary shutdowns and/or
unit starts are to schedule - is NP-hard, the proof is exactly the same. The
same applies when there are thermal power plants and they have two dif-
ferent minima and each unit cannot work with performance values between
them.
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When there is a fully linear continuous model, but with each unit has exactly
one optional choice when it can ramp up higher once a day, the Subset-sum
problem can be still embedded with almost the same method. If only continuous
variable types are allowed, the model can be solved in polynomial time as a pure
linear programming model is in P , proven by Khachiyan[5]. But if variable types
are restricted to integers, it is still not really a restriction due to the network
property of the model’s matrix, which will be proven below. The author gave a
proof for it in his thesis [6]. The

3 The model’s matrix

The main result of this paper is that the model’s matrix is a network matrix.
To prove this, it is enough to eliminate redundant rows and columns, and for
the reduced parts a corresponding network graph and matchings between edges
and matrix parts will be given, therefore Tutte-Gerards’[7] and Kotnyek’s[9]
appropriate matrix characterization theorems are applicable. After recognizing
network property, Hoffman-Kruskal[8] theorem ensures that most common sim-
plex LP algorithms will produce an integral solution at least on such a compact
nonempty feasible set, and also some of them are even strongly polynomial with
slight or no modifications; also referenced in PhD thesis[9].

The constraints in (5) can be omitted, because each row has at most 1
nonzero element, thus network property is invariant to this operation. The re-
duced M matrix has the following form after removing duplicates and normed
with optional negations, where M ∈ R(|T |−1)·(|P |+1)+1×|P |·|T |, I ∈ R|T |×|T | and
∆ ∈ R(|T |−1)×|T |:

M =


I I · · · I
∆
∆

. . .

∆


Ii,j =

{
1 if i = j
0 if i 6= j

∆i,j =

−1 if i = j
1 if i = j − 1
0 otherwise

(7)

In the following figure, there is a corresponding network graph. The spanning
tree’s edges are denoted with continuous, the non-tree edges are dashed. Every
temporary addition of a dashed edge creates an exactly 3 or 4-length circle, in
which the dashed neigbouring edges generate a ∆ column’s values, and the con-
tinuous edges with only numbered nodes are assigned to a balance-role element
in the upper joint identity matrix-part of M . The inner nodes of a directed walks
on dashed edges are matched to units, the numbered nodes originated from time
interval endpoints. Extendable both ways: by number of dashed paths or length
of paths. z
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Széchenyi István University, Győr, Hungary
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Abstract. Automation is a growing trend in modern manufacturing
processes, and robotic cells are widely applied for that purpose in various
industrial systems. Such cells consist of multiple production machines,
material handling robot arms, and input/output buffers, are mainly used
in mass production environments where demands are stable. In this sce-
nario, it is common to address long-term production planning in a cyclic
manner. This means that a short-term schedule - a cycle - is determined,
which will be repeated periodically. In cyclic scheduling of robotic cells,
the goal is to determine the sequence of robot movements and machine
operations for the production cycle, which maximizes the profit divided
by cycle time, while satisfying the practical feasibility constraints. This
ratio inherently introduce an undesirable non-linearity, therefore, the
problem is often decomposed to a series of subproblems, where the goal
is to minimize the cycle time for a given quantity of parts.
This work aims to review the recent advancements in solving the cyclic
scheduling of robotic cells with Integer Programming techniques. Prob-
lem classes were identified based on the most common parameters, such
as production topology and allowed waiting times for intermediates. Se-
lected MILP models were implemented and compared based on their
modeling capabilities and solution performances.

Keywords: cyclic scheduling · robotic cell · mixed-integer linear pro-
gramming

1 Introduction and literature review

Automation plays a more important role in the production industry nowadays,
than ever before. Companies use computer controlled machines and systems
for higher productivity, and to keep up with the increasing demands of the
market. Achieving this goal requires appropriate modeling and scheduling of
these machines, that was widely investigated in the literature of various fields,
such as painting[3], wafer fabrication[4], assembly[5], or material handling[6].

In this work, the focus is on the scheduling of industrial manufacturing cells,
in which the material handling is accomplished by automated robotic arms.
These production cells may consist of several identical[9] or different[1] produc-
tion machines, and input and output buffers which can be realized as conveyors
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or storage buffers, often with unlimited capacity. Material handling can be ac-
complished by one[8] or several[2] automated robotic arms.

In case of stable demand, production planning is mostly addressed with cyclic
scheduling. The aim in this methodology is to determine a short-term schedule
- a cycle - which is a finite sequence of robot movements that can be repeated
indefinitely. The usual objective is to maximize profit, or equivalently, to min-
imize the mean cycle time, i.e., the length of a cycle divided by the number of
finished parts within a single period.

The scheduling of robotic manufacturing cells was first addressed in the lit-
erature by Sethi et al. [1]. From the modeling point of view, the scheduling of
these systems show a lot of similarity with, and are often equivalent to the the
so-called Hoist Scheduling Problems[6, 7, 10, 13, 14], where material handling is
accomplished by an automated hoist instead of a robotic arm.

Over the years, various solution methods were developed and published for
these problems. Abd et al.[5] used a Fuzzy logic approach for the online case.
Zhou and Li[8] focused on a Tabu search heuristic algorithm. Batur et al.[9]
modeled the main problem class as a TSP, and built a Simulated Annealing
algorithm. Al-Ahmari[15] solved the base problem with Petri-nets.

The most widely used method in literature, however, is mixed integer linear
programming (MILP) (see, e.g. [6, 7, 10, 13]). Thus, in this paper we focus on the
capabilities and performance of the state-of-the-art MILP formulations found in
the literature.

The rest of the paper is structured as follows: Section 2 presents the basic
terminology of the field and highlights the most important parameters of robotic
cells, providing a classification of related scheduling problems. Section 3 presents
selected recent MILP models, and the comparison of their performance on vari-
ously scaled literature examples. Finally, Section 4 concludes the results of our
investigation.

2 Classification of robotic cells

Robotic cells come in a great variety, and consequently, a lot of different prob-
lem classes can be identified. In this section, several distinguishing properties
of such systems are mentioned, that are often used to differentiate between the
capabilities of proposed models.

Type of the robotic arm: a single gripper can handle only one production
part[12, 7, 10], while a dual gripper may carry two production parts simulta-
neously[16].

Product diversity: a single part type cell considers only one type of product
and production recipe[14, 8, 2, 16]. In contrast, several products with different
production recipes are produced in a multiple part type cell [10, 15, 9, 5].

Production path: In case of flow shop problems, the product parts must go
through all of the machines in the same order[10, 6, 12, 7, 14], while the pro-
duction paths may differ for job shop problems[5, 9, 13], and be arbitrary in
the case of open shop problems.
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Waiting policy: In the case of no-wait policy, the robot must transfer the
part immediately to the next stage after its processing is finished, to avoid
damages[2, 12, 1]. In interval cells, the processing times are given with time
windows, the lower bound being the minimum required time, and the upper
bound with the maximum allowed waiting time included[13, 7]. When there
are no constraints for waiting, and the product can remain in the machine
after its completion for unlimited time without getting damaged, the cell is
termed as free-pickup cell [10].

An important parameter of a cycle is the amount of products produced by it.
Che and Chu[2] introduced the term r-degree cycle, referring to a cycle where the
number of parts entering and leaving the cell is equal to r. A different term, k-unit
cycle[11] is used for flow shop problems, which means that all of the machines
are visited by the robotic arm exactly k times. In case of different parts, an
MPS(Minimal Part Set) is often defined, which is a minimal set of production
parts with their relative proportion calculated from product demands[12].

3 Comparison of MILP models

There are many approaches published in the literature for robotic cell schedul-
ing problems. Comparing them is not evident, as they usually address different
classes, and (at least supposedly) work best on problems, that exploit all the
features of that class, but nothing else. Thus, comparing models simply on the
intersection of their capabilities cannot be counted as a fair comparison, though
it still provides valuable information. Due to space limitations, only some of
the results are shared here, focusing on single robot cells with single gripper
arms. Subsection 3.1 provides necessary information about the selected models,
the literature example used for the comparison, and some details about the test
environment.

3.1 Models, problem and test environment

The following 4 models with different general model structures and publication
dates were selected from the literature for this comparison:

Z03 An older, simple precedence based model from Zhou & Li (2003) [13]
L14 A more recent precedence based model from Li & Fung (2014) [14]
G18 A recent hybrid slot/precedence based model by Gultekin et al. (2018) [10]
F18 A recent precedence based model by Feng et al. (2018) [7]

Table 1 summarizes the capabilities of the models. Additionally, except for
G18, all the models can address general transfer times and different movement
types for empty movements of the robot, i.e., when it is not carrying any product.

The test instances were generated based on a well-known 12-stage literature
example by Phillips and Unger[6]. For the different test cases described later, the

81



Table 1. Comparison of capabilities of the selected models

Model Multiple parts Interval pickup r-degree cycle Production path

Z03 × flow-shop
L14 × × flow-shop
G18 × × flow-shop
F18 × × × job-shop

original problem was modified accordingly, e.g., additional stages were generated,
or specific parameters disregarded, as necessary.

Each model has been reimplemented based on the original publication1, and
compared on the same machine with Intel i5-7200U 3 GHz processor, 8 GB
memory, and solved with Gurobi Optimizer 8.0.1 (with standard settings).

3.2 Test case 1: interval pickup & 1-degree cycles

The ”intersection” of the capabilities of every model is a very simple problem
class with interval pickup policy and 1-degree cycles. For the tests in this subsec-
tion, G18 was excluded to include interval pickup policy. All of the test instances
are 1-degree cycle problems, as Z03 cannot handle r-degree cycles. To scale the
problems, additional stages are introduced. The results are shown in Table 2.

Table 2. Comparison of F18, L14, and Z03 on 1-degree, interval pickup problems

Stages 12 16 20 24

Model Solution time

F18 0.24 s 1.1 s 1.42 s 2.66 s

L14 0.34 s 0.93 s 2.84 s 4.45 s

Z03 0.26 s 1.16 s 2.85 s 2.96 s

All of the three models performed well on this specific problem class, even
the more general ones. As there is no significant difference between them, there
is no reason to select the more limiting Z03. Between F18 and L14, the former
performed usually better, and it is also a bit more general model, thus, F18
could be considered as superior among the three for 1-degree cycles.

3.3 Test case 2: free pickup & r-degree cycles

Problems become more difficult as the number of batches is increased, i.e., r-
degree cycles are considered. Z03 must be excluded from these tests, and it is

1 Where the original source was ambiguous or incomplete, the authors filled the gaps
to their best knowledge.
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important to highlight, that except for L14 the remaining two models can ad-
dress products with different types as well. For the tests below, a small change
was made on the original test problem: the movement times are considered ad-
ditive and the same for loaded/empty movements, as G18 cannot handle the
generalization of those. The time limit for all of the tests were set to 200 seconds,
and the problem was scaled by increasing the number of cycles.

All of the models could find the optimal solution within the time limit
for 1 cycle, though G18(13.21 s) was significantly slower than F18(0.23 s) or
L14(0.46 s). For larger degree cycles, however, none of the models were able
to find the optimal solution within 200 seconds. The best solutions found the
optimality gaps are shown in Table 3.

Table 3. Comparison of F18, L14, and G18 on r-degree, free pickup problems

2-degree 3-degree 4-degree

Model Best obj Gap Best obj Gap Best obj Gap

F18 2147 s 29.6% 3492 s 58.4% 4716 s 73.5%

L14 2177 s 30.4% 3406 s 50.4% 4650 s 62.2%

G18 3208 s 33.7% - ∞ - ∞

It is evident that G18 is a much slower model than the other two. To be
fair, Gultekin et al.[10] also proposed a hybrid metaheuristic solution algorithm
beside the MILP model. Further tests suggested, that the free pickup policy
plays an important role in hanging the models for more degree cycles. To put
this assumption to the test, L14 and F18 was tested on 2, 3 and 4 degree
cycles, while gradually extending the pickup intervals. These tests assured that
the lengths of these intervals is a key factor, and has an exponential effect on the
computational time for both models. Omitting the detailed results, the maximum
pickup interval per processing time ratios that the models could solve in time,
were 1500%, 700%, and 500% for 2, 3, and 4 degree cycles respectively.

4 Conclusion

Robotic cell scheduling is becoming a more and more relevant topic for the in-
dustry. A wide range of problems can be identified, for which plenty of solution
approaches has been published in the literature. In this work, four selected mod-
els were tested for different problem classes, and the recent precedence based
model of Feng et. al.[7] turned out to be the most efficient for most of the cases,
while still being one of the most general among the four. Additionally, it was
identified, and verified, that pickup policy, and the ratio between the processing
and waiting times has a huge impact on the computational time.
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Abstract. In this paper we deal with predictor-corrector interior-point
algorithms (PC IPAs) for solving P∗(κ)-linear complementarity problems
over Cartesian product of symmetric cones (Cartesian P∗(κ)-SCLCPs).
We present the algebraic equivalent technique (AET) for determining
search directions in case of interior-point algorithms (IPAs). After that,
we give a unification of the scaled systems and Newton-systems in case
of the PC IPAs. By using this general framework, new PC IPAs for
Cartesian P∗(κ)-SCLCPs can be introduced.
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1 Introduction

Linear complementarity problems (LCPs) over symmetric cones have been exten-
sively studied in the recent years. The LCPs belong to the class of NP-complete
problems. In spite of this fact, Kojima et al. [5] showed that assuming that
the problem’s matrix has P∗(κ)-property, the IPAs solving these kind of LCPs
usually have polynomial complexity in the handicap of the problem’s matrix,
the size of the problem and the bitsize of the data. The symmetric cone LCP
(SCLCP) contains LCP, semidefinite linear complementarity problem (SDLCP)
and second-order cone linear complementarity problem (SOCLCP), as special
cases. The Cartesian P∗(κ)-property was first introduced by Luo and Xiu [6].
They also proved the existence and uniqueness of the central path for the Carte-
sian P∗(κ)-SCLCPs.

In the following we present some main aspects of the theory of the Euclidean
Jordan algebras and symmetric cones [4].

Let V be an n-dimensional vector space over R and let us consider the follow-
ing bilinear map: ◦ : (x, y)→ x ◦ y ∈ V . Then, (V, ◦) is called a Jordan algebra
iff for all x, y ∈ V x ◦ y = y ◦x and x ◦ (x2 ◦ y) = x2 ◦ (x ◦ y), where x2 = x ◦x. A
Jordan algebra is said to be Euclidean if there exists an inner product such that
〈x ◦ y, z〉 = 〈x, y ◦ z〉. Throughout the paper it will be assumed that (V, ◦) is an
Euclidean Jordan algebra and it will be denoted it by V . For an element x ∈ V ,
let us introduce the linear operator L(x) : V → V such that for every y ∈ V ,
x ◦ y = L(x)y. For each x ∈ V , we also define the quadratic representation of V :
P (x) := 2L(x)2 − L(x2), where L(x)2 := L(x)L(x).

85



Consider r as the smallest integer such that the set {e, x, . . . , xr} is linearly
dependent, for all x ∈ V . Then, r is named the degree of the element x and it is
denoted as deg(x). The rank of V , denoted as rank(V ), is the largest deg(x), for
all x ∈ V . Throughout the paper we will assume that V is an Euclidean Jordan
algebra with rank r.

An idempotent element c is said to be primitive if it is nonzero and can
not be expressed by sum of two other nonzero idempotents. A set of primitive
idempotents {c1, . . . , cr} is called Jordan frame iff for all primitive idempotents
ci the following hold: ci ◦ cj = 0, i 6= j and

∑r
i=1 ci = e.

Theorem 1. (Spectral decomposition, Theorem III.1.2 in [4]) Let x ∈ V . Then,
there exists a Jordan frame {c1, . . . , cr} and the real numbers λ1(x), . . . , λr(x)
such that

x =

r∑
i=1

λi(x)ci. (1)

The numbers λi(x) are the eigenvalues of x.

Consider the vector-valued function using the function ϕ, which is a real-
valued univariate function differentiable on the interval (0,+∞) such that ϕ′(t) >
0 for all t > 0. Let x ∈ V be a vector with the spectral decomposition given
in (1). The vector-valued function ϕ is defined in the following way: ϕ(x) :=
ϕ(λ1(x))c1 + . . .+ ϕ(λr(x))cr.
Let us introduce the following notation:

〈x, s〉 := tr(x ◦ s), (2)

where x, s ∈ V. The Frobenius norm, ‖ · ‖F , which is induced by the trace inner
product is defined by ‖x‖F :=

√
〈x, x〉.

We define the cone of squares K := {x2 : x ∈ V }. This cone is a symmetric
cone, i.e. it is self-dual and homogeneous.

The following hold: x ∈ K ⇔ λi(x) ≥ 0, i = 1, . . . , r and x ∈ intK ⇔
λi(x) > 0, i = 1, . . . , r. Moreover, let us introduce the following notations:
x �K 0 ⇔ x ∈ K and x �K 0 ⇔ x ∈ intK.
In the following section we present the Cartesian P∗(κ)-SCLCP problem.

2 The Cartesian P∗(κ)-SCLCP

Let us consider the Cartesian product space V = V1 × V2 × . . . × Vm with
its cone of squares K = K1 × K2 × . . . × Km. Here, each Vi is a Euclidean
Jordan algebra and each Ki is the associated cone of squares of Vi. For each

z =
(
z(1), z(2), . . . , z(m)

)T ∈ V , where z(i) ∈ Vi consider the following:

Tr(z) =
m∑
i=1

Tr
(
z(i)
)
, det(z) =

m∏
i=1

det
(
z(i)
)
,
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λmin(z) = min
1≤i≤m

{
λmin

(
z(i)
)}

, λmax(z) = max
1≤i≤m

{
λmax

(
z(i)
)}

.

The Frobenius norm of an element of V is defined as

‖x‖F =

(
m∑
i=1

∥∥∥x(i)∥∥∥2
F

) 1
2

.

Furthermore, we introduce the following notations

L(x) = diag
(
L
(
x(1)

)
, L
(
x(2)

)
, . . . , L

(
x(m)

))
,

P (x) = diag
(
P
(
x(1)

)
, P
(
x(2)

)
, . . . , P

(
x(m)

))
.

For any

x =
(
x(1), x(2), . . . , x(m)

)T
∈ V and s =

(
s(1), s(2), . . . , s(m)

)T
∈ V

we will use

x ◦ s =
(
x(1) ◦ s(1), x(2) ◦ s(2), . . . , x(m) ◦ s(m)

)T
, 〈x, s〉 =

m∑
i=1

〈
x(i), s(i)

〉
.

The Cartesian SCLCP has the following form. We should find a vector pair
(x, s) ∈ V × V such that

−Mx+ s = q, 〈x, s〉 = 0, x �K 0, s �K 0, (SCLCP )

where K is the symmetric cone of the Cartesian product space V , M : V → V
is linear operator and q ∈ V .

Let κ ≥ 0 be a constant. Then, we say that M has P∗(κ)-property, if for all
(x, s) ∈ V × V

−Mx+ s = 0 implies 〈x, s〉 ≥ −4κ
∑
i∈I+

〈
x(i), s(i)

〉
,

where I+ =
{
i :
〈
x(i), s(i)

〉
> 0
}
. In this case, we call problem (SCLCP ) Carte-

sian P∗(κ)-SCLCP.
Without loss of generality we can assume that the interior-point condition

(IPC) holds. This means that there exists (x0, s0) so that:

−Mx0 + s0 = q, x0 �K 0,

〈x0, s0〉 = 0, s0 �K 0.
(IPC)

The central path can be characterized by the following system:

−Mx+ s = q, x �K 0,

x ◦ s = µe, s �K 0. (3)

where µ > 0.
Let us consider the subclass of Monteiro-Zhang family of search directions:

C(x, s) =
{
u|u is invertible and L(P (u)x)L(P (u)−1s) = L(P (u)−1s)L(P (u)x)

}
.
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Lemma 1. (Lemma 28 in [8]) Let u ∈ intK. Then,

x ◦ s = µe ⇔ P (u)x ◦ P (u)−1s = µe.

Choosing u ∈ C(x, s), denoting M̃ = MP (u)−1 and Ĩ = IP (u) and using Lemma
1, we can rewrite system (3) in the following way:

−M̃P (u)x+ ĨP (u)−1s = q, P (u)x �K 0,

P (u)x ◦ P (u)−1s = µe, P (u)−1s �K 0. (4)

Luo and Xiu [6] and Asadi et al [1] proved that if the IPC holds, then system
(4) has unique solution for each µ > 0.

3 The AET technique in case of IPAs for Cartesian
P∗(κ)-SCLCPs

In this section we present the AET technique for determining search directions
proposed by Darvay [2] for linear optimization and generalized by Wang and Bai
[9] for symmetric optimization problems. Consider the ϕ vector-valued function,
which is induced by the real-valued univariate function ϕ : (0,+∞)→ R. Using
this, system (4) can be written in the following way:

−M̃P (u)x+ ĨP (u)−1s = q, P (u)x �K 0,

ϕ

(
P (u)x ◦ P (u)−1s

µ

)
= ϕ(e), P (u)−1s �K 0. (5)

Using Newton’s method and the technique presented by Wang and Bai [9]
we define search directions. For the strictly feasible x ∈ intK and s ∈ intK our
aim is to find the search directions (∆x,∆s) so that

− M̃P (u)∆x + ĨP (u)−1∆s = 0, P (u)x �K 0,

P (u)x ◦ P (u)−1∆s + P (u)−1s ◦ P (u)∆x = aϕ, P (u)−1s �K 0, (6)

where

aϕ = µ

(
ϕ′
(
P (u)x ◦ P (u)−1s

µ

))−1
◦
(
ϕ(e)− ϕ

(
P (u)x ◦ P (u)−1s

µ

))
.

Using different ϕ functions we have different aϕ values.
We will consider the NT-scaling scheme (Nesterov and Todd [7]). Let u =

w−
1
2 , where w is the NT-scaling point of x and s. Consider the notations:

v :=
P (w)−

1
2x

√
µ

[
=
P (w)

1
2 s

√
µ

]
(7)
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and

dx :=
P (w)−

1
2∆x

√
µ

, ds :=
P (w)

1
2∆s

√
µ

, M̄ = P (w)
1
2MP (w)

1
2 . (8)

Using the notations given is (7) and (8), we obtain the scaled system:

−M̄dx + ds = 0,

dx + ds = pv, (9)

where
pv = v−1 ◦ (ϕ′(v ◦ v))−1 ◦ (ϕ(e)− ϕ(v ◦ v)).

We should define a proximity measure to the central path. This can be done

in the following way: δ(v) = δ(x, s, µ) := ‖pv‖F
2 . Furthermore, we define the

neighbourhoods of the central path by using the τ threshold parameter:

N (τ, µ) := {(x, s) ∈ V×V : −Mx+s = q, x �K 0, s �K 0 : δ(x, s, µ) ≤ τ}.

In Section 4 we generalize a method for determining the scaled predictor and
corrector systems in case of the PC IPAs introduced in Darvay et al. [3].

4 General framework for determining search directions
in case of PC IPAs

The PC IPAs use two kind of steps in each iteration, a predictor and several
corrector steps. After a predictor step a certain amount of retirement from the
central path is allowed. The aim of the corrector steps is to return in the τ -
neighbourhood of the central path.

In this subsection we generalize the method introduced by Darvay et al. [3]
in order to determine the scaled predictor and scaled corrector systems in case
of PC IPAs. Note that system (9) coincides with the scaled corrector system.

In order to obtain the scaled predictor system, we should decompose aϕ in
system (6) in the following way:

aϕ = h(x, s, µ) + l(x, s),

where h and l are vector-valued functions and h(x, s, 0) = 0. After that, set
µ = 0 in this decomposition. Hence,

−M̃P (u)∆x + ĨP (u)−1∆s = 0, P (u)x �K 0,

P (u)x ◦ P (u)−1∆s + P (u)−1s ◦ P (u)∆x = l(x, s), P (u)−1s �K 0, (10)

We obtain the following scaled predictor system:

−M̄dx + ds = 0,

dx + ds = (µv)−1 ◦ l(x, s), (11)

where M̄ = DMD.
By using this general framework, we can introduce new PC IPAs for solving

Cartesian P∗(κ)-SCLCPs.
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5 Conclusion

In this paper we considered Cartesian P∗(κ)-SCLCPs. We presented the AET
technique for determining search directions in case of IPAs. After that, we pro-
posed a new general framework for defining search directions in case of PC IPAs.
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Abstract. This paper describes an algorithm for a problem arising in
sea exploration, where the aim is to schedule the expedition of a ship
for collecting information about the resources on the seafloor. The aim
of the algorithms is to decide locations where to collect data by prob-
ing. This way, after the expedition the information available is optimally
enriched. The evaluation of a solution is done by comparing the esti-
mation of the level of the resource on the given surface, which is done
by regression using Gaussian processes, with the “true” level. The al-
gorithms comprises elements from combinatorial optimization and from
continuous optimization, and is influenced by evolutionary computation.

Keywords: Recognition problems · Tour planning · Orienteering · Sur-
face exploration · Gaussian processes

1 Introduction

This work describes a problem with origins in sea exploration, though similar
problems arise in other contexts. The identification of the contents of the seafloor
is important in view of a possible exploitation of some of these resources. The
aim of this problem is to schedule the journey of a ship for collecting information
about the composition of the seafloor. We consider a bounded surface, through
which some resource can be found with a given level. This “true value” is initially
unknown, except for a limited number of points for which there is previous
empirical information.

Optimal expedition planning involves three subproblems, each corresponding
to a different phase in the process: assessment, planning and estimation.

Assessment consists of estimating the amount of information that would be
conveyed by probing the surface at each point. This is done by means of an
indicator function. Previous work assumed that actual information obtained by
probing is not usable at the time of planning; here, we assume that after com-
mitting to probing at a certain place, the information obtained can immediately
be used to change the course of the following decisions (in particular, the set of
points used for building the indicator function is dynamically expanded).

Planning, the next phase in the solution process, consists of deciding on the
position of points to probe until the end of the expedition; the point to probe next
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is the only one to which we commit. The objective is to maximize the overall
informational reward obtained, taking into account that the total duration of
the trip is limited to a known bound. Hence, online planning involves using the
previously available points together with the points newly probed in this trip, in
order to decide the location of the next point to probe — though an estimation
of the whole remaining trip is necessary for correctly taking this decision.

The third subproblem is estimation, which is related to the final aim of the
problem: an estimation of the resource level available at any point on the surface,
based on all the information available at the end of the trip. This is done through
regression using both the initially available points and those collected during the
expedition.

In this work we detail a hybrid algorithm for tackling this problem, including
components of combinatorial optimization, machine learning and evolutionary
computation. The objective is to carefully plan a data collection expedition that
maximizes the information available at the end of the trip. This implies choosing
the most profitable probing points, which are part of a ship trip that must respect
a time limit. The trip length is determined by means of an integer programming
model for orienteering [1]. We propose the estimation of the resource levels using
a Gaussian processes model [4]. Points with high variance are initial candidates
for probing, but their position will evolve through random distortion towards a
solution which minimizes a measure of the variance allover the relevant surface.

Experiments with simulated data show that the proposed method improves
the quality of the ship’s schedule. We use an error measure involving the dis-
crepancy between the “true value” and the predicted value, estimated in a fine
grid over the relevant surface.

2 Method

The main difficulties for designing an algorithm for this problem concern the
nonviability of direct evaluation of the objective function at the time of assessing
the quality of a solution. This is due to the fact that the objective—i.e., the error
between the “true” value of contents and its evaluation through the function that
is used to estimated them, along the relevant surface—is not known at the time
some point is considered for probing. We deal with this difficulty in several layers.

We assume that the variance at each point is a surrogate for the interest of
probing it, in order to obtain a better overall picture. However, assessing the
variance just at the probing points was found to be insufficient; we verified that
an estimation of the variance allover the surface was indeed necessary for having
a meaningful measure of the interested of probing a point. Hence, when in the
algorithm we attempt probing at a given point, the variance summed for a set of
points representative of the whole surface is used; in practice, we evaluate it at
the same points that are used for evaluating the error, by means of the variance
estimated by Gaussian processes. This is depicted in Figure 1.

The main method is provided in Algorithm 1. The best kernel setting φ
is selected according to a 5-fold cross-validation procedure that minimizes the
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Fig. 1. Information flow and interactions between different parts of the algorithm.

error on the set of previously known data D. 25 kernel settings were used. They
were based on the scikit-learn library’s RationalQuadratic, RBF and Matern
[2]. The parameters length scale bounds and alpha bounds were set to respect
one of the intervals in the set {(0.00001, 0.001), (0.001, 0.1), (0.1, 10), (10, 1000),
(1000, 100000)}. The values for parameter nu bounds were {0.5, 1.5, 2.5}. A noisy
component was added to all kernels with bounds (1e− 5, 1e− 2). The optimizer
was allowed to restart 10 times.

The algorithm can be described as follows. A Gaussian Processes model w
(with standard deviation function s) based on kernel setting φ is induced over D
by function fit. While there is computational resource available, i.e. the elapsed
time is within the time limit, the algorithm repeats a 4-step sequence:

– orienteering - insertion of points that maximize s over a grid G in accor-
dance to the allowed trip costs;

– disturbance - one of the trip (a) points (p ∈ a) is randomly chosen to be

distorted according to the bivariate normal distribution3 N2(p,

[
0.005 0

0 0.005

]
);

– simulation - the regression function w is applied to the distorted trip (a′)
to simulate probing values and to induce a new model able to calculate the
sum of standard deviation values σ;

– TSP - discard of the previous steps results if the distorted trip (a′) is not
feasible and the unfeasibility is confirmed for the best TSP solution.

The function cost and the TSP solver take into account the trip duration and
probing time.

3 We adopted the value 0.005 for an available area S with dimensions 1× 1.
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function Main(D,T, S,E, v, L,K)

φ← best kernel setting according to 5-fold cross-validation on D
G← {(x0 + δk, y0 + δ`), k = 1, . . .K, ` = 1, . . . L} / grid on S
σmin ←∞
〈w, s〉 ← fit(D,φ) / regression functions: w for prediction; s for standard dev.

while elapsed time < time limit do
a← Orienteering(D,T, S, φ,G, a)
a′ ← Disturb(a)
〈 , s〉 ← fit(D ∪ apply(w, a′), φ) / apply w to a′ to simulate probing
σ ←

∑
〈x,y〉∈G

s(x, y)

r ← TSP solution visiting a′

if cost(r) < T and σ < σmin then
σmin ← σ
a← a′

end

end
D′ ← D ∪ apply(v, a) / start of the testing part
〈w, 〉 ← fit(D′, φ)
∆←

∑
(x,y)∈E |v(x, y)− w(x, y)|

return ∆
Algorithm 1: Main procedure. Input: previously known data D, allowed trip costs

including duration and probing time T , available area S, testing points E, “true

function” evaluator v, grid dimensions L×K. Output: estimated error value over the

grid ∆.

function Orienteering(D,T, S, φ,G, a)
while True do
〈w, s〉 ← fit(D,φ)
〈x, y〉 ← arg max

〈x,y〉∈G

s(x, y) / return element with maximum s

a′ ← {〈x, y〉} ∪ a
r ← TSP solution visiting a′

if cost (r) > T then
break

end
a← a′

z ← w(x, y)
D.append(〈z, x, y〉)

end
return a

Algorithm 2: Orienteering. Input: previously known data D, allowed trip costs

including duration and probing time T , available area S, kernel setting φ - grid where

to take measurements G, list of points to visit for probing a. Output: expanded list

of points to visit for probing a.
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3 Computational results

Ten “true functions” were adopted to evaluate the method as described in [3].
From the same work, the time limit of 100 units was adopted for the trip duration
(navigation and probing, each probing cost 1 unit). We compared the method to
a previous work to evaluate the effect of adding the disturbance step after the
orienteering step [3]. Moreover, a comparison to the use of a disturbance based
on particle swarm optimization (PSO) was also included in the experiments [5].

Figure 2 (left) shows the progress of the model after the orienteering step
for one of the “true functions”. Variance clearly diminishes as the computa-
tional time increases for both methods: the proposed method (Distortion) and
PSO (PSwarm). The behavior of the error curve is similar, despite its non-
monotonicity. Overall, the proposed method has a better outcome than the ver-
sion based on particle swarm optimization, as can be seen in Table 1. The table
shows the sum of the standard deviation σ and the sum of the error ∆ over the
surface. Considering grids of initially known points 4x4, 7x7 and 10x10 and func-
tions from 1 to 5 (used during the design of the method), the proposed method
achieved the best error values in 14 out of 15 experiments; for PSwarm, the next
best option, this number was 2. Considering functions from 6 to 10 (not used
during the design of the method), the proposed method achieved the best error
values in 10 out of 15 experiments against 7 of the (only-)Orienteering method.

Finally, Figure 2 (right) shows how the computational time is spent by the
method. Most of the time is spent inducing the regressor and making predictions.
The time spent calculating TSP solutions is negligible.
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Fig. 2. Evolution of variance and error curves for Distortion and PSwarm for function
5 and grid of initial points 4x4 (left). Time spent on each step of the method (right).

4 Conclusions

In this work we propose a new algorithm for the problem of selecting the location
of probings on an expedition whose aim is to improve the knowledge of content
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Table 1. St. deviation σ and error ∆ over surface of 10 functions (F)

F 4x4 7x7 10x10
Init Orien Dist Pswa Init Orien Dist Pswa Init Orien Dist Pswa

1
σ 7838 2097 1849 1438 4114 1546 1498 1756 2263 1535 1418 1682
∆ 31109 663 532 4104 7762 246 218 815 750 181 60 479

2
σ 10238 10155 10155 10155 3833 1468 1439 1624 2752 1926 1701 1908
∆ 60381 60376 60376 60376 16273 6868 6124 7347 5122 3454 2529 3488

3
σ 6754 1719 1395 1631 4386 2204 1882 2151 2762 1938 1699 1920
∆ 52273 14532 8893 13286 17307 7329 6462 7320 5424 3818 2132 3106

4
σ 7838 2097 1849 1995 4400 2334 1922 2246 2708 1906 1842 1888
∆ 54245 8250 6603 7981 23692 6644 5661 6642 6885 5245 4563 4552

5
σ 8058 3678 3386 3572 4411 2044 1942 2026 2716 1685 1659 1671
∆ 63666 8018 6991 7670 24731 6593 5451 6640 7318 3086 3048 3090

wins 0 1 5 1 0 0 5 0 0 0 4 1

6
σ 273 36 36 35 52 35 35 35 40 34 34 34
∆ 10 1 1 1 2 1 1 1 1 1 1 1

7
σ 273 36 35 35 52 35 35 35 40 34 34 34
∆ 684 874 1685 1963 676 675 675 675 675 675 675 675

8
σ 8660 7848 7524 7783 3841 2712 2610 2687 3030 2555 2323 2545
∆ 44671 39017 32066 42733 19765 6212 6500 6417 9084 2491 1711 2462

9
σ 8690 7959 7953 7932 5555 3044 2849 2994 2722 1686 1661 1068
∆ 70319 49456 49476 50492 29777 6684 8888 7111 9549 3587 4009 3166

10
σ 8687 7955 7949 7889 6624 4736 4083 4669 2825 2006 1752 1993
∆ 71940 48707 48642 53043 36573 12511 6586 11517 12376 7146 4682 6841

wins 1 1 3 1 0 4 3 1 2 2 4 3

levels of some resource in the seafloor. The algorithm improved the state-of-the-
art evolving the probing points. A potential direction for future work concerns
reshaping the algorithm in the context of reinforcement learning. Indeed, as the
reward related to a probing decision is only perceived after the result of the actual
probing is obtained—ultimately, only after the whole trip is concluded—one can
think of using real-world outcomes for rewarding algorithm’s decisions.
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5. A Ismael F Vaz and Lúıs N Vicente. A particle swarm pattern search method for
bound constrained global optimization. Journal of Global Optimization, 39(2):197–
219, 2007.

96



The Problem of Using Remnants of Fabrics in
Upholstered Furniture Factories

Bogdan Staruch and Bożena Staruch
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Abstract. We tackle the problem of the use of remnants of upholstery
fabrics in medium-sized furniture factories. This is a significant problem
that arises in the management of upholstered furniture plants. As uphol-
stery fabrics cost is one of the main factors influencing production costs,
there is a need to use the remnants of fabrics efficiently. Mathematically,
this problem can be considered as very similar to the following NP-hard
problems: a bin packing problem, a 1-dimensional cutting stock problem,
a variable sized bin packing problem, a multi-knapsack problem. How-
ever, it is much more complicated, because the remnants of fabrics are of
different lengths and the cuts are very diverse. Moreover, the objective
is unclear. We present an integer linear model for solving this problem
together with a heuristic algorithmic solution.

Keywords: remnants of upholstery fabrics · variable sized bin packing ·
integer linear programming · Lean Production · production management
· multi-knapsack problem.

1 Introduction

Interviews with production managers in medium-sized upholstered furniture fac-
tories reveal their awareness of the need for efficient use of fabric remnants. The
main reason for saving fabrics is their high cost, so it is worth using the rem-
nants even at the expense of employees’ time. In practice, two routines are used:
‘emptying’ of the warehouse and use of remnants in ongoing production. The
first one consists of storing the remnants into the warehouse for future use and
then emptying it if required. The disadvantage of this solution is the need for
increased storage space and the risk that there will be no more orders for a
given fabric. The advantage is that in the case of a sufficiently large number
of orders for products made from a given fabric, the remnants could be used
more optimally. The second routine includes checking whether remnants can be
reused, before starting a new roll. This is particularly important in the case of
customised production, which involves a large variety of rare or even individ-
ual products. The disadvantage of this solution is the greedy way of selecting
remnants for production, which reduces the optimal use of remnants of fabrics.

Regardless of which routine is used, the form of the objective function is
unclear and difficult to determine. It is known that the use of remnants leads
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to savings, but it is difficult to decide what factors lead to these savings. The
classic methods based on a bin packing problem and a 1-dimensional cutting
stock problem (see [1]-[5]), or even on a variable sized bin packing problem ([6]-
[7]), use objective in a form of minimization of the number of bins/rolls. This
doesn’t apply in the case of use of remnants. In the problem of this paper we
can establish the aim of an algorithm in a rather heuristic form, that is, use the
remnants as efficiently as possible, saving longer remnants and avoiding the use
of new rolls of fabric. On the other hand, the use of a multi-knapsack problem
(see [8]-[9]) assumes that having a large number of cuts choosing those that bring
the highest total profit. This neither works, because in the discussed problem
all the planned cuts are to be made. Choosing the order of cuts, we follow the
heuristics in the form of: longer cuts first assuming that after the arrangement
of longer cuts, shorter cuts will be easier to place in the remnants formed after
cutting off the longer ones.

In this paper we consider both routines and propose a sub-optimal algorith-
mic solution for the stated problem. First step of the algorithm is to arrange
the cuts using the Best-Fit(BF) principle (see Algorithm Best-Fit in [1]). This
arrangement determines the remnants and eventually the whole rolls that are
going to be used in the solution. The second step is to improve the solution. We
also propose an objective function in the second step which, together with natu-
ral constraints on the length of remnants, forms an integer linear model. Hence,
in case of a ‘small’ number of remnants and cuts, a solver based on known meth-
ods for solving Integer Linear Program (ILP) can be used to obtain an exact
solution at a given stage.

2 Conventions and Assumptions

We assume the need for making some cuts from the given type of upholstery
fabrics. The fabrics are uniquely determined by their attributes such as color,
texture, producer. Hence, let us assume that the type of fabrics is fixed. We
have n cuts, each of the given length di, i = 1, ..., n, to be done during the given
production shift. The cuts are preventively sorted by decreasing lengths, from
the left to the right.

We have m remnants at our disposal and we also treat full rolls as remnants.
To be sure that the solution always exists, we take at the beginning a big number
of full dummy rolls. Every remnant has its length rj , j = 1, ...,m. The remnants
are sorted by increasing lengths, from the bottom to the top.

Since the lengths of the remnants are rarely equal to the sum of a combination
of lengths of the cuts, residual pieces will result, so-called trim loss (see [2]).

We introduce binary decision variables xij , i = 1, ..., n, j = 1, ...,m, where
xij = 1 if the i-th cut is associated to the j-th remnant.

Hence, the following ILP problem, where objective is now unclear, can be
written down:
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minimize losses due to the trim loss

subject to
∑n

i=1 xij · di ≤ rj ,
∑m

j=1 xij = 1, xij ∈ {0, 1}

3 Algorithmic solution

Step1. The Choice of Remnants First, we arrange cuts using the approxi-
mation algorithm Best-Fit (BF).

1. xij = 0 for every i = 1, ..., n and j = 1, ...,m.
2. For i = 1 to n put the i-th cut on the first met feasible remnant j ascending

from the bottom to the top, where the j-th remnant is said to be feasible for
the i-th cut if di +

∑i−1
k=1 xkj · dk ≤ rj . Put xij = 1.

As an output for this step we get an arrangement of all cuts on the remnants
which is a solution, although not necessarily the optimal one. The remnants
with

∑n
i=1 xij · di = 0 are useless, so we put them aside. The rest of remnants is

numbered again, from 1 to m, for simplicity.

Step2. Improvement The idea of the improvement is as follows:

1. Take K cuts from the top of the remnants. Namely, K = {i1, ..., iK} ⊂
{1, ..., n} with i1 ≤ i2 ≤ ... ≤ iK . Put xkj = 0 for every k ∈ K, j = 1, ...,m.
These cuts will be called the K-top cuts.

2. The remnants with
∑n

i=1 xij · di = 0 are now cleared. Let M denote the top
uncleared remnant.

3. Use the K-top cuts to rearrange the cuts using the Push-Up procedure.

Push-Up Procedure

1. For k = 1 to k = K−1 take the two cuts from the left from the set of K-top
cuts and remove them from K. Let Dk be the sum of their lengths, let us
treat this sum as a one joint cut, denoted by Dk, too.

2. Ascending from the bottom to the top find the first remnant j containing a
cut i such that di < Dk and j becomes feasible for Dk after subtracting the
i-th cut. Chose the shortest cut i among all the cuts assigned to j satisfying
the above conditions. We will say then that Dk pushes-up the i-th cut from
the j-th remnant or i is pushed-up by Dk and if it holds put xij = 0,
xikj = 1, xik+1j = 1.
(a) If there is a cut i pushed-up by Dk, ascend with i to the top and push-up

first possible cut. If there is a cut pushed-up by i continue ascending to
the top with this cut. Add the last pushed-up cut to the set K placing
it in accordance to the ordering.
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(b) In opposite case, assign the ik-th cut to the first feasible remnant (pos-
sibly the cleared one) and add the other to the set K.

3. If K has the one-element, assign this element to the first feasible remnant.

Notice that every iteration in the Push-Up procedure results in decreasing the
cardinality of K by one, hence the procedure stops after K iterations. Moreover,
after pushing-up a cut from the given remnant, the trim loss decreases.

It may happen that no improvement was obtained, that is, all the K-top cuts
remain unchanged. Then we can run the Push-Up procedure taking the first three
cuts instead of two in 1. If no improvement is obtained the algorithm stops. In
case of any improvement we repeat the Push-Up procedure for K − 1-top cuts.

The Value of K It can be easily seen that bigger value of K improves the solu-
tion. On the other hand, bigger value of K increases computational complexity.
The most promising solution to this dilemma is to determine the K-value ex-
perimentally, taking into account the actual production data of the factory in
question. A percentage value can be used, for example 30 percent of all the cuts.
Alternatively, a different value depending on n can be taken, for example, K
being a ·

√
n for some positive a.

Computational Complexity Pessimistic time of execution of Step1 of the
algorithm is O(m · n). By pre-processing of the choice of remnants we obtain
an upper bound on m that is proportional with n. Hence, the computational
complexity of Step1 is O(n2).

The computational complexity of Step2 of the algorithm is O(K2 ·n). There-
fore, in case K is proportional to

√
n the computational complexity of Step2 as

well as the whole algorithm is O(n2).

4 The Objective Function

Having the choice of remnants obtained in Step1 we propose an adequate objec-
tive function. We introduce a dummy remnant for this purpose, which is assumed
to be of unbounded length and at least one cut is assigned to this remnant. For
example, the M -th remnant form Step2 (1) can play the role of the dummy one.
Then the objective is a minimization of the total usage of the dummy remnant.
Then the ILP(M) optimization model is as follows:

minimize
∑n

i=1 xiM · di

subject to
∑n

i=1 xij · di ≤ rj for j = 1, ...,M − 1,
∑M

j=1 xij = 1,

xij ∈ {0, 1}

As Step2 in the proposed algorithm realizes the above objective approxi-
mately, the ILP(M) is a tool for experimental determining of K.
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Finally, we want to emphasise that under assumption that a fast algorithm for
solving the above ILP(M) exists, we can propose the following iterative solution:

1. Take m remnants obtained in Step1. Let M = m.
2. Solve ILP(M).

(a) If
∑n

i=1 xiM · di > 0 the solution is optimal.
(b) If

∑n
i=1 xiM · di = 0 put M = M − 1 and go to 2.

The possibility of obtaining such a fast algorithm is high in case of small
size of input data, what happens in medium-size furniture factories managed by
Lean Production. Experiments with the GLPK (GNU Linear Programming Kit
[10]) package show that an exact solution is obtained quickly when the number
of remnants and cuts is around 20. In case of big size of input data the main
algorithm presented is this paper efficiently produces an approximated solution
that is fully acceptable by practitioners.
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Abstract. The paper is motivated by real problems concerning tasks as-
signment to workers in medium-sized upholstered furniture plants man-
aged using the Lean Production method. We propose an integer linear
optimization model for solving this problem. The model is further en-
hanced by competence coefficients that describe the skills or capabilities
of each employee to perform each specific task. The competence coef-
ficients are used to block the possibility of assigning the given task to
a worker that has no skills to do it. Additionally, we involve a dummy
worker to the model which guarantees existence of a solution of the prob-
lem. We also discuss the use of the presented model to solve real problems
related to production supervision.

Keywords: tasks assignment · competence coefficient · integer linear
programming · Lean Production · production management · generalized
assignment problem.

1 Introduction

We will present the issue of assigning tasks to employees in medium-sized up-
holstered furniture plants managed using the Lean Production method. This
problem is motivated by real-life challenges described by upholstered furniture
plants managers in Poland. The main idea and a large part of this publication
were obtained in 2012 in cooperation with ITM1, which provides production
management systems in furniture factories. IT implementation of the solution
to the presented problem was awarded in 2016 with the ‘Debut of the Year’
award given by the Rzeczpospolita newspaper.

Lean Manufacturing (see [1], [2]), used in the factories under consideration
requires a high degree of flexibility in production planning. The products are
produced on-demand and are often customized. Hence production plans are very
diverse, they can vary from one day to another or even during an ongoing shift.
Other aspects such as unpredictable production disturbances, bad condition of
the working person, or hidden defects in materials, which can only be seen dur-
ing execution of the task, require an immediate reaction and reallocation. The
problem of reallocation was considered, for example, in [3] and [4]. In addition,

1 ITM Sp. z o.o. www: itm.com.pl
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in the analysed upholstered furniture factories, color-coded task priorities based
on the Kanban philosophy (see e.g [5]-[8]) are usually applied. Red indicates
that a task must be performed during the current shift. Tasks marked in yellow
are those that will be red during the next shift. Green indicates tasks that can
wait but may be done if possible. Therefore, there is a great need to create an
effective and flexible system supporting production management, in particular
human resources management. As far as upholstered furniture factories are con-
cerned, such a solution is most needed in two stages of production: covers sewing
and upholstering.

We propose an integer linear optimization model for solving the problem
of task assignment to workers. The model is further enhanced by competence
coefficients with their ‘normal’ values from an interval [MinC,MaxC] that de-
scribe the skills or capabilities of each employee to perform each specific task.
The competence coefficients may be determined on the basis of a subjective ap-
praisal by the superiors or on the basis of some automatic evaluation systems.
Alternatively, these two ways can be mixed. It is worth considering the develop-
ment of an automatic classification model (more on classifiers can be found in
[9]-[11]). Regardless of the method of evaluation, the values of these factors are
to be such that a lower value of the coefficient indicates greater predisposition
of the worker to perform a given task. By setting the values of some competence
factors on 3 ×MaxC, we obtain a way of blocking the allocation of tasks to
workers with insufficient competence to perform them. On the other hand the
allocation of very easy tasks to highly qualified workers can be blocked the same
way. The need for blockages is discussed in the domain called task assignment,
where binary values of competence coefficients indicating skills or authorisation
are used (see e.g. [12]).

An additional element of the presented model is a dummy worker (named
Dummy for short) with its competence value equal to 2 × MaxC. Involving
Dummy ensures the existence of an optimal solution of the modeled problem.
Further analysis of tasks allocated to Dummy allows to decide if reallocation of
tasks should be performed. In particular, a ‘red’ task assigned to Dummy means
that this task will not be finished during the current shift. Then some of the
‘green’ or ‘yellow’ tasks should be removed from the production plan so that all
urgent items are completed.

The problem discussed in this paper is a variant of a generalized assignment
problem that is known to be NP-hard and even APX-hard to approximate it.
There are many algorithmic methods in the literature to obtain a sub-optimal
solution to this problem based on different types of heuristics (see [13]-[22]).
Therefore, in this work we will focus on the model itself and its application in
practical situations in production rather than on the search for an algorithmic
solution.
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2 The Model Description

2.1 Conventions and Assumptions

Assume that there are workers in a plant that are planned to perform a set of
tasks: sewing covers or upholstering furniture. Let us use the following notations:

1. m is the number of workers, who are indicated by indices i = 1, ...,m, where
Dummy is the m-th worker;

2. every worker i works for a given interval of time not exceeding Li;
3. n is the number of tasks planned to be performed, which are indicated by

indices j = 1, ...,m;
4. every item j has its fixed normative execution time tj ;
5. Dummy’s time Lm =

∑n
j=1 tj ;

6. each worker may perform any number of tasks within her/his time limit Li;
7. each task can be performed by exactly one worker;
8. each worker i has specific competencies to perform the task j. The level

of these competencies is normally presented in the form of a competence
coefficient Cij ∈ [MinC,MaxC] so that the higher the competencies, the
lower the competence coefficient value;

9. Cij = 3 ×MaxC if we want to block the possibility of performing the task
j by the i-th worker;

10. Cmj = 2×MaxC is applied to Dummy.

Decision Variables We use binary decision variables xij , where xij = 1 means
that the j-th task is assigned to the i-th worker.

Constrains All the m + n constraints are described above in points 6. and 7.

Objective function Our goal is to allocate m tasks to n workers so that the
tasks are performed in ‘the best’ possible way. Therefore, when defining the
objective function, it is necessary to define what the term ‘the best’ means.
Typically, the longer normative time of a given item, the higher level of worker’s
skills is needed. This is why the objective function should depend on both nor-
mative times and competence coefficients. We decided to minimize the total cost
of tasks, where the ij cost is equal to tj · Cij .

2.2 Integer Linear Model

Mathematically the problem of tasks assignment to workers on the basis of their
competencies (TAW problem) can be formulated as a generalized assignment
problem in the form of an integer linear program:

minimize
∑m

i=1

∑n
j=1 tj · Cij · xij

subject to
∑n

j=1 xij · tj ≤ Li,
∑m

i=1 xij = 1, xij ∈ {0, 1}
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As can be easily seen the TAW problem is an instance of a minimized gener-
alized assignment problem, where tj ·Cij are costs of performing j-th task by i-th
worker. Therefore, any of existing algorithmic solutions can be used for solving
this problem. Notice that because the normative time of task performance is
fixed regardless of the assigned employee, the TAW problem becomes practically
useless if competence factors are not differentiated.

2.3 Competence Coefficients

Competence coefficients play an essential role in the TAW problem. As we men-
tioned earlier, they are used to block the assignment of tasks to selected workers
and to introduce a dummy worker. In addition, competence factors express an
employee’s level of skills resulting in faster work and higher quality of work-
manship. The right choice of these coefficients has a direct impact on higher
production efficiency. For this reason, a well-thought-out system for determining
competence factors, tailored to the needs of the production department in the
factory, is needed.

Interviews with production managers in upholstered furniture factories show
that it is normal practice to manually assign tasks to be performed. The shift
manager, based on his own experience and knowledge of the skills of his subor-
dinate workers, decides on the allocation of tasks.

An attempt to automate the determination of competence coefficients should
start by writing down the knowledge of production managers in numerical form,
for example by taking integers from the range of 80 to 120 in such a way that
the lower value indicates higher skills. Subsequently, the factors influencing the
quality of work should be identified and their numerical evaluation should be
recorded in the form of an information table during long-term observation. For
example, three of these factors can be quickly identified: the number of tasks
of a given type performed so far, the reduction in execution time in relation to
normative time, the number and importance of corrections (loss of time for cor-
rections, material losses, etc.). With such an information table, an appropriate
classification model can be used to determine the competence coefficients. Ob-
viously, the obtained coefficients should be monitored on an ongoing basis and,
if necessary, corrected.

There is no universal rule indicating which values of the competence coeffi-
cients are the best. One factory will opt for the quality of workmanship even at
the expense of time, while for the other the most important will be the reduc-
tion of time. In the latter case, the competence factors may express a percentage
saving of time for each task in relation to the normative time.

Competence coefficients may be used to obtain an assignment that realizes
‘seriality’ requirements. We understand seriality as allocation of series of the
same tasks to a worker if possible. Such seriality gives saving of time: shortening
the time of adjusting the workplace (changeover time), automation and personal
optimization resulting from repeating the same activities several times. Tests
shows that greater differentiation in the values of the competence coefficients
increases the seriality effect.
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3 TAW Problem in Production

In this section we discuss different aspects of application of the TAW problem in
real-life production scheduling. Let us assume that a fast algorithmic method for
obtaining a sub-optimal solution, denoted by AS, is applied to TAW. We must
emphasise the fact that in the management of real production, an exact optimal
solution is not necessary. Instead, speed of calculation and flexible response to
various production events are required. Therefore, a flexible method of partial
assigning of tasks is proposed in this paper. Even a very simple AS based on
continuous relaxation and bounding is surprisingly effective. We will say that
the tasks are partially assigned if a proper subset of the set of tasks is allocated
to workers. Where the tasks are partially assigned, the TAW problem can be
run again with a new subset of tasks and with Lis decreased by subtracting
normative times of the previously allocated tasks. By repeating this procedure,
we obtain a flexible method of reaction on different aspects and disturbances in
production.

Preferences in Production As we mentioned in Introduction, preferences can
be modeled using color indicators. Red tasks must be done during the current
shift. After applying the TAW problem to all the workers of the given shift and all
the possible tasks (including red, yellow and as well as green) the solution can be
analyzed. Tasks that are allocated to Dummy should be treated as unassigned.
In case of unassigned red items, a reaction is required, which could be as follows:

1. remove a part of green or yellow items, preferably those which are not in
series (the rest is partially assigned) and run AS again,

2. fix red and serialized items that are already allocated (they are partially
assigned), remove the rest and run AS again,

3. unblock some of the workers and run AS again,
4. start with partial assignment of red items, then allocate the yellow and/or

the green ones.

Each of these reactions leads to a deterioration of the optimal solution, but the
continuity of production is more important than the accuracy of the solution.

Disturbances in Production Many types of production perturbations can
occur, but the reallocation of tasks as described above can always be applied.
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Abstract. Scheduling is one the most classical optimization problems with having 

several types according to the resources, the cost function and the defined 

constraints for the jobs. In practice many optimization problems can be formalized 

in a scheduling framework, but direct applications are frequently difficult as the 

adaption of the general methods to the given field is typically far from trivial. 

Usually real life rules are much more complicated than the published constraints and 

these rules can be significantly varied in different application areas. Furthermore, 

industrial applications must be flexible to adapt to the changing circumstances. In 

this study, we present a general definition structure for the rules by which the 

optimization methods can be flexible in managing the different constraints of the 

application areas.  

Keywords: Scheduling, General Merge Model, Industrial applications. 

1 Introduction 

Scheduling is one of the most popular optimization problems with the applications in 

many fields of industry. The aim of this type of problems is to allocate the resources to 

activities over a time period considering predefined constraints minimizing a given 

objective. The resources are usually called machines and the activities called jobs or tasks. 

Early works dealt with only some simple cases of the problem in the aspect of machine 

and job environment, constraints and objective, which are rarely found in industry. The 

scheduling problems frequently appear in real life application in many different forms, 

like production scheduling in manufacturing, crew scheduling or time-table scheduling. 

Some early results can be found in Lenstra et al. [8] and excellent reviews of the 

scheduling problems are Chen et al. [2] and Pinedo et al. [11]. 

Scheduling problems are widely studied in academic research; many problem variants, 

analyses and solution methods are published in the last decades. Though, the industrial 

demand is intensive for high quality solutions, there is still a big gap between the 
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theoretical results and the real life applications. The problem is that the published solution 

methods can be rarely applied to direct industrial use. There are two reasons which mainly 

cause this duality. On one hand, in the research studies usually the problem is relaxed by 

omitting the difficult constraints
1
 or using a simplified objective which leads unacceptable 

solutions for real applications. On the other hand, the published methods are too rigid for 

real usage in the sense that they are based on some fixed structures and rules that are not 

possible to be changed without rebuilding a significant part of the method. However, 

scheduling problems in real life applications are usually part of a decision making 

framework which require flexibility for the method to be able to be customized in 

changing circumstances. Nevertheless, in the last few years, there were a few attempts to 

handle scheduling problems from a point of view of application-oriented frameworks (see 

e.g. [10][12]) . 

Usually, in real life scheduling problems the most difficult part is fulfilling the practical 

constraints defined by highly complex rules. Moreover, these constraints are very difficult 

to be categorized as the set of rules can be rather distinct even within the same problem 

type if concerning different applications. For example, the regulations for crew scheduling 

might strictly depend on national and company rules. Therefore, a practical solution on a 

problem type can be very rarely directly adapted to other environment or business case.  

In this study, we give a general rule definition method for scheduling problems which 

provides the basis of a framework to bridge the gaps outlined above. Using this form, the 

optimization methods are more independent from the constraint set of a given application 

area and can be more easily used to another family of problems. Each rule is defined as an 

independent unit which is responsible for its effective verification during the optimization. 

By this way the solution methods become suitable to be the part of a flexible framework: 

the rule set can be easily modified without rebuilding the optimization algorithm. 

2 Scheduling 

In the scheduling problem there are m machines (resources) and n jobs. A schedule is 

considered as an assignment between machines and jobs. A schedule is feasible if each 

job is performed and there is no time overlapping, i.e. each job can be performed at most 

one machine at once and a machine does not work on two or more jobs in the same time. 

Moreover, the schedule must satisfy other given rules which are defined by the specific 

problem. Usually a deterministic scheduling is assumed where each property and all data 

of the problem are known with certainty. In industrial case generally the offline 

scheduling is typical where the jobs, machines and all other data are known in advance. 

The three main points of scheduling problems are the machine environment, the job 

characteristics and the optimality criterion. Many types of the scheduling problems can be 

                                                           
1
 from modelling or algorithmic point of view 
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distinguished by the above aspects.  In the machine environment point of view the 

problem can be single stage or multi stage. For single stage case either single machine is 

considered or using parallel machines which can be identical, uniform or unrelated. For 

multi stage case flow shop, open shop and job shop problem types can be identified. 

Another categorization is the job processing time which can depend on the job type as 

well as on the performing machine. Further job characteristics are the release date, due 

date or deadline. Precedence constraints among the jobs can be also defined which 

prescribes a partial order among the jobs. Weights are frequently assigned to the jobs and 

pre-emption is also a natural constraint (when jobs can be interrupted and continued later). 

The objective of the scheduling provides a further classification of these problems: 

minimizing the makespan, the total competition time, the flow time, the maximum 

lateness, the total tardiness or a weighted combination of any are all the typical cases. 

Some scheduling types can be solved in polynomial time, but most of them are NP-hard. 

Formally, scheduling problems are described by a three-field representation  |  | , 

where  defines the machine environment,  represents the job characteristics and  is the 

optimality criterion [4]. For example, 1 | rj, prec | ∑𝑤𝑗 𝐶𝑗  defines a single machine 

scheduling problem where the jobs have release date with a precedence constraint among 

them and the objective is the minimization of the weighted completion time. 

Many industrial problems can be handled as a scheduling problem, e.g. crew 

scheduling (bus driver, pilot, call center, etc.), manufacturing (car, electronic devices, 

etc.), CPU operation, time table scheduling. These practical problems can be formulized 

with the above methodology and categorized to a scheduling problem type.  

3 Rule definition 

The main reason of the diversity of the industrial scheduling problems is the high 

variability of the constraint sets. In the literature the presented solution methods are 

usually specialized to the rules defined by the given industrial demand. Because of this, it 

is hard to adapt the considered method to other problem circumstances with different 

regulations. 

One way is to increase the flexibility of the solution methods is to make them more 

independent from the defined rules. The above goal can be reached within a framework in 

such a way that a rule is defined as an individual part and the methods should use them as 

a black-box unit. In this way, the set of rules can be varied without modifying the solution 

method or the method can be exchanged for the same rule set. 

Usually the most time consuming part of an optimization process for real life 

scheduling problems is verifying the solutions (or sub-solutions) by checking the 

constraints. Therefore, it is an obvious demand that a constraint should be checked as easy 

and fast as possible. 
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In this study we propose a universal form for rule definition which fulfils the above 

requirements. This model is a generalization of the so-called Merge Model for graph 

colouring published by Juhos et al. [6]. 

 

3.1 Merge Model for graph colouring 

Many scheduling problems can be formalized as graph colouring if some complex 

constraints are ignored. In the graph colouring problem the goal is to colour the nodes 

such that the neighboured nodes must not get the same colour. Generally, the objective is 

to find the minimal number of colours with which the graph can be coloured, or if the 

number of colours is given, to find a colouring with the given colour set (it is called k-

colouring). In scheduling problems the nodes represent the jobs and the colours are the 

machines. The edges of the graph represent the constraints, i.e. which jobs cannot be 

assigned to the same machine (e.g.  because of time overlapping). 

For the graph colouring problem Juhos et al. [6] published a general model, called 

Merge Model, which makes the colouring more effective reducing the number of 

constraint checks. During the colouring process the nodes are coloured one by one. In 

each step, there must be checked if the current node can be coloured with a certain colour. 

To check this constraint the Merge Model uses a Merge Table which is the adjacency 

matrix of a hyper graph. The single nodes of the hyper graph are the uncoloured nodes 

and the hyper nodes are the coloured ones with containing all the single nodes using the 

corresponding colour. In this table each column represents one node of the original graph 

and each row stands for a node of the hyper graph (normal and hyper nodes also). Here, a 

constraint check is only checking one value in the matrix. Since, a colour can be assigned 

to a node if the cross of the row of the colour and the column of the uncoloured node 

contains zero, i.e. there is no edge between the normal node and the hyper node. When a 

node is coloured, i.e. a single node is involved in a hyper node, a merge operation is 

performed in the Merge Table which makes one row from the two corresponding rows of 

the nodes performing dot product on them. This operation merge the edges of the normal 

nodes and that of the hyper nodes. This method is proved to be efficient for graph 

colouring problems [7]. 

 

3.2 General Merge Model for scheduling rules 

Solving a scheduling problem goes through the similar steps as in the case of graph 

colouring. Basically, the algorithm takes the jobs (nodes) one by one and assigns them to 

a machine (colour). Obviously, these algorithms can have more complicated operations 

too, but it is not important in the rule checking point of view. The merge operation can be 

generalized such that two hyper nodes can be also merged, which can also  reduce the 

number of colours. For example, some methods create job groups first and then assign 

them to the machines together but these groups can be considered as a machine and later 

the machines can be merged together to reduce their number to the required value. 
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Through the scheduling process in each iteration all the rules must be checked if it is 

fulfilled in the current solution or not. Since, the rules can be various and change time to 

time, a general rule definition is necessary. Let the constraints be formulized in individual 

objects for the scheduling algorithm, which is called General Merge Model (GMM). This 

model contains three general component denoted with a triple (R,f,g). The R is the base 

merge structure of the rule on which the constraint can be checked and the step operation 

can be performed. Here, R represents the solution in this rule point of view. The f: 

R→{true, false} is the checking function which gives true if the solution satisfies the rule 

and false otherwise. Finally, the g: R→R is the merge operation which produce the next 

state of the solution after one step in point of view this rule. Notice that, the feasibility 

checking f requires only the structure R and the merge operation g.  Update R to follow 

the changing of the solution through the optimization process. Therefore, in this model the 

rule forms an individual object and it is responsible for its own feasibility check. 

Obviously, the details of the components depend on the problem type and the considered 

rule and should be defined in an effective form for the application. 

Graph colouring contains only one rule which can be formulated with GMM in this 

way. Let R be the adjacency matrix of the hyper graph which is at first the original graph. 

When a node j is about to be coloured with colour i, the checking function f gives true iff 

R(i,j) is equal to 1. Finally, operation g substitutes the rows i and j with the dot product of 

the two rows. 

Using GMM, the scheduling process is the following. At first, the merge structures  R 

are generated for each rule. Then in each iteration, the algorithm checks the feasibility of 

the candidate solution using the checking functions f of each rule. If every rule is satisfied 

the algorithm performs each merge operations g on the corresponding R structures and 

move to the next step. The rest of the steps and decisions of the algorithm (e.g. how to 

choose jobs and machines, backtracks, etc.) are the responsibility of the solution method. 

In this way, the solution method uses a separated rule set which contains the individual 

rule objects and which can be modified without changing other part of the program. If a 

new rule comes to the problem, just its merge object have to be defined with its three 

components and added to the rule set. This model is flexible enough to use in optimization 

algorithms for industrial scheduling problems. 

4 Real life example: rostering problem 

Rostering is a popular practical scheduling problem. Here, there are daily shifts for a 

given time period which have to be performed by employees. The goal is to assign the 

employees to the shifts with minimizing the operation cost and fulfilling some predefined 

regulations. This problem arises in many industrial field like public transportation, nurse 

rostering, call centers, etc. Besides the trivial rules (each shift must be performed and an 

employee can work only at most one shift at a day) there can be totally different rules 
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depending on the application area. Even concentrating only one rostering type, like driver 

rostering, the regulations can be various by the country or the transportation company. 

The rostering is a single stage scheduling problem with parallel machines where the 

objective is usually minimizing the number of employees and the salary cost. Sometimes 

some penalty values are also involved in the cost function by soft constraints. This 

optimization problem is NP-hard [9] and many solution methods are published (pilot 

rostering [3], nurse rostering [1], call center [5] and driver rostering). 

In rostering problem there can be several different regulations, but some of them are 

common. Here, we show a short list of them using GMM for demonstration purpose. 

1. Each employee can have at most one shift per day. Let merge structure R
(1) 

be a 

matrix where each column stands for one day in the planning period and each row 

represents one employee. The matrix has value 1 in (i,k) if employee i has a shift 

on day k and zero otherwise. At first, each shift is assigned to one fictive 

employee, so each row contains one 1. Here, a shift assignment to employees 

means the merge of two rows (i and j) of fictive or real employees. The checking 

function f
(1)

 returns true if the dot product of the two corresponding rows equal to 

zero, i.e. the rows cannot have 1 in the same column. The merge operation g
(1)

  is 

equal to  (R
(1)

iR
(1)

j (OR operation of the two merged rows). 

2. The number of continuous working days is bounded with value D. The structure 

R
(2)

 is the same as R
(1)

 and g
(2)

 is the same as g
(1)

. The f
(2)

 merges row i and j with 

g
(2)

 and checks all parts with the length of D+1. If any of  the above subrow  does 

not contain at least one zero,  f
(2)

 returns false.  

3. There must be at least T resting time between any two consecutive shifts for each 

employee. Let R
(3)

 be similar to R
(1)

 but here each component contains two values 

as start (ws) and end (we) working time on the given day (it comes from the start 

and end time of the shifts). If an employee has no shift in a day, ws is 1440 and we 

is 0. The f
(3)

 merges the two corresponding rows with g
(3)

 and checks for each day 

if the difference of ws in the day and we in the previous day is at least T. If this 

value is less than T on any day f
(3)

 return false. The g
(3)

 generates the merged row 

setting ws to the minimum of ws values in the two rows and setting we to the 

maximum of we values correspondingly. 

In the rostering problem there can be many other rules about resting days, free 

weekends, shift types, etc., which can be similarly formulated.  

5 Conclusion 

Scheduling is one of the most studied optimization problems for decades and there is a 

significant demand in industrial area for effective optimization methods. However,  the 

published methods are rarely used for practical cases. The main reason of this is that the 

artificial soliton methods are too rigid for the various real life circumstances. Here, a 
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general model is presented for rule definition for scheduling problems which is the most 

crucial and time consuming part of the practical problem solving. In this model, each rule 

is defined as an individual unit which is independent from other rules as well as from the 

optimization method itself. In this way, the problem definition is more flexible and 

suitable for real applications. 
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Abstract. Kidney exchange programs are designed to find compatible
matches through exchange cycles within an incompatible donor-recipient
registry. Execution of long exchange cycles are logistically challenging -
thus a bound on cycle length is required. Solving kidney exchange pro-
gram with a bound on cycle length more than 2 is NP-hard. So we pro-
pose a heuristic approach to solve large size kidney exchange program by
identifying the crucial pairs for creating 3-way cycles. It uses the blood
group distribution to find the crucial pairs and prioritize them in the
solution. It was observed that these crucial pairs were having hard to
match recipients as well. Prioritizing hard to match recipients increases
the weights for those recipients and they will have better HLA matches,
PRA matches and smaller age differences. These parameters defines the
success probability of execution and it will increase with higher weights.
Thus overall probability of successful execution of the proposed trans-
plants will increase with this approach. We compare our heuristic with
exact approaches and it was observed that the difference between the
heuristic and exact methods was minimal. The heuristic approach has a
polynomial running time which allows us to run the algorithm multiple
times as required.

Keywords: Kidney exchange program · Heuristic methods · Health-care
management

1 Introduction

Kidney transplant is the most effective treatment for patients with kidney fail-
ure. It can happen either via a living donor or a deceased donor. If a patient
has a willing living donor who is compatible with the patient, the transplant is
performed, else they are registered in Paired Kidney Exchange (PKE) registry.
Here the aim is to find compatible matches within the registry through swap
and cycle exchanges. All the operations in a cycle need to be performed simul-
taneously to avoid the chances of donors backing out. This creates a bound of
the cycle length as too many simultaneous transplants are practically unfeasible.
Altruistic donations are another way to get a living donor kidney transplant and
people donates a kidney to save the life of other without taking any incentive
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from them. Altruistic donor initiated chains are also part of kidney exchange
programs.

There are several factors which affect the graft survival of the transplanted
kidney. Graft survival is the time duration which the kidney survived after trans-
plantation. Factor like, HLA antigen, age difference, GFR level, waiting time
on dialysis, failed vascular access etc. are considered to define the quality of a
match. So the aim of the kidney exchange program is to find the optimal number
of exchanges with a bound on cycle length considering the quality of matches.

Researchers have developed mechanisms for finding the optimal number of
transplants within such registries. Different Integer Programming models have
been proposed to solve the KEP (Kidney Exchange Program) for optimality.
The problem of finding maximum weighted bounded cycles over a network is an
NP-hard problem which can take an exponential amount of time in worst case.
Also, it was observed that most of the proposed transplants were executed due
to various reasons and approximately only 7% of the proposed transplants were
successfully performed in UNOS kidney exchange between Oct 2010 to Nov 2012
[1].

This showed that finding optimal number of matches may not result in actual
transplants. So different heuristic methods were proposed to find solution which
might increase the probability of execution. One such heuristic is the Spanish
exchange model where they gave preference to 2-way cycles over 3-way cycles,
cycles with higher weights and robust cycles [2]. This model was easy to imple-
ment and found solutions close to optimal solutions found through IP models.
But giving preferences to 2-way cycle might reduce the possibility of 3-way ex-
change which can potentially increase the number of transplants. Also, there is
no priority given to sensitized recipients and this might reduce the probability
of success for those recipients. We propose a data-driven approach to find the
maximum number of transplants where priority is given to sensitized recipients.
We have bounded our algorithm to 2-way and 3-way cycles only as performing
long cycles are logistically challenging. Our algorithm can be easily implemented
and will increase the probability of execution for sensitized recipients.

2 Literature review

Kidney exchange programs were started around 2000 in a few countries and later
many other countries also developed their own exchange programs. Initially the
exchanges were done as swaps but later it was extended to longer cycles as well.
In 2004, Roth et al. [3] considered only two-way exchanges and recipients having
0-1 preferences over available donors. This was the way KEPs were designed
and implemented, and later k-length cycles were also considered with weighted
preferences over available donors. In 2007, Abraham et al. [4] show that 2-way
kidney exchanges can be solved in polynomial time but when the length of
exchanges are more than or equal to 3 then this problem of exchange becomes an
NP-hard problem and there is no known polynomial time algorithm to solve this
problem. They have proposed two IP (Integer Programming) formulations based
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on an edge formulation and a cycle formulation. They showed that in restricted
cycle length cases, the cycle formulation dominates the edge based formulation.
Anderson et. al [5] have proposed two IP formulations for finding long chains
and cycles in KEP. They proposed an incremental formulation approach to solve
the model. Constantino et al. [6] proposed compact formulations for KEP which
reduces the number of constraints by adding some more variables in the model,
it had some advantages over earlier proposed IP models.

All these models were IP based and in the worst case, they can take an ex-
ponential amount of time to solve to optimality. Researchers have also come up
with different heuristic solutions for KEP. In 2013, Dickerson et al. [1] proposed
failure aware kidney exchange where they consider the probability of failure af-
ter a transplant is proposed. They defined expected utility of edges, cycles and
chains, and showed that there exists a non-maximum cardinality matching that
provides linearly more utility than all maximum cardinality matchings. In 2015,
Nickholds and Mak-Hau [7] consider KEP as a multi-criteria problem and pro-
posed a two-stage heuristic for it. In the first stage, they find the optimal number
of transplants without considering the weight of matches and in the second stage,
they maximize the sum of weighted matches subject to the constraint that the
number of transplants should be equal to that of the first stage. They proposed
Random Ascent and Steepest Ascent heuristic to solve multi-criteria KEP.

Another heuristic approach for finding good quality solutions was used in the
Spanish kidney exchange program. Bofill et al [2017] proposed a greedy algorithm
which gives preference to 2-way cycles over 3-way cycles as their probability of
failures is lower.

The heuristic works as follows:

Step 1: Create a list C of all possible 2-way cycles followed by all possible
3-way cycles in order of decreasing weights.
Step 2: Select the top cycle from C and add it to the solution set S and remove
cycles which are non-disjoint to the selected cycle.
Step 3: Repeat this process until no cycle remains in C.
Step 4: Try to convert 2-way cycle to 3-way cycle by adding a non assigned
vertex.
Step 5: Try to convert 3-way cycles to two disjoint 2-way cycles by adding an
unassigned vertex to them.

Not surprisingly, IP based formulations (with restrictions on cycle lengths)
sometimes works slightly better than their greedy approach in terms of the
number of transplants because they allow all possible 3-way and 2-way cycles.
The heuristic algorithm works well as it tries to maximize the number of 2-way
cycles, which would have lower failure probabilities.

The above heuristics do not prioritize sensitized recipients. Sensitized recip-
ients who are blood group compatible, but are hard to match because of cross
match and HLA factors are crucial participants in multi-way (including 3 way)
cycles. Since these are hard-to-match recipients, we need to prioritize them and
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find solutions which can increase the probability of a successful transplant which
involves them. This is the basis of our heuristic, described in the next section.

3 A heuristic solution based on blood group distribution

In a typical PKE registry, there are a large number of O blood group (BG) type
recipients and very few O BG type donors. This happens due to the compatibil-
ity of blood groups as O is a universal donor which allows a donation to any BG
recipient. Similarly, there would be many AB type donors and very few AB type
recipients, this also happens because of BG compatibility as AB is a universal
recipient. Pairs involving O donors or AB recipients usually come to the incom-
patible registry if the cross-match between the donor and the recipient become
positive which restrict the transplant to be performed. In these cases, recipients
becomes sensitized to a certain profile of the donor. More care is required to find
matches for these recipients.

Now in such registries, for creating a 3-way cycle, three types of pairs are
needed as part of such cycles.

– a pair with an O donor
– a pair with an AB recipient
– similar BG type donor-recipient pairs (A-A, B-B)

These type of pairs join the registry either due to cross-match positivity or to
improve the quality of matches. In both cases, we need to ensure that these re-
cipients get a priority as they come up with a possibility of an increased number
of transplants within the registry. Also, this will increase the probability of suc-
cessful transplant as these are hard to match recipients. A typical blood group
distribution of a paired exchange registry is as follows:
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We use this information to develop a good quality solution. Pairs which are
needed to create 3-way exchanges are considered as crucial pairs and they should
be given a priority as they can increase the welfare of the registry. Prioritizing
hard to match recipients will increase the compatibility and weights for them
and they will receive a better HLA (Human Leukocyte Antigen) match, PRA
(Panel-Reactive Antibody) levels and smaller age differences. These are a few
crucial parameters which defines the quality of matches and thus it will increase
the probability of successful execution of the proposed transplants. Now we pro-
pose an algorithm which prioritize these pairs to create 3-way exchanges and
remaining pairs can be solved for 2-way exchanges within registry. The algo-
rithm works as follows:

Step 1: Find a maximum weighted 3-way cycle containing sensitized recipi-
ent and add it to a solution set S.
Step 2: Repeat this process until no 3-way cycle is remaining.
Step 3: If there are sensitized recipients left in the registry, find maximum
weighted 2-way cycle and add it to the solution set S and repeat this process
until no possible match is there for the sensitized recipient.
Step 4: The remaining data will have only 2-way swaps and this is solved for
max weighted cardinality.

Finding a 3-way cycle over a network is a polynomial time problem and
for 2-way exchanges, maximum weighted and maximum cardinality is also a
polynomial time problem. Thus the overall procedure will be polynomial time
problem which can typically be solved faster than an IP based formulation. Since
we are prioritizing the sensitized recipients, the probability of execution of the
proposed solution will be high.

4 Simulation study

The proposed heuristic was compared with the IP formulations for a few data
sets. Since the heuristic tries to maximize the weights for hard to match recip-
ients, it was not expected to be optimal in terms of the number of transplants
but it should be close enough to optimal solution and have a higher chance of
successful execution. The following table compared the heuristic approach with
exact IP formulations in terms of the number of 2-way and 3-way cycles.

Table 1

Proposed heuristic Exact IP formulation
Data set T (C3) T (C2) T (C3) T (C2)
Pairs = 10 0 3 0 3
Pairs = 20 0 4 0 4
Pairs = 30 2 4 3 3
Pairs = 40 2 4 2 5

T (C3) = Total number of 3 way cycles, T (C2) = Total number of 2 way cy-
cles
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Here it can be observed that the difference between the proposed heuristic
and the exact IP is small. The way the heuristic approach works will increase the
probability of successful execution of transplants for hard to match recipients.
Prioritizing hard to match recipients will increase the overall weights for these
recipients and thus they will have better HLA matches, PRA levels and small age
differences. Better PRA matches increases the possibility of successful execution
of proposed transplants. Thus in comparison to non prioritized methods, this
method is expected to have higher number of successful transplants for hard to
match recipients which will increase the overall number of successful executions.

5 Conclusion

As successful implementation of proposed exchanges are very few in practice
due to several reasons, we try to increase the probability of successful trans-
plant by prioritizing the hard-to-match recipients, who are essential parts of
solutions which contain 3-way cycles. We propose a heuristic algorithm which
uses the blood group distribution of the PKE registry and find a solution which
increase the weights for hard to match recipients. Integer Programming based
formulations have exponential running time in the worst case, whereas the pro-
posed algorithm has a smaller running time as compared to earlier proposed
algorithms. Comparison of the heuristic algorithm and exact methods show that
the difference between both approaches very small in terms of the number of
transplants, while leading to a higher probability of successful transplants in
practice.
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