Accepted Manuscript

Biological evaluation of microbial toxin degradation by microinjected zebrafish (*Danio rerio*) embryos

Zsolt Csenki, Edina Garai, Anita Risa, Mátyás Cserháti, Katalin Bakos, Dalma Márton, Zoltán Bokor, Balázs Kriszt, Béla Urbányi

PII: S0045-6535(19)30660-5

DOI: https://doi.org/10.1016/j.chemosphere.2019.04.014

Reference: CHEM 23522

To appear in: ECSN

Received Date: 4 February 2019

Revised Date: 1 April 2019 Accepted Date: 2 April 2019

Please cite this article as: Csenki, Z., Garai, E., Risa, A., Cserháti, Máá., Bakos, K., Márton, D., Bokor, Zoltá., Kriszt, Balá., Urbányi, Bé., Biological evaluation of microbial toxin degradation by microinjected zebrafish (*Danio rerio*) embryos, *Chemosphere* (2019), doi: https://doi.org/10.1016/j.chemosphere.2019.04.014.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

1	Biological evaluation of microbial toxin degradation by microinjected zebrafish (Danio
2	rerio) embryos
3	
4	Zsolt Csenki 1†*, Edina Garai ^{1†} , Anita Risa ² , Mátyás Cserháti ² , Katalin Bakos ¹ , Dalma
5	Márton², Zoltán Bokor¹, Balázs Kriszt², Béla Urbányi¹
6	
7	¹ Department of Aquaculture, Institute of Aquaculture and Environmental Safety, Faculty of
8	Agricultural and Environmental Sciences, Szent István University, 1. Páter Károly St., H-
9	2100 Gödöllő, Hungary
10	² Department of Environmental Safety and Ecotoxicology, Institute of Aquaculture and
11	Environmental Safety, Faculty of Agricultural and Environmental Sciences, Szent István
12	University, 1. Páter Károly St., H-2100 Gödöllő, Hungary
13	† The authors contributed equally to this work
14	*Address correspondence to: Zsolt Csenki <u>csenki.zsolt@mkk.szie.hu</u>
15	
16	Declarations of interest: none
17	

1	0
1	o

19

20

21

22

23

24

25

26

27

29

30

31

32

33

34

35

	1 4	4
	netro	∩t
$\overline{}$	bstra	ιιι

The use of microinjection of newly fertilized zebrafish eggs as an appropriate tool for qualifying the biodetoxification properties of toxin-degrading microbes was investigated. Ochratoxin A (OTA), bacterial degradation products of OTA and bacterial metabolites of the Cupriavidus basilensis ÖR16 strain were microinjected. Results showed that variations in the injected droplet size, and thus treatment concentrations, stayed within ±20%, moreover embryo mortality did not exceed 10% in controls, that is in accordance with the recommendations of the OECD 236 guideline. The highest lethality was caused by OTA with a significantly higher toxicity than that of bacterial metabolites or OTA degradation products. However, toxicity of the latter two did not differ statistically from each other showing that the 28 observed mortality was due to the intrinsic toxicity of bacterial metabolites (and not OTA degradation products), thus, the strain effectively degrades OTA to nontoxic products. Sublethal symptoms also confirmed this finding. Results confirmed that microinjection of zebrafish embryos could be a reliable tool for testing the toxin-degrading properties of microbes. The method also allows comparisons among microbial strains able to degrade the same toxin, helping the selection of effective and environmentally safe microbial strains for the biodetoxification of mycotoxins in large scale. **Keywords:** Cupriavidus basilensis, mycotoxin, ochratoxin, biodegradation, biodetoxification

37

38	1.	Introduction

39	Ochratoxin A (OTA) is a hazardous mycotoxin produced during the secondary metabolism of
40	filamentous fungi belonging to the genera Aspergillus and Penicillium (Bui-Klimke and Wu,
41	2015). OTA is a potent nephrotoxic mycotoxin that has several harmful effects in Vertebrates,
42	including fish, such as hepatotoxicity (Gagliano et al., 2006), teratogenicity (Haq et al., 2016;
43	O'Brien et al., 2005) and immunosuppression (Marin and Taranu, 2015). OTA has been
44	reported to play a role in the development of different types of tumors in Rodent models and
45	humans (Pfohl-Leszkowicz and Manderville, 2007). Chronic OTA exposure proved to be a
46	leading factor in mycotoxin-induced porcine nephropathy and Balkan endemic nephropathy
47	(BEN) in humans (Stoev and Deney, 2013; Vrabcheva et al., 2000).
48	The toxin is present in various agricultural products (e.g., fruits, cereals, meats, coffee beans,
49	spices) (Bui-Klimke and Wu, 2015) and survives many common food-processing procedures,
50	such as roasting, brewing and baking, thus, it can be found in bread (Scudamore et al., 2004),
51	juicy fruits (Fernández-Cruz et al., 2010), beer (Odhav and Naicker, 2002) and wine
52	(Otteneder and Majerus, 2000). Because of its potential health risks, many countries and
53	international organizations have introduced a limit value for the OTA content of cereals and
54	cereal products (ECR, 2006; FAO, 2003).
55	Global occurrence of mycotoxins in the food chain is a problem worldwide, so several
56	strategies have been developed to decrease mycotoxin levels in animal feeds and human food
57	e.g. prevention, physical and chemical methods and biodegradation (Binder, 2007; EFSA,
58	2010). Among these, toxin biodegradation by microorganisms or their enzymes is the most
59	promising approach which could be an important postharvest strategy to reduce or eliminate
60	mycotoxin contamination.
61	There is growing need for the selection of microbial strains for efficient mycotoxin
62	biodegradation in large scale use, which are able to eliminate the hazardous effects of a toxin

63	and its breakdown products in addition to the degradation of their chemical structure
64	(Ferenczi et al., 2014; Sheikh-Zeinoddin and Khalesi, 2018; Vanhoutte et al., 2016).
65	Traditional analytical and immunological methods are sufficient to test biodegradation of the
66	parent compound, but they are unable to detect the toxic effects of potential degradation
67	products and bacterial metabolites. In addition, biodegradation does not always mean
68	biodetoxification. According to the statements described above and the scientific advice of
69	EFSA (EFSA, 2010), it is important to develop and use new in vivo toxicological approaches
70	for investigating biodegradation and detoxification efficiency directly.
71	Various microorganisms have been reported to be suitable for degrading and detoxifying
72	OTA, some of them are highly efficient (Abrunhosa et al., 2014; Hathout and Aly, 2014).
73	Two pathways may be involved in OTA microbiological degradation. The primary is the
74	hydrolytic cleavage of the amide bond in OTA, resulting in the production of phenylalanine
75	and ochratoxin α (OTa), which - in most cases – is the major degradation product. Since OTa
76	and phenylalanine are presumably non-toxic, this mechanism can be considered as a
77	detoxification pathway. The second is a hypothetical process where OTA is degraded via the
78	hydrolysis of the lactone ring (Karlovsky Petr, 1999). In this case, the final degradation
79	product is an opened lactones form of OTA, which has similar toxicity to the parent
80	compound (Li et al., 1997; Xiao et al., 1996).
81	In the present report, Cupriavidus basilensis (ÖR16 strain), the first Cupriavidus species with
82	proven OTA degradation potency has been selected. The strain ŐR16 can degrade almost
83	100% of OTA in solutions with concentrations below 20 mg/L in laboratory conditions
84	during 5 days of incubation, and the major metabolite of OTA is OTa. The degradation
85	efficiency of the strain was tested in mice, where neither the metabolites produced in a
86	modified LB medium, nor the degraded OTA residuals evoked pathological disorders, or
87	disturbed the expression of the examined genes (Ferenczi et al., 2014). Based on these

88	phenomena, the strain ÖR16 seems to be suitable for developing new in vivo test methods for
89	Vertebrate models to examine and evaluate the detoxification ability of mycotoxin degrading
90	microorganisms.
91	Zebrafish embryo tests are widely used bioassays in toxicological and ecotoxicological
92	testing, and are often used to analyze organic-matter rich samples (e.g. waste water and
93	sediment samples) (Braunbeck et al., 2005; Nagel, 2002). Since these assays should be carried
94	out at temperatures above 25°C, many factors may interfere with toxicity evaluation, of which
95	low oxygen supply in the embryo test vessel is one of the most important (Küster and
96	Altenburger, 2008; Strecker et al., 2011). Deviations from oxygen saturation increase the
97	frequency of malformations or suspension of embryo development, and distinction between
98	effects of hypoxia and the toxicity of a sample is not always possible. For organic-matter rich
99	samples, the microinjection of fish embryos could be an alternative method to eliminate the
100	secondary effects of hypoxia.
101	Microinjection is a simple way to introduce substances into newly fertilized fish eggs. It has
102	previously been used for testing polar and nonpolar substances in many fish species (Colman
103	et al., 2004; Mizell and Romig, 1997; Walker et al., 1992). Effects on embryonic development
104	are visible shortly after microinjection, and even minor toxic effects can be distinguished
105	from background mortality and other sublethal symptoms. Although, microinjection of
106	substances into the yolk of zebrafish eggs is feasible, introduction of accurate volumes (e.g.
107	constant volumes) through a series of injections seems to be problematic so nominal and real
108	injected volumes may be different (Schubert et al., 2014).
109	The objective of this in vivo toxicological study was to investigate whether microinjection of
110	newly fertilized zebrafish eggs could be an appropriate tool for qualifying the
111	biodetoxification efficiency of toxin-degrading microbes. Therefore OTA, breakdown
112	products of OTA and bacterial metabolites of Cupriavidus basilensis ŐR16 strain were

injected into zebrafish eggs at different volumes and mortality and sublethal effects were
compared. Additionally, we investigated the injected volume fluctuations during a series of
microinjections, to see if desired treatment concentrations are reached and to ensure that the
results are reliable.

118 2. Material and metho	thods		M	•	2	2	118
---------------------------	-------	--	---	---	---	---	-----

ial protection
ıal protect

The Animal Protocol was approved under the Hungarian Animal Welfare Law (XIV-I-001/2303-4/2012).

2.2. Zebrafish maintenance and egg collection

Laboratory-bred AB strain zebrafish were held in breeding groups of 30 females and 30 males at the Department of Aquaculture, Szent István University, Hungary, in a Tecniplast ZebTEC recirculation system (Tecniplast S.p.A., Italy) at 25.5° C \pm 0.5° C, pH 7.0 ± 0.2 , conductivity $550\pm50~\mu$ S (system water) and light:dark period of 14 h:10 h. Fish were fed twice a day with dry granulate food (Zebrafeed 400-600 μ m, Sparos Lda., Portugal) supplemented with freshly hatched live *Artemia salina* twice a week. Fish were placed in breeding tanks (Tecniplast S.p.a.) late in the afternoon the day before the experiment and allowed to spawn by removing the dividing walls next morning. Spawning of individual pairs was delayed through time to allow a continuous supply of 1-cell embryos.

2.3. Bacterial strain cultivation and metabolite preparation

The bacterial *Cupriavidus basilensis* ÖR16 strain (stored at -80 °C) was thawed on ice, streaked on Luria-Bertani (LB) agar plates (10 g tryptone, 5 g yeast extract, 9 g sodium-chloride and 18 g bacteriological agar (Biolab Ltd., Hungary) in 1L (pH 7.0) ion-exchanged water) and incubated at 28 °C for 72 hours. Then single colonies were inoculated into 50 mL 100% LB medium (10 g tryptone, 5 g yeast extract and 9 g sodium-chloride in 1L (pH 7.0) ion-exchanged water) in 250 mL flasks and cultures were grown for 120 h at 28 °C, 170 rpm in a shaking incubator (Sartorius Certomat BS-1, Germany). Liquid cultures were centrifuged at 3220 g, 4 °C for 20 min (Eppendorf 5810R, Germany), the pellet was resuspended in 50

mL 20% LB medium (100% LB medium diluted with ion-exchanged water), then was centrifuged again at the same conditions. The procedure was repeated twice. After resuspension, the optical density of the culture was measured at 600 nm (OD $_{600}$) (GENESIS 10S UV-VIS, Thermo Fischer Scientific) and adjusted to 0.6 ± 0.05 to prepare bacterial inoculum. 5 mL bacterial suspensions were inoculated into 45 mL sterile 20% LB medium in triplicates and incubated on a laboratory shaker at 28 °C, 170 rpm for 120 h. Cultures were then centrifuged at 3220 g, 4 °C, for 15 min. Supernatants were filtered through 0.2 μ m syringe filters (VWR International Ltd., Hungary) to gain bacteriologically sterile samples containing bacterial metabolites only. Samples were stored at -20 °C until microinjection.

2.4. Ochratoxin A biodegradation and OTA concentration measurement

Bacterial inocula (5 mL) were prepared as above, and added to 45 mL 20% LB medium containing OTA (7 mg/L final concentration). Similar inocula were prepared in parallel without OTA to test the effects of bacterial metabolites. Uninoculated LB medium (20%) contaminated by OTA (7 mg/L) was used as negative control. Both of the cultures and control were incubated at 28 °C, 170 rpm for 120 h in triplicates. After the incubation, cultures were centrifuged at 3220 g, 4 °C, for 20 min. Supernatants were filtered with 0.2 μ m syringe filters, and samples were stored at -20 °C until microinjection.

For the measurement of OTA concentration, high-performance liquid chromatography with tandem mass spectrometry (HPLC-MS/MS) was applied. Prior to measuring toxin concentration, $100~\mu L$ sample were mixed with $25~\mu L$ isotope-labelled internal standard ($^{13}C_{20}$ -OTA), the mixture was evaporated under nitrogen gas, thereafter it was reconsituted in 50-50 V/V% A-B eluent (A: water, 5mM ammonium-acetate, 0.1% acetic acid; B: methanol, 5mM ammonium-acetate, 0.1% acetic acid). For the separation Agilent 1100 HPLC (Agilent Technologies, USA) equipped with Agilent Zorbax C18 column ($3.5\mu m$, XDB-C18, 2.1~x

168	50mm) was used. 10 μL prepared samples were injected into the mobile phase containing A-
169	B eluent. 400 $\mu L/min$ flow rate and 40°C column temperature was set. 3200 QTRAP
170	LC/MS/MS system (Applied Biosystems, USA) in positive ion mode was used for the
171	determination of OTA concentration in samples. During the measurement, LOD was 2 $\mu\text{g/L}$
172	and LOQ was 6 μ g/L.
173	2.5. Microinjection
174	A Narishige (Japan Model PN-31) micropipette puller (heater level: 89.1, magnet sub level:
175	15.7, magnet main level: 84.3) was used to pull microinjection pipette tips (injection needle)
176	(Narishige Japan G-1 borosilicate glass capillary, 1 mm o.d. x 0.6 mm i.d., 90 mm length).
177	Injection needles were backfilled with 20 μL substance without air bubbles by a Microloader
178	pipette tip (Eppendorf, Germany).
179	The needle was placed in the microinjection manipulator (microINJECTOR MINJ-2, TriTech
180	Research Inc. Los Angeles, USA) connected to a nitrogen gas bottle. Injections were carried
181	out under a stereomicroscope at 15× magnification (Leica LED2500, Leica Microsystems
182	GmbH, Germany). Injection volumes were determined in immersion oil (Merck Ltd.,
183	Hungary, An affiliate of Merck KGaA, Darmstadt, Germany) on the basis of droplet
184	diameters by a calibrated software (Leica M205 FA, Leica DFC 7000T camera, Leica
185	Application Suite 3.4.2.18368, Leica Microsystems GmbH, Germany). Injection volumes
186	were administered five times into the oil droplet until appropriate volume was achieved
187	(pressure or capillary orifice size change). According to the sphere volume formula
188	$(V{=}1/6\pi d$), a sphere diameter of 50 μm corresponded to an injection volume of 0.22 nL, 100
189	μm to 0.52 nL, 150 μm to 1.77 nL, and 200 μm to 4.17 nL. Injection volume needed to be
190	measured and adjusted for each solution, concentration and control.

One-cell stage zebrafish embryos were lined up against the side of a microscope slide placed in a 10 cm diameter Petri dish. Excess water was removed with a plastic pipette. Treatment groups of 20 eggs were injected in a minimum of three replicates per treatment. Following microinjection, eggs were incubated in system water with methylene blue (2 mL 0.1% methylene blue in 1 L system water) (25°C \pm 2°C) in 10 cm diameter Petri dishes. After 2 hours, coagulated and/or non-fertilized eggs were discarded and developing embryos were transferred in groups of twenty into 6 cm diameter Petri dishes. Embryos were then incubated in system water at 26°C \pm 1°C and a 14 h:10 h-light:dark period and checked for lethal and sublethal effects under a microscope. System water was replaced in every 24 hours until 120 hpf (hours post-fertilization). Digital images of embryos (72 hpf) and larvae (120 hpf) in lateral orientation were taken under a stereomicroscope at 30× magnification (Leica M205 FA, Leica DFC 7000T camera, Leica Application Suite 3.4.2.18368, Leica Microsystems GmbH, Germany).

2.6. Determination of the variations in the injection volume

Zebrafish Ringer's solution (ZFR) (116 mM sodium-chloride, 2.9 mM potassium-chloride, 1.8 mM calcium-chloride and 5 mM HEPES (pH 7.2) (Sigma-Aldrich, Hungary) in system water, filtered with 0.2 µm syringe filters) was injected into the yolk of zebrafish eggs. Prior to treatments, microinjection parameters (pressure and capillary orifice size) were set according to the volumes calculated on the basis of injected droplet sizes in immersion oil. When the desired volume was reached, five eggs were injected, and the diameter of five droplets was measured again in immersion oil. This egg injection - droplet measurement cycle was repeated five times to test the accuracy of injection.

215	2.7. Effect of the highest used injection volume and the LB media on the viability of
216	embryos
217	The effect of the largest injection volume (4.2 nL) on egg viability was tested with Zebrafish
218	Ringer's solution, the negative control of the experiments. The effect of the bacterial growth
219	medium and the effects of the solvent were tested following the injection of 4.2 nL of 20%
220	LB medium and 20% LB medium with acetone (250 μL acetone in 50 mL 20% LB medium).
221	
222	2.8. Determination of the initial OTA concentration of the reference curve
223	OTA (99.5% Fermentek, Israel) was dissolved in acetone (98.8% Sigma-Aldrich, Hungary) at
224	1000 mg/L concentration, of which 1; 7; 10 mg/L concentrations were prepared in 20% LB
225	medium. OTA contaminated medium was injected in 0.22 nL, 0.52 nL, 1.77 nL and 4.17 nL
226	volumes into the embryos to find the optimal concentration for the reference curve.
227	
228	2.9. Examining the toxicity of samples derived from OTA degradation experiment
229	Samples containing ŐR16 metabolic products as well as OTA degradation products were
230	injected in 0.22 nL, 0.52 nL, 1.77 nL and 4.17 nL volumes into the zebrafish embryos.
231	
232	2.10. Examination of injected embryos
233	Embryo mortality was determined at 72 and 120 hpf on the basis of egg coagulation, the lack
234	of somite formation and the lack of heart function. Sublethal effects were examined at 72 and
235	120 hpf, the endpoints were pericardial edema, yolk edema, tail deformation, craniofacial
236	deformation and disintegrated abnormal embryo shape. Abnormalities were recorded
237	separately, irrespective of the number of deformities per individual.

239	2.11. Statistics
240	Results were analysed and graphs were plotted by GraphPad Prism 6.01 (GraphPad Software,
241	San Diego, USA). Data were checked for normality with Shapiro-Wilk normality test and
242	non-compliance with the requirements of parametric methods was established. Significant
243	differences were verified by Kruskal-Wallis analysis with Dunn's multiple comparisons test.
244	

3. Results and discussion

า	1	c
_	4	U

268

245

3.1 Examination of variations in the microinjection volume 247 In toxicology including ecotoxicology, the concentrations used should remain as stable as 248 possible to obtain reliable results. The microinjection method may cause volume fluctuations, 249 the rate of which depends on the injection time, the applied pressure, the diameter of the 250 needle tip and the viscosity of the cytoplasm of the injected cell (Minaschek G. et al., 1989; 251 Schubert et al., 2014). These volume variations cause concentration shifts, and so nominal 252 and real concentrations may differ from each other. 253 The best method for volume determination is the measurement of droplet diameters in the 254 yolk after each injection (Schubert et al., 2014). However, with diffuse substances – such as 255 those used in these experiments – this is not possible, therefore droplet size was measured in 256 immersion oil, prior to microinjection to the yolk. To examine alterations in the injection 257 258 volume during the microinjection procedure, a microinjection series was carried out with zebrafish Ringer's solution and the diameter of injected droplets were measured after the 259 injection of every 5 embryos. In general, no significant difference was observed between 260 replicates compared to the desired diameter (Fig 1 A). Minimal and maximal droplet volumes 261 calculated from the measured diameters are shown in Fig 1 B. The largest decrease in volume 262 was detected in case of the 1.77 nL droplet size (17.51% (1.46 nL)), while the largest volume 263 increase was seen in case of the 0.22 nL droplet size (18.18% (0.26 nL)). 264 According to the OECD 236 guideline for the Fish Embryo Toxicity Test, nominal and real 265 266 concentrations should not differ from each other by more than $\pm 20\%$ (OECD236, 2013). In this experiment deviations from the nominal volume stayed within this range for all volumes 267 tested, thus presumably our experiments would meet this basic requirement.

269	Results show that with the above described experimental settings, the method is
270	dimensionally stable for all used droplet sizes, if the capillary is not clogged during injection.
271	
272	3.2 Effect of the largest injection volume and the media on the viability of embryos
273	Prior to testing bacterial products, potential toxic effects of three basic media, the Zebrafish
274	Ringer's solution, the LB medium, the medium supplemented with the solvent acetone (which
275	served as a bacterial propagation medium and carrier for OTA) and the largest used injection
276	volume (selected according to the work of Schubert and co-workers (2014)) was examined.
277	The injection volume is a critical factor in postinjection embryo survival, but potentially does
278	not cause egg trauma if the administered volume is bellow 10% of the total volume of the
279	yolk (Walker et al., 1992). For the same substance and same concentration, smaller injection
280	volumes cause less mortality and malformations in injected embryos (Zabel et al., 1995).
281	According to these, LB media were administered in the largest droplet volume too.
282	As the conditions did not have significant toxic effects, only results for 5 days of exposure are
283	shown in Figure 1 C. In the non-injected control no dead embryos were found, and the
284	average mortality rate was also very low in case of the LB medium (5%), the solvent
285	supplemented LB (5%) and the ZFR (5.83%) and there was no significant difference between
286	treatments. Malformations were not detected either in injected or non-injected (control)
287	embryos (Fig. 1 D).
288	The OECD guideline for fish embryo test allows a maximum of 10% lethality in the control
289	during an experiment (OECD236, 2013). This criterion was fulfilled in this study, since LB
290	media and ZFR caused lower lethality. Based on the mortality and morphology results, the
291	injection settings and droplet sizes used here seemed to be suitable for further work, the
292	examined conditions are not toxic to zebrafish embryos and so do not affect the outcome of
293	subsequent tests.

295	3.3 The effect of metabolites produced by the Cupriavidus basilensis ŐR16 strain on the
296	survival of microinjected embryos
297	Bacterial metabolites produced during the primary metabolism of the strain (ÖR16) might
298	also have toxic effects on embryos, therefore the effect of the LB medium following 3 and 5
299	days of bacterial incubation was tested in 4 injection volumes (Fig. 2 A and B). The solution
300	decreased the survival rate of embryos at 72 and 120 hpf too and dose-response relationship
301	was found between injection volumes and lethality. After 72 hours of exposure, significant
302	increase was detected in mortality in the groups injected with 1.77 and 4.17 nL (p < 0.05)
303	compared to the control, and the group injected with the largest volume (4.17 nL) and the
304	group injected with $0.22~\text{nL}$ (p < 0.01). Mortality in the groups injected with the two largest
305	volumes was 22.92% (1.77 nL) and 26.15% (4.17 nL), with no significant difference between
306	the groups. Mortality increased in all injected groups after 120 hours of exposure, but
307	compared to the control, significant difference was only detected in the groups injected with
308	the two largest volumes where mortality was 32.92% (1.77 nL, p < 0.01) and 50.13% (4.17)
309	nL, $p < 0.01$). Results clearly show that the strain $\H{O}R16$ produces toxic metabolites that –
310	following administration by microinjection – decrease the survival of zebrafish embryos.
311	Ferenczi et al. (2014) examined OTA biodegradation efficiency of the strain ŐR16 and the
312	toxicity of breakdown products derived from degradation in feeding experiments with mice.
313	Animals were exposed to ŐR16 metabolites via intragastric gavage once a day through 21
314	days. Toxic effects were examined via the expression of several marker genes and
315	histolopathological examination of the kidney and spleen. In mice, metabolic products of the
316	strain ŐR16 did not seem to be toxic compared to the control. According to the results
317	described above, zebrafish embryos seem to be more sensitive to the bacterial metabolites
318	than mice, however, difference may be due to different exposition pathways.

2	1	O
		7

320	3.4 Determination of the initial OTA concentration for further experiments
321	In order to determine the initial OTA concentration for further degradation experiments, OTA
322	was injected into the yolk of embryos in 1, 7 and 10 mg/L concentration, in different volumes.
323	All concentrations fell within the degradable concentration range of strain ŐR16. Mortality
324	was checked at 3 and 5 dpf and results were plotted on a dose response curve for mortality.
325	The graph of the potentially optimal initial concentration should serve as a reference for
326	further experiments even if toxicity is higher following degradation, so should meet the
327	following requirements: the maximum mortality should not exceed that of the bacterial
328	metabolic products and the curve should not reach its maximum early.
329	Mortality increased along with the injection volume in case of all three OTA concentrations,
330	and reached the maximum after 72 hours of exposure in all cases. Mortality did not change
331	significantly for 120 hours following exposure (Fig. 3 A and B).
332	The slope of the dose-response curve for 1 mg/L OTA was lower than the others and
333	mortality maximum was reached only with the largest injection volume following 72 and 120
334	hours of exposure. In case of lower injection volumes, mortality was below 10%.
335	Dose-response relationship was detected between injection volumes and mortality in case of 7
336	mg/L OTA as well. Mortality increased gradually with injection volumes at 72 and 120 hours
337	of exposure too, and the maximum (100%) was reached with the largest injection volume.
338	From $0.52\ nL$, significant difference (p < 0.05) was detected in mortality compared to the
339	control. Differences between mortality values of the groups injected with volumes ≤0.52 nL
340	compared to the 1.77 (p $<$ 0.001) and 4.17 nL injection volumes were also significant (p $<$
341	0.05), however, no significant difference was found in case of the two largest volumes (Fig.
342	3C and D). Mortality reached its maximum (75%) early with 10 mg/L OTA with the lowest
343	injection volume (0.52 nL) and did not show to be higher with larger volumes.

344	On the basis of our results, 7 mg/L was selected to be an initial concentration in further
345	experiments. The mortality curve of this concentration shown here served as reference for
346	subsequent tests.
347	The present study was the first to examine acute toxic effects of OTA following
348	microinjection, and high mortality was detected even after short exposures to low
349	concentrations. However, these results are difficult to compare to the results of classical tests
350	where embryos are exposed via waterborne exposure. It is still unclear how substances are
351	distributed in the yolk following injection but it is inhomogenous in most cases, so
352	presumably embryos are not exposed uniformly. Moreover, zebrafish embryos consume their
353	yolk sac completely to 165 \pm 12 hpf (Litvak and Jardine, 2003), thus, some of the substance
354	may remain unabsorbed during the exposition period presented here, however, with longer
355	exposure the experiment would fall under animal testing regulations. The microinjection
356	technique enables the administration of exact amounts, so theoretically it would be possible to
357	determine doses per bodyweight as seen in feeding experiments with vertebrates.
358	
359	3.5 Toxicity of samples derived from ochratoxin degradation experiment
360	In order to clarify the toxicity of OTA-metabolites produced during microbial toxin
361	degradation with strain ŐR16, degradation products were microinjected in four concentrations
362	into zebrafish embryos. Mortality was examined on the 3rd and 5th day of exposure.
363	Mortality increased with the injected volume as seen previously. At 72 hours of exposure,
364	mortality in the non-injected control, and in the 0.22 nL and 0.52 nL injection volumes was
365	bellow 10%, and did not reach 30% even with the highest volumes. No significant difference
366	was observed between treated groups (Fig. 4 B). At 120 hours of exposure, dose-response

relationship was found between the injected volume and embryo mortality, as mortality

increased gradually along with the injection volume and reached 38.5% in the largest volume.

367

369	Statistically significant decrease was detected in the number of survivals in the groups
370	injected with 0.52 nL, 1.77 nL and 4.17 nL compared to the non-injected control (p $<$ 0.05),
371	and the two largest injection volumes compared to 0.22 nL (p $<$ 0.05) (Fig. 4 C).
372	OTA degrading efficiency of strain ŐR16 was tested prior to exposure and it was found to be
373	95.6% (Fig. 4 A). OTA degradation of the strain ŐR16 is possibly mediated by a peptidase
374	enzyme. Ferenczi et al. (2014) showed that the major metabolite of OTA degraded by strain
375	$\H{O}R16$ is ochratoxin alpha (OT α). They found that OTA content in the supernatants decreased
376	gradually, $OT\alpha$ content increased in parallel during the 5-day incubation period and OTA was
377	completely degraded (94% decrease was measured by ELISA and 100% by HPLC), that is in
378	accordance with the results of the above described experiments. $OT\alpha$ is not potentially toxic,
379	according to the results of previous Vertebrate studies (Bruinink, 1998; Ferenczi et al., 2014).
380	Haq and co-workers (2016) tested the toxicity of $OT\alpha$ with ZETA test on zebrafish embryos
381	in concentrations $\leq 2.5~\mu M$. In contrast to OTA, no significant difference was detected
382	between the mortality of embryos exposed to $OT\alpha$ and the untreated negative controls during
383	the 5 days exposure. On the basis of these, mortality in our experiments is probably due to
384	other metabolites of strain ŐR16.
385	Ferenczi et al. (2014) also studied OTA degradation products of strain ŐR16 in mouse
386	feeding experiments. Subchronic exposure did not cause mortality in mice and physiological
387	or gene expression alterations in the examined organs, compared to controls. However
388	degradation products were lethal to injected zebrafish embryos, so the zebrafish embryo is
389	probably a more sensitive model, than the mouse.
390	
391	3.6 Comparison of mortality values of 7 mg/L OTA, and the bacterial and degradation
392	products of the strain ŐR16

393	Mortality caused by 7 mg/L OTA, and the bacterial and degradation products of the strain
394	ŐR16 were plotted on joint graphs. In order to investigate the degradation characteristics of
395	the bacterial strain, mortality values of equal volumes were compared to each other (Fig. 5 A
396	and B).
397	Following 72 hours of incubation, mortality did not show significant difference between
398	groups injected with the smallest volumes. In case of larger volumes, there was no difference
399	between results of the bacterial metabolites and the degradation products of the strain,
400	however, mortality values of 7 mg/L OTA differed significantly from these (p < 0.05).
401	Highest mortality was caused by 7 mg/L OTA injected in 0.52 nL and above.
402	120 hours after microinjection, no significant difference was seen between the mortality
403	values of groups injected with 0.22 nL. In case of the groups injected with 0.52 nL, significant
404	difference was detected between 7 mg/L OTA and the metabolites of the strain $\H{O}R16$ (p <
405	0.05). Mortality values of the degradation products of strain ŐR16 did not differ nor from that
406	of the bacterial metabolites neither from the OTA solution. In larger volumes, only mortality
407	values of 7 mg/L OTA differed significantly from other groups (p < 0.001 - degradation
408	products, $p < 0.01 - \mbox{\'OR}16$ bacterial metabolites), however, bacterial metabolites of the strain
409	and degradation products of OTA did not show significant difference. The highest mortality
410	was detected in 7 mg/L OTA injected in 0.52 nL and above.
411	As no statistical difference was found between the mortality values of the bacterial and
412	degradation products, it can be concluded that OTA breakdown products are not toxic, and
413	mortality is probably caused by metabolites of the strain ŐR16. Results also show that
414	exposure via microinjection is a potential, functional, alternative way to test the detoxification
415	efficiency of toxin degrading microbes on zebrafish embryos in vivo. Mortality in itself may
416	provide a sufficient endpoint when testing the differences between the toxicity of the bacterial
417	metabolites of a strain and the degradation products of the toxin following microinjection, and

toxicity of toxin degradation products can be predicted. There was no detectable difference between the mortality curves of 3 and 5 days of exposure, so it seems that a 3 days exposure period is sufficient for studying the degradation characteristics of bacterial strains.

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

418

419

420

3.7 Sublethal effects in injected embryos

Beyond mortality, sublethal endpoints were also analyzed in treated embryos following 72 and 120 hours of exposure. Generally, compared to the non-injected controls all treatments with all injected volumes increased the frequency and severity of developmental deformities (Fig. 6 A and B). Following 72 hours of exposure, the highest frequency of morphological disorders was detected in the 7 mg/L OTA group, and in some replicates of treatments with the highest volumes of this concentration, all surviving embryos showed abnormalities. A statistically significant difference was only observed between the 1.77 nL OTA (7 mg/L), and 1.77 nL samples containing bacterial metabolites or degradation products (p < 0.01). Following 120 hours of exposure, it was also evident that compared to other treatment groups the ratio of deformed embryos was the highest in the groups treated with OTA from 0.52 nL and above. Statistically significant differences were observed in ŐR16 bacterial metabolites (p < 0.01) and breakdown products of OTA (p < 0.05) compared to 7 mg/L OTA, injected in 1.77 nL. Significant differences were also found between OTA 7 mg/L and metabolites of strain $\ddot{O}R16$ (p < 0.01) or degradation products (p < 0.05), injected in 4.17nL. However no significant difference was detected between the deformation frequencies in the groups injected with the bacterial metabolites of the strain and OTA degradation products during the whole exposure period with any injection volumes. It can be concluded that notwithstanding the significant differences detected in morphology, OTA degradation products seem to be nontoxic on the basis of deformation frequencies, however the metabolites of the strain were proved to be toxic.

443	Figure 7. shows representative development dysfunctions in embryos from treatment groups
444	with statistically significant differences. Following 3 days of OTA injection (1.77 nL)
445	embryos displayed craniofacial deformities, small eyes, curvature of the body axis, yolk
446	deformities, reduced growth rates and edemas in some cases. Most of them have previously
447	been described in OTA treated zebrafish embryos (Haq et al., 2016), and teratogenic effect
448	was observed at sub-micromolar concentrations with an EC50 of 20 nM OTA.
449	Similarly to zebrafish OTA proved to be teratogenic in the amphibian Xenopus laevis model
450	(FETAX) too, causing mainly craniofacial deformities (O'Brien et al., 2005) like in the
451	experiments described above. These developmental abnormalities (craniofacial deformities)
452	were also detected in a wide range of Vertebrates, including rats (Brown and Purmalis, 1976),
453	mice (Arora, 1983), hamsters (Hood et al., 1976) and chicken (Wiger and Starrmer, 1990).
454	Decreased hatching rate described by Haq et al. (2016) was not seen in our experiments.
455	Embryos injected with the same volume (1.7 nL) of bacterial metabolites and OTA
456	degradation products displayed shorter body, yolk sac deformations, grey coloration in the
457	yolk, pericardial edema, small eyes and deformities of lower facial structures in embryos
458	following 3 days of injection. Curvation of the body as a common sign of OTA exposure has
459	not been detected.
460	Five days after microinjection, sympthoms got more pronounced in OTA treated embryos and
461	severe deformations appeared all through the body. Embryos injected with bacterial
462	metabolites of the strain ŐR16 and OTA degradation products displayed shorter body, yolk
463	sac deformations, pericardial edema, edema around the abdomen, small eyes, small and not
464	well defined olfactory region and deformities of lower facial structures on the 5th day of
465	exposure. As in 3 dpf exposed embryos, curvation of the body axis was not seen here either.
466	In contrast, $OT\alpha$ did not seem to be toxic in Vertebrates. Haq and co-workers (2016)
467	examined the effects of OTα (along with OTA) on zebrafish embryos and neither

468	teratogenicity nor mortality differed significantly from that of the negative control embryos
469	during 5 days of exposure. Ferenczi et al. (2014) demonstrated apparent hydrolysis of OTA to
470	OTα, and consequent detoxification by using a bacterial species Cupriavidus basilensis, as
471	evidenced by comparative toxicological studies in a mouse model of nephrotoxicity.
472	In the present study, morphological examination showed that phenotype of OTA treated
473	embryos differed significantly from the morphology of embryos exposed to bacterial
474	metabolites or OTA degradation products in both experimental time points, however embryos
475	in the latter groups showed similar phenotypes. In conclusion, it seems that strain ŐR16
476	degrades OTA to nontoxic metabolites, the strain is able to degrade OTA even in 7 mg/L
477	concentration, and deformations resulted from the injection of OTA degradation products are
478	probably due to the metabolites of the bacteria. In addition, zebrafish exposed via
479	microinjection appeared to be more sensitive to the metabolites of strain ŐR16 than mice.
479 480	microinjection appeared to be more sensitive to the metabolites of strain ŐR16 than mice. All injected solutions contained high levels of organic matter. No deformation implied
480	All injected solutions contained high levels of organic matter. No deformation implied
480 481	All injected solutions contained high levels of organic matter. No deformation implied oxygen deprivation in morphological examinations of exposed zebrafish embryos (Küster and
480 481 482	All injected solutions contained high levels of organic matter. No deformation implied oxygen deprivation in morphological examinations of exposed zebrafish embryos (Küster and Altenburger, 2008; Strecker et al., 2011). Results suggest that microinjection can be an
480 481 482 483	All injected solutions contained high levels of organic matter. No deformation implied oxygen deprivation in morphological examinations of exposed zebrafish embryos (Küster and Altenburger, 2008; Strecker et al., 2011). Results suggest that microinjection can be an alternative way to test samples with high organic matter content.
480 481 482 483 484	All injected solutions contained high levels of organic matter. No deformation implied oxygen deprivation in morphological examinations of exposed zebrafish embryos (Küster and Altenburger, 2008; Strecker et al., 2011). Results suggest that microinjection can be an alternative way to test samples with high organic matter content. High organic matter content of samples often causes hypoxia during zebrafish embryo tests,
480 481 482 483 484 485	All injected solutions contained high levels of organic matter. No deformation implied oxygen deprivation in morphological examinations of exposed zebrafish embryos (Küster and Altenburger, 2008; Strecker et al., 2011). Results suggest that microinjection can be an alternative way to test samples with high organic matter content. High organic matter content of samples often causes hypoxia during zebrafish embryo tests, and its effects (developmental disorders, suspension of embryo development) can hardly be
480 481 482 483 484 485 486	All injected solutions contained high levels of organic matter. No deformation implied oxygen deprivation in morphological examinations of exposed zebrafish embryos (Küster and Altenburger, 2008; Strecker et al., 2011). Results suggest that microinjection can be an alternative way to test samples with high organic matter content. High organic matter content of samples often causes hypoxia during zebrafish embryo tests, and its effects (developmental disorders, suspension of embryo development) can hardly be differentiated from those of the sample itself (Küster and Altenburger, 2008; Strecker et al.,

4	9	0

4. Conclusions

Microinjection is a simple way to introduce organic matter-rich test substances into newly fertilized fish eggs and helps to eliminate hypoxia that cause a wide range of secondary effects. If the method is well optimized, injection volume variations can be kept within ±20%, according to the OECD 236 test guideline's recommendations and so result reliability can be ensured.

Results clearly showed that investigation of zebrafish embryos microinjected with toxin solutions, metabolites of bacterial strains and OTA degradation products could provide an alternative way for studying the toxin detoxification-properties of microbial strains. The zebrafish embryo – thanks to their sensitivity – proved to be a good model for the studies. Toxicity differences between substances may be detected even after 3 days of exposure on the basis of mortality, that can be completed and further refined by the evaluation of sublethal data.

Microinjection enables the selection of microbial strains that are able to degrade the toxin and the identification of the most effective and environmentally safe microbes from the selected strains.

Acknowledgements

This work was supported by Development and Innovation Fund (NKFIH); Grant Agreement: NVKP_16-1-2016-0009 and VKSZ_12-1-2013-0078, EFOP-3.6.3-VEKOP-16-2017-00008 project co-financed by the European Union, and the Higher Education Institutional Excellence Program (1783-3/2018/FEKUTSTRAT) awarded by the Ministry of Human Capacities within the framework of water related researches of Szent István University. The scientific work of Mátyás Cserháti was supported by the János Bolyai Research Grant of the Hungarian

515	Academy of Sciences. Edina Garai was supported by the ÚNKP-18-3-I New National
516	Excellence Program of the Ministry of Human Capaticies. The authors gratefully thank Ákos
517	Horváth for critical reading of the manuscript.

ς	1	a
J	_	

520	5. References
521	Abrunhosa, L., Inês, A., Rodrigues, A.I., Guimarães, A., Pereira, V.L., Parpot, P., Mendes-
522	faia, A., Venâncio, A., 2014. International Journal of Food Microbiology Biodegradation
523	of ochratoxin A by Pediococcus parvulus isolated from Douro wines. Int. J. Food
524	Microbiol. 188, 45–52. https://doi.org/10.1016/j.ijfoodmicro.2014.07.019
525	Arora, R.G., F.H.; FellneF.H., 1983. INHIBITION OF O C H R A T O X I N A T E R A T
526	O G E N E S I S. Food Chem. Toxicol. 21, 779–783.
527	Binder, E.M., 2007. Managing the risk of mycotoxins in modern feed production 133, 149-
528	166. https://doi.org/10.1016/j.anifeedsci.2006.08.008
529	Braunbeck, T., Boettcher, M., Hollert, H., Kosmehl, T., Lammer, E., Leist, E., Rudolf, M.,
530	Seitz, N., 2005. Towards an alternative for the acute fish LC(50) test in chemical
531	assessment: the fish embryo toxicity test goes multi-species an update. ALTEX 22,
532	87–102. https://doi.org/10.1007/s10811-007-9297-x
533	Brown, M.H., Purmalis, B.P., 1976. Teratogenic and Toxic Effects of Ochratoxin A in Rats
534	fetal hemorrhage and an undefined defect termed "coelosomy," they were unable to
535	detect any skeletal or visceral malformations . The present study was designed to further
536	assess the teratogenic poten. Toxicol. Appl. Pharmacol. 37, 331–338.
537	Bruinink, A., R.T., S.C., 1998. Differences in Neurotoxic Effects of Ochratoxin A, Ochracin
538	and Ochratoxin- a In Vitro. Nat. Toxins 177, 173-177.
539	Bui-Klimke, T.R., Wu, F., 2015. Ochratoxin A and Human Health Risk: A Review of the
540	Evidence. Crit. Rev. Food Sci. Nutr. 55, 1860–1869.
541	https://doi.org/10.1080/10408398.2012.724480
542	Colman, J.R., Dechraoui, M.Y.B., Dickey, R.W., Ramsdell, J.S., 2004. Characterization of
543	the developmental toxicity of Caribbean ciguatoxins in finfish embryos. Toxicon 44, 59-

544	66. https://doi.org/10.1016/j.toxicon.2004.04.007
545	ECR, 2006. Commission Regulation (EC) No 1881/2006 of 19 December 2006 setting
546	maximum levels for certain contaminants in foodstuffs. Off J Eur Union 364 5-24.
547	EFSA, 2010. Statement on the establishment of guidelines for the assessment of additives
548	from the functional group 'substances for reduction of the contamination of feed by
549	mycotoxins ' 1 EFSA Panel on Additives and Products or Substances used in Animal
550	Feed (FEEDA. EFSA J. 8, 1–8. https://doi.org/10.2903/j.efsa.2010.1693.
551	FAO, 2003. Food and Agriculture organization of the United Nations.
552	Ferenczi, S., Cserháti, M., Krifaton, C., Szoboszlay, S., Kukolya, J., Szoke, Z., Koszegi, B.,
553	Albert, M., Barna, T., Mézes, M., Kovács, K.J., Kriszt, B., 2014. A new ochratoxin a
554	biodegradation strategy using cupriavidus basilensis Or16 strain. PLoS One 9.
555	https://doi.org/10.1371/journal.pone.0109817
556	Fernández-Cruz, M.L., Mansilla, M.L., Tadeo, J.L., 2010. Mycotoxins in fruits and their
557	processed products: Analysis, occurrence and health implications. J. Adv. Res. 1, 113-
558	122. https://doi.org/10.1016/j.jare.2010.03.002
559	Gagliano, N., Donne, I.D., Torri, C., Migliori, M., Grizzi, F., Milzani, A., Filippi, C., Annoni,
560	G., Colombo, P., Costa, F., Ceva-Grimaldi, G., Bertelli, A.A.E., Giovannini, L., Gioia,
561	M., 2006. Early cytotoxic effects of ochratoxin A in rat liver: A morphological,
562	biochemical and molecular study. Toxicology 225, 214-224.
563	https://doi.org/10.1016/j.tox.2006.06.004
564	Haq, M., Gonzalez, N., Mintz, K., Jaja-Chimedza, A., De Jesus, C.L., Lydon, C., Welch, A.,
565	Berry, J.P., 2016. Teratogenicity of ochratoxin a and the degradation product, ochratoxin
566	α , in the zebrafish (Danio rerio) embryo model of vertebrate development. Toxins
567	(Basel). 8, 8–11. https://doi.org/10.3390/toxins8020040
569	Hathout A.S. Alv. S.E. 2014. Biological detoxification of mycotoxins: a review 905, 919

569	https://doi.org/10.1007/s13213-014-0899-7
570	Hood, R.D., Naughton, M.J., Hayes, A.W., 1976. Prenatal Effects of Ochratoxin A in
571	HamstersIJ. Teratology 13, 11–14.
572	Karlovsky Petr, 1999. Biological Detoxi ® cation of Fungal Toxins and its Use in Plant
573	Breeding, Feed and Food Production. Nat. Toxins 23, 1–23.
574	Küster, E., Altenburger, R., 2008. Oxygen decline in biotesting of environmental samples—Is
575	there a need for consideration in the acute zebrafish embryo assay? Environ. Toxicol. An
576	Int. J. 23, 745–750. https://doi.org/10.1002/tox.20377
577	Li, S., Marquardt, R.R., Frohlich, A.A., Vitti, T.G., Crow, G., 1997. Pharmacokinetics of
578	ochratoxin α and its metabolites in rats. Toxicol. Appl. Pharmacol. 145, 82–90.
579	https://doi.org/10.1006/taap.1997.8155
580	Litvak and Jardine, 2003. Direct yolk sac volume manipulation of zebrafish embryos and the
581	relationship between offspring size and yolk sac volume. J. Fish Biol. 63, 388–397.
582	https://doi.org/10.1046/j.1095-8649.2003.00161.x
583	Marin, D.E., Taranu, I., 2015. Ochratoxin A and its effects on immunity. Toxin Rev. 34, 11-
584	20. https://doi.org/10.3109/15569543.2014.958757
585	Minaschek G., Bereiter-Hahn J., Bertholdtt G., 1989. Quantitation of the Volume of Liquid
586	Injected by Means of Pressure into Cells powerful tool in cell research . The substances
587	injected include tracer substances. Exp. Cell Res. 183, 434–442.
588	Mizell, M., Romig, E.S., 1997. The aquatic vertebrate embryo as a sentinel for toxins:
589	Zebrafish embryo dechorionation and perivitelline space microinjection. Int. J. Dev.
590	Biol. 41, 411–423. https://doi.org/10.1387/JJDB.9184351
591	Nagel, R., 2002. DarT: The embryo test with the Zebrafish Danio rerioa general model in
592	ecotoxicology and toxicology. ALTEX 19 Suppl 1, 38-48.
593	https://doi.org/10.1007/s13311-013-0218-1

594	O'Brien, E., Prietz, A., Dietrich, D.R., 2005. Investigation of the teratogenic potential of
595	ochratoxin A and B using the FETAX system. Birth Defects Res. Part B - Dev. Reprod.
596	Toxicol. 74, 417–423. https://doi.org/10.1002/bdrb.20054
597	Odhav, B., Naicker, V., 2002. Mycotoxins in South African traditional brewed beers. Food
598	Addit. Contam. 19, 55–61. https://doi.org/10.1080/0265203011005342
599	OECD236, 2013. Oecd guidelines for the testing of chemicals 1–22.
600	Otteneder, H., Majerus, P., 2000. Occurrence of ochratoxin A (OTA) in wines: Influence of
601	the type of wine and its geographical origin. Food Addit. Contam. 17, 793-798.
602	https://doi.org/10.1080/026520300415345
603	Pfohl-Leszkowicz, A., Manderville, R.A., 2007. Ochratoxin A: An overview on toxicity and
604	carcinogenicity in animals and humans. Mol. Nutr. Food Res. 51, 61-99.
605	https://doi.org/10.1002/mnfr.200600137
606	Schubert, S., Keddig, N., Hanel, R., Kammann, U., 2014. Microinjection into zebrafish
607	embryos (Danio rerio) - a useful tool in aquatic toxicity testing? Environ. Sci. Eur. 26.
608	https://doi.org/10.1186/s12302-014-0032-3
609	Scudamore, K.A., Banks, J.N., Guy, R.C.E., 2004. Fate of ochratoxin A in the processing of
610	whole wheat grain during extrusion. Food Addit. Contam. 21, 488–497.
611	https://doi.org/10.1080/02652030410001670166
612	Sheikh-Zeinoddin, M., Khalesi, M., 2018. Biological detoxification of ochratoxin A in plants
613	and plant products. Toxin Rev. 0, 1–13. https://doi.org/10.1080/15569543.2018.1452264
614	Stoev, S.D., Denev, S.A., 2013. Porcine/chicken or human nephropathy as the result of joint
615	mycotoxins interaction. Toxins (Basel). 5, 1503–1530.
616	https://doi.org/10.3390/toxins5091503
617	Strecker, R., Seiler, T.B., Hollert, H., Braunbeck, T., 2011. Oxygen requirements of zebrafish
618	(Danio rerio) embryos in embryo toxicity tests with environmental samples. Comp.

619	Biochem. Physiol C Toxicol. Pharmacol. 153, 318–327.
620	https://doi.org/10.1016/j.cbpc.2010.12.002
621	Vanhoutte, I., Audenaert, K., De Gelder, L., 2016. Biodegradation of mycotoxins: Tales from
622	known and unexplored worlds. Front. Microbiol. 7, 1–20.
623	https://doi.org/10.3389/fmicb.2016.00561
624	Vrabcheva, T., Usleber, E., Dietrich, R., Märtlbauer, E., 2000. Co-occurrence of ochratoxin A
625	and citrinin in cereals from bulgarian villages with a history of Balkan endemic
626	nephropathy. J. Agric. Food Chem. 48, 2483–2488. https://doi.org/10.1021/jf990891y
627	Walker, M.K., Hufnagle, L.C.J., Clayton, M.K., Peterson, R.E., 1992. An egg injection
628	method for assessing early life stage mortality of polychlorinated dibenzo-p-dioxins,
629	dibenzofurans, and biphenyls in rainbow trout, (Onchorhynchus mykiss). Aquat.
630	Toxicol. 22, 15–38.
631	Wiger, R., Starrmer, F.C., 1990. Effects of ochratoxins A and B on prechondrogenic
632	mesenchymal cells from chick embryo limb buds. Toxicol. Lett. 54, 129-134.
633	Xiao, H., Madhyastha, S., Marquardt, R.R., Li, S., Vodela, J.K., Frohlich, A.A., Kemppainen,
634	B.W., 1996. Toxicity of ochratoxin A, its opened lactone form and several of its analogs:
635	Structure-activity relationships. Toxicol. Appl. Pharmacol. 137, 182–192.
636	https://doi.org/10.1006/taap.1996.0071
637	Zabel, E.W., Cook, P.M., Peterson, R.E., 1995. Toxic equivalency factors of polychlorinated
638	dibenzo-p-dioxin, dibenzofuran and biphenyl congeners based on early life stage
639	mortality in rainbow trout (Oncorhynchus mykiss). Aquat. Toxicol. 31, 315–328.
640	https://doi.org/10.1016/0166-445X(94)00075-2
641	
642	

Tables and figures

644

646

647

648

649

650

651

652

653

643

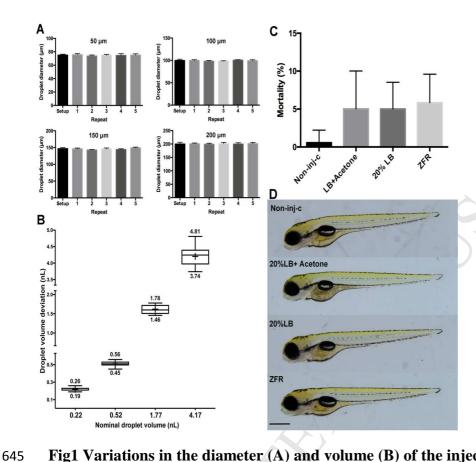


Fig1 Variations in the diameter (A) and volume (B) of the injected droplet and mortality

(C) and morphology (D) effects of control solutions. The largest decrease in volume was detected in case of the 1.77 nL droplet size (17.51% (1.46 nL)), while the largest volume increase was seen in case of the 0.22 nL droplet size (18.18% (0.26 nL)). Droplet diameter and volume stayed within $\pm 20\%$, and no significant difference was detected between measurements. Average mortality rate of 120 hpf embryos injected with 4.17 nL was very low in all cases ((Non-inj-c (non-injected control): 0%, 20% LB: 5%, 20% LB + Acetone: 5%, ZFR (Zebrafish Ringers's solution): 5.83%). There was no significant difference between treatment groups and no malformations were detected in any case. Scale bar: 500µm.

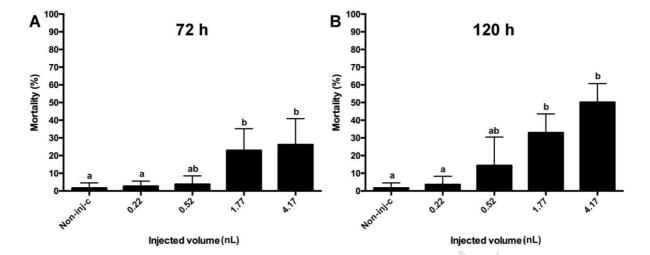


Fig 2 Effects of the metabolites of *Cupriavidus basilensis* ŐR16 strain, injected in different volumes, on the mortality of zebrafish embryos at 72 (A) and 120 hpf (B). After 72 hours of exposure, statistical significant differences were observed between the non-injected control and 1.77 nL (p < 0.05), non-injected control and 4.17 nL (p < 0.05), 0.22 nL and 4.17 nL (p < 0.01). Lethality was below 10% in the non-injected control, 0.22 nL and 0.52 nL. After 120 hours of exposure statistical significant differences were observed between the non-injected control and 1.77 nL (p < 0.01), non-injected control and 4.17 nL (p < 0.01), 0.22 nL and 4.17 nL (p < 0.001). Mortality was below 10% in the non-injected control and 0.22 nL.

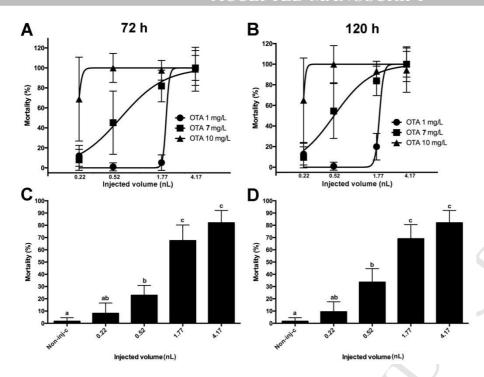


Fig 3 Effects of ochratoxin A (OTA) injected in different concentrations and volumes on the mortality of 72 (A) and 120 (B) hpf zebrafish embryos and the effects of 7 mg/L OTA injected in different volumes on the mortality of 72 (C) and 120 (D) hpf zebrafish embryos. At 72 hpf, lethality results in the non-injected control were below 10%. Statistical significant differences were observed in the 0.52 nL (p < 0.05), 1.77 nL (p < 0.05) and 4.17 nL (p < 0.01) groups compared to the non-injected control. Significant differences were detected between 0.22 nL and 1.77 nL (p < 0.01), 0.22 nL and 4.17 nL (p < 0.0001), 0.52 nL and 1.77 nL (p < 0.0001), 0.52 nL and 4.17 nL (p < 0.05) (C). At 120 hpf lethality results were below 10% in the non-injected control. Statistically significant differences were observed between the non-injected control and 0.52 nL (p < 0.05), 1.77 nL (p < 0.05) and 4.17 nL (p < 0.01) groups. Significant differences were detected between 0.22 nL and 1.77 nL (p < 0.01), 0.22 nL and 4.17 nL (p < 0.0001), 0.52 nL and 4.17 nL (p < 0.001), 0.52 nL and 4.17 nL (p <

A	OTAd	OTAd egrad ation efficiency	
	Replicate 1.	Replicate 2.	Replicate 3.
Before degradation	6.6 mg/L	6.7 mg/L	6.7 mg/L
After degradation	0.39 mg/L	0.28 mg/L	0.2 mg/L
Degradation efficien	cò.		
(%)	94.1%	95.8%	97%

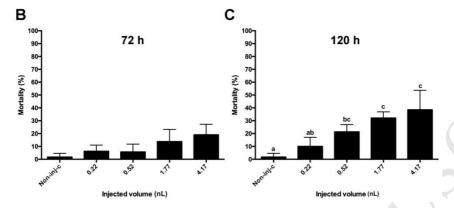


Fig 4 Ochratoxin A (OTA) degradation efficiency of *Cupravidus basiliensis* \Ho R16 strain following 120 hours of incubation with 7 mg/L OTA (A) and effects of OTA degradation products injected in different volumes on the survival of zebrafish embryos at 72 (B) and 120 (right) hpf (C). At 72 hpf, no significant difference was observed between treatment groups and mortality was less than 10% in the non-injected control (Non-inj-c), 0.22 nL and 0.52 nL groups. At 120 hpf, mortality was below 10 % in the non-injected control. Statistical significant differences were observed between the non-injected control and 0.52 nL (p < 0.05), non-injected control and 1.77 nL (p < 0.05), non-injected and 4.17 nL (p < 0.05). Significant differences were detected between 0.22 nL and 1.77 nL (p < 0.05), 0.22 nL and 4.17 nL (p < 0.05).

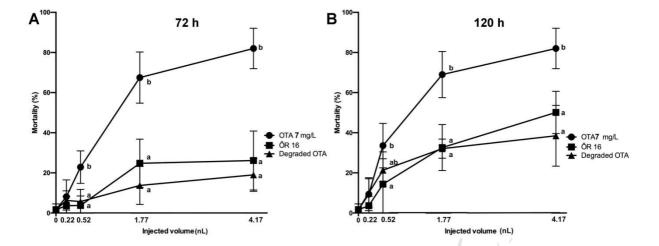


Fig 5 Effects of 7 mg/L Ochratoxin A (OTA 7 mg/L), bacterial metabolites (\Ho R16) and OTA degradation products (degraded OTA) derived from the biodegradation experiment with *Cupriavidus basilensis* \Ho R16 strain on the survival of 72 (A) and 120 (B) hpf zebrafish embryos. At 72 hpf mortality in the non-injected control was below 10%. Statistical significant differences were observed between OTA and degraded OTA (p < 0.05), OTA and \Ho R16 (p < 0.05) in case of 0.52 nL, OTA and degraded OTA (p < 0.01), OTA and \Ho R16 (p < 0.01) in case of 1.77 nL, and OTA and degraded OTA (p < 0.01), OTA and \Ho R16 (p < 0.01) in case of 4.17 nL. At 120 hpf mortality in the non-injected control was below 10%. Statistical significant differences were observed between OTA and \Ho R16 (p < 0.05) in case of 0.52 nL, OTA and degraded OTA (p < 0.05), OTA and \Ho R16 (p < 0.01) in case of 1.77 nL, and OTA and degraded OTA (p < 0.001), OTA and \Ho R16 (p < 0.01) in case of 1.77 nL, and OTA and degraded OTA (p < 0.001), OTA and \Ho R16 (p < 0.01) in case of 4.17 nL.

Fig 6 Effects of 7 mg/L Ochratoxin A (OTA 7 mg/L), bacterial metabolites (\Ho R 16) and OTA degradation products (Degraded OTA) derived from the biodegradation experiment with Cupriavidus basilensis \Ho R16 strain on the frequency of developmental deformities in 72 (A) and 120 (B) hpf zebrafish embryos. At 72 hpf, the highest frequency of morphological disorders was detected in the 7 mg/L OTA group. Statistically significant difference was only observed between the 1.77 nl OTA 7 mg/L and 1.77 nL \Ho R16 (p < 0.01) groups. In 120 hpf embryos, the ratio of deformed embryos was the highest in the groups treated with OTA from 0.52 nL and above. Statistically significant difference was observed between OTA 7 mg/L and \Ho R16 (p < 0.01) and OTA 7 mg/L and degraded OTA injected in 1.77 nL (p < 0.05), OTA 7 mg/L and degraded OTA 7 mg/L and \Ho R16 (p < 0.01) and OTA 7 mg/L and degraded OTA (p < 0.05) injected in 4.17 nL. No significant difference was detected between the deformation frequencies in the groups injected with the bacterial metabolites and OTA degradation products.

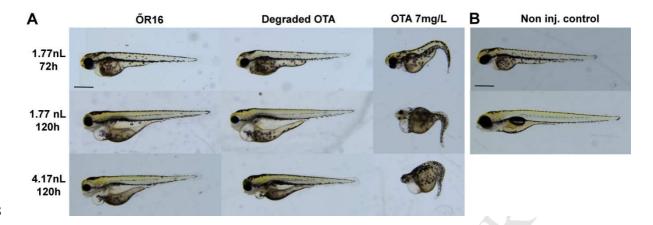


Fig 7 Representative development dysfunctions in zebrafish embryos following injection.

Ochratoxin A (OTA 7 mg/L), bacterial metabolites (ŐR16) and OTA degradation products (Degraded OTA) derived from biodegradation experiment with *Cupriavidus basilensis* ŐR16 strain were injected in 1.7, 1.77 and 4.17 nL volumes and disorders were examined following 72 and 120 hours of injection (A). Non-injected control embryos (Non inj. control) are shown on Figure 8B. Scale bar: 500µm.

HIGHLIGHTS:

- ŐR16 degrades OTA to nontoxic products, however bacteria have intrinsic toxicity
- Toxicity differences between test solutions are detectable after 3 days of exposure
- Injection volume variations and control mortality correspond with OECD TG 236
- Microinjection is proper for qualifying the toxin-degrading properties of microbes
- The method helps in selecting the most effective, safe strains for detoxification