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revealed the central role of degraders within the Rhodocyclaceae in hypoxic toluene degradation.
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ABSTRACT

The availability of oxygen is often a limiting factor for the degradation of aromatic hydrocarbons in subsurface
environments. However, while both aerobic and anaerobic degraders have been intensively studied, degradation betwixt,
under micro- or hypoxic conditions has rarely been addressed. It is speculated that in environments with limited, but
sustained oxygen supply, such as in the vicinity of groundwater monitoring wells, hypoxic degradation may take place. A
large diversity of subfamily I.2.C extradiol dioxygenase genes has been previously detected in a BTEX-contaminated aquifer
in Hungary. Older literature suggests that such catabolic potentials could be associated to hypoxic degradation. Bacterial
communities dominated by members of the Rhodocyclaceae were found, but the majority of the detected C230 genotypes
could not be affiliated to any known bacterial degrader lineages. To address this, a stable isotope probing (SIP) incubation of
site sediments with 'C;-toluene was performed under microoxic conditions. A combination of 16S rRNA gene amplicon
sequencing and T-RFLP fingerprinting of C230 genes from SIP gradient fractions revealed the central role of degraders
within the Rhodocyclaceae in hypoxic toluene degradation. The main assimilators of 1*C were identified as members of the
genera Quatrionicoccus and Zoogloea, and a yet uncultured group of the Rhodocyclaceae.
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INTRODUCTION

The contribution of microbes to the removal of BTEX compounds
(benzene, toluene, ethylbenzene and xylenes) from groundwa-
ter ecosystems has been intensively investigated over the last
decades (Lueders 2017). However, most studies have addressed
either strictly aerobic or anaerobic degradation and degraders,
often by using enriched or pure cultures in highly artificial
laboratory systems. In subsurface ecosystems, the availability
of oxygen is often restricted, with hydrocarbon contamination
causing microoxic or anoxic conditions even in shallow aquifers.
Under oxic conditions, genes for aromatic ring-cleavage dioxy-
genase enzymes are key to the degradation of monoaromatic
compounds (El-Naas, Acio and El Telib 2014). Aerobic degraders
use oxygen not only for respiration but also as a cosubstrate for
these enzymes. However, Kukor and Olsen (1996) suggested that
a specific group of extradiol dioxygenases (subfamily 1.2.C) was
adapted to environments with low oxygen concentrations, hint-
ing at their role in ring-cleavage reactions in what they called
“oxygen-requiring, but nitrate-enhanced” hypoxic degradation.
Nevertheless, it has to be noted that ring-cleaving dioxygenases
belonging to the same subfamily may show different oxygen
affinities as this was observed in case of chlorocatechol 1,2-
dioxygenases (Balcke et al. 2008).

Previous investigations of an oxygen-limited BTEX-
contaminated shallow aquifer in Siklés, Hungary have revealed
a notable diversity of catechol 2,3-dioxygenase (C230) genes
encoding subfamily 1.2.C-type extradiol dioxygenases at the site
(Tancsics et al. 2012, 2013). It was also shown that the bacterial
community at this site was dominated by microorganisms
affiliated to the Comamonadaceae and Rhodocyclaceae. Both
betaproteobacterial lineages are known to harbor aromatic
hydrocarbon degraders. However, Comamonadaceae-affiliated
degraders (e.g. members of the genera Acidovorax, Comamonas,
Delftia, Diaphorobacter, Hydrogenophaga, Polaromonas and Vari-
ovorax) utilize BTEX-compounds only aerobically and usually
harbor subfamily 1.2.C-type C230s (Parales 2010). On the other
hand, many Rhodocyclaceae-affiliated degraders degrade aro-
matic hydrocarbons under anaerobic conditions (members of
the genera Azoarcus, Dechloromonas and Thauera) (Weelink, van
Eekert and Stams 2010). Recently, however, some members of
the genus Zoogloea and the type species of the genus Rugosibacter
have been identified as aerobic hydrocarbon degraders (Jechalke
et al. 2013; Farkas et al. 2015; Corteselli, Aitken and Singleton
2017), showing that members of the Rhodocyclaceae can also
have a role in aerobic degradation processes.

Although 1.2.C-type C230 genes can be abundant in hypoxic
BTEX-contaminated groundwater ecosystems (Tancsics et al.
2012; Benedek et al. 2016), the majority of these genotypes can-
not yet be linked to cultured bacteria. The aim of the present
study was to identify, by means of DNA stable isotope prob-
ing (DNA-SIP), key degraders and associated 1.2.C-type C230
genes active in toluene degradation under oxygen-limited con-
ditions. For this, fresh sediment samples taken from the bot-
tom of a monitoring well in the center of the BTEX plume at
the Siklés site were incubated in microcosms under amend-
ment of 13C;-toluene and a repeated replenishment of <0.5 mg/1
oxygen as electron acceptor and as co-substrate for aromatic-
ring-hydroxylating and ring-cleaving dioxygenases. Key bacte-
ria labelled during microaerobic toluene degradation were iden-
tified as members of the Rhodocyclaceae and their catabolic geno-
types were unraveled. This study provides new evidence that the
known diversity of hypoxic degraders of BTEX compounds is still
incomplete.

MATERIALS AND METHODS
Sampling site and sample acquisition

Sampling was performed at an intensively studied BTEX-
contaminated aquifer (Tancsics et al. 2012, 2013; Farkas et al.
2017) in Siklés, Hungary, in April 2015. Sediment samples were
taken from the bottom of a monitoring well at 6 m below ground
surface in the center of the contaminant plume (well ST-2).
Well sludge and hypoxic groundwater was retrieved by suc-
tion pumping (Gardena, Ulm, Germany) into a clean 10-L plastic
jerrycan. After settling for ~20 min, sediment sludge was dis-
pensed into sterile 1-L glass bottles filled with in situ groundwa-
ter to minimize atmospheric exposure and transported to the
laboratory under cooling.

Incubation of sediments

Triplicates of 5gww homogenously mixed sediment material
were transferred into sterile 100-mL serum bottles containing
50 mL of artificial groundwater medium (Winderl et al. 2010).
To increase microbial activity 5 um cAMP was added to the
medium (Bruns, Cypionka and Overmann 2002). Bottles were
sparged aseptically with N,/CO, (80:20, v/v) for 10 min, after
which the desired volume of sterile (0.2 pm-pore-size-filtered)
air was injected into the bottles through gastight viton rubber
stoppers. Dissolved oxygen concentration in the bottles was set
to 0.5 mg/L, and kept between 0.5 and 0 mg/L throughout the
experiment. Oxygen was replenished once every 24 h. A 5 pL
of either non-labeled (*2C) or fully labeled (*3*C;) toluene (Sigma-
Aldrich, St. Louis, MO, USA) were injected to the microcosms.
Abiotic control bottles (autoclaved three times) amended with
unlabelled toluene were also prepared to exclude abiotic toluene
loss or redox reactions. The bottles were incubated at 16°C in a
rotary shaker at 145 rpm for over 7 d.

Process measurements

The concentration of dissolved oxygen in the liquid phase of
the microcosms was measured by using planar oxygen sensor
spots and a Fibox 3 Oxygen Meter (PreSens, Regensburg, Ger-
many). At each sampling spot, dissolved oxygen concentrations
were registered every second during 1 min, and the results were
displayed by using the OxyView-PST3 software (V7.01, PreSens).
Toluene concentrations were determined by headspace analysis
on an ISQ Single Quadrupole GC-MS (Thermo Fischer Scientific,
Waltham, MA , USA) via a SLB-5ms fused silica capillary column
(Sigma-Aldrich). The oven temperature was set to 40°C for 3 min,
then ramped at a rate of 20°C/min to 190°C, and held for 1 min.
The mass spectrometer (MS) was operated at 250°C in full scan
mode.

Nucleic acid extraction and ultracentrifugation

Sediments were collected from sacrificed microcosms after 3
and 7 d of incubation by centrifugation at 2360 g at 4°C for
10 min using a Rotanta 460 R (Hettich, Tuttlingen, Germany).
Sludge pellets were frozen immediately at —80°C and DNA was
extracted by using the RNA PowerSoil Total RNA Isolation Kit
(MoBio, Carlsbad, CA, USA) in combination with the RNA Pow-
erSoil DNA Elution Accessory Kit (MoBio). DNA samples were
stored frozen at —80°C until downstream analyses. Approxi-
mately 1 pg of Qubit-quantified (Invitrogen, Paisley, UK) DNA
extract was loaded onto a gradient medium of CsCl (average



density 1.71 g/mL, Calbiochem, Darmstadt, Germany) in gradi-
ent buffer (0.1 M Tris-HCl at pH 8, 0.1 M KCI, 1mM EDTA) and
centrifuged (180 000 g, ~68 h) as previously described (Lueders
2015). A total of 12 fractions from each gradient were collected
from ‘heavy’ to ‘light’ using a Perfusor V syringe pump (B. Braun,
Melsungen, Germany). Refractometric measurement of fraction
buoyant densities (BD) and the recovery of DNA from gradient
fractions were performed as described (Lueders 2015).

qPCR, T-RFLP fingerprinting and amplicon sequencing

DNA samples recovered from the CsCl gradient fractions were
analyzed by qPCR targeting bacterial 16S rRNA gene as described
(Kunapuli, Lueders and Meckenstock 2007; Pilloni et al. 2011).
Eight DNA fractions (from 3rd to 10th) of each gradient were
selected for bacterial 16S rRNA gene-targeted terminal restric-
tion fragment length polymorphism (T-RFLP) fingerprinting,
together with total DNA extracts of the inoculum. FAM labeled
amplicons were generated with the primers Ba27f (5FAM-AGA
GTT TGA TCM TGG CTC AG-3') and 907r (5'-CCG-TCA-ATT-
CCT-TTG-AGT-TT-3) similarly as described earlier (Pilloni et al.
2011). Amplicons were restricted using Rsal, separated by cap-
illary electrophoresis and electropherograms were evaluated as
reported (Pilloni et al. 2011).

DNA extracts were also subjected to 1.2.C-tpye C230 gene T-
RFLP fingerprinting. VIC labeled amplicons were generated with
the primers XYLE3F (5'VIC- TGY TGG GAY GAR TGG GAY AA-3')
and XYLE3R (5'-TCA SGT RTA SAC ITC SGT RAA-3') in a ProFlex
PCR System (Life Technologies, Carlsbad, CA, USA) applying
cycling conditions and PCR chemistry as reported (Téncsics et al.
2013). Amplicons were digested with Alul, then electrophero-
grams were generated and analyzed as described earlier (Farkas
et al. 2017).

Non-density-resolved total DNA extracts from the inoculum
and selected gradient fractions were also subjected to 16S rDNA
amplicon pyrosequencing.

Bacterial 16S rRNA gene amplicon pyrosequencing was per-
formed using a unidirectional sequencing approach as described
(Zhang and Lueders 2017). Barcoded amplicons for multiplexing
were prepared using the primers Ba27f (5'-aga gtt tga tcm tgg
ctc ag-3') and Ba907r (5'-ccg tca att cmt ttr agt t-3') extended
with the respective Lib-L adapters, key sequence and a multi-
plex identifier (MID) attached to the forward primer as recom-
mended for the 454 GS FLX+ protocol (Roche, Basel, Switzerland).
PCR amplification conditions were the same as described before
(Karwautz and Lueders 2014). Amplicons were visualized with
gel electrophoresis in a 1.5% agarose gel. Cleanup of the ampli-
cons was done with a PCRextract kit (SPrime, Hamburg, Ger-
many) according to the manufacturer’s protocol. Quality of sin-
gle amplicons was checked for primer dimer contamination and
correct fragment size using the Bioanalyzer2100 (Agilent, Santa
Clara, CA, USA) loading High Sensitivity DNA assay chips (Agi-
lent), as described by the manufacturer. One multiplexed ampli-
con pool (consisting of 20 amplicon libraries) was prepared in
equimolar amounts (5x10° molecules pl-') of barcoded ampli-
cons as quantified by the Quant-iT PicoGreen dsDNA quantifica-
tion kit (Invitrogen). The amplicon pool then underwent a sec-
ond purification step with Agencourt AMPure-XP beads (Beck-
man Coulter, Brea, CA, USA) using an adapted heat-denaturation
protocol (Roche). Emulsion PCR and emulsion breaking were per-
formed following protocols of Roche and pyrosequencing was
performed on a 454 GS FLX+ sequencer by IMGM Laboratories,
Planegg, Germany.
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Analysis of sequencing data

Initial quality ffiltering of the raw pyrosequencing reads was
done by using the automated amplicon pipeline of the GS Run
Processor with the LongAmplicon3 filter (Roche). Sequences
were then de-multiplexed to separate MID barcodes (Pilloni et al.
2012), initial quality trimming was done in GREENGENES; using
the TRIM function with the default settings (DeSantis et al. 2006).
Trimmed sequences were uploaded and analyzed via the NGS
analysis pipeline of the SILVA rRNA gene database project (SIL-
VAngs 1.3) (Quast et al. 2013). Reads were aligned using the
SILVA Incremental Aligner (SINA SINA v1.2.10 for ARB SVN (revi-
sion 21008)) (Pruesse, Peplies and Glockner 2012) against the
SILVA SSU rRNA SEED and quality controlled (Quast et al. 2013).
Reads shorter than 50 aligned nucleotides or below 40 align-
ment score, reads with more than 2% of ambiguities or more
than 2% of homopolymers were excluded from the downstream
processing. Dereplication and clustering of the unique reads
into operational taxonomic units (OTUs) was done by using cd-
hit-est (version 3.1.2) (Li and Godzik 2006) running in accurate
mode, ignoring overhangs and applying identity criteria of 1.00
and 0.98, respectively. The classification of the OTUs was per-
formed by a local nucleotide BLAST search against the non-
redundant version of the SILVA SSU Ref dataset (release 123;
http://www.arb-silva.de) using blastn (version 2.2.30) with stan-
dard settings (Camacho et al. 2009). Weak BLAST hits (below
93%) or reads without any BLAST hits remained unclassified and
were assigned to the metagroup “No Relative”. For downstream
data handling, relative abundances were selected from the SIL-
VAngs pipeline output. OTUs with less than 1% relative abun-
dance were summarized in a composite “<1%” group. Selected
amplicon contigs have been deposited at GenBank under the
accession numbers KY499472 to KY499476. All sequencing read
raw data are deposited at the SRA under the project accession
numbers SAMNO07673532-SAMNO07673540.

Cloning, sequencing and phylogenetic analysis

C230 amplicons generated with the primer set XYLE3F/XYLE3R
were cloned and sequenced (Tancsics et al. 2013) from the initial
sediment sample, as well as from selected “heavy” and “light”
DNA fractions of the day 3 3*C-toluene SIP gradient. Selected ter-
minal restriction fragments (T-RFs) predicted in silico for repre-
sentative clones were verified in vitro. Phylogenetic trees were
reconstructed from sequence data using neighbor-joining as
described (Tancsics et al. 2013). Sequences generated by cloning
were deposited with GenBank and can be found under the acces-
sion numbers KY440386 — KY440395.

RESULTS
Exposure of sediments to 13C-toluene

Rapid depletion of toluene was observed in all enrichments
(Fig. S1, Supporting Information) under simultaneous consump-
tion of oxygen (data not shown). Roughly 70% of the toluene
was depleted from the biotic enrichments after 3 d of incuba-
tion, while its concentration was under the detection limit by
the seventh day of incubation (Fig. S1, Supporting Information).
The abiotic loss from control incubations was marginal. Enrich-
ments incubated for seven days received ~7.8 mL of oxygen dur-
ing the incubation. According to Wiedemeier et al. (1999) this
amount of oxygen may be sufficient for the complete removal
of 4.7 x 10~ mol toluene (a concentration of ~1 mM) present
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in the enrichments through biodegradation. Accordingly, con-
sumption of oxygen considerably slowed by the end of the exper-
iment, when toluene was depleted, as the oxygen injected on the
6th day of incubation was not completely consumed a day later
(data not shown).

Identification of labeled bacteria

Two time points were selected for the detection of labeled DNA
by isopycnic centrifugation of extracts from single microcosms:
day 3, where considerable degradation activity was suggested,
and day 7, after toluene was depleted in the enrichments. At
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both time points, clear shifts in buoyant density (BD) com-
pared to respective 2C-control DNA was observed in SIP gradi-
ents (Fig. S2, Supporting Information). Bacterial 16S rRNA gene-
targeted T-RFLP fingerprinting of density resolved DNA detected
clear distinctions between heavy and light DNA fractions of **C-
gradients (Fig. 1). Heavy fractions of DNA from '*C-toluene sed-
iments showed a dominance of the 117-, 119- and 475-bp T-RFs.
Light DNA fractions were enriched in the 242- and 306-bp T-
RFs, while the 117 bp T-RF was also abundant here. In-between,
medium BD fractions showed a selection of the 430-bp T-RF, giv-
ing a distinct community pattern between heavy and light frac-
tions. DNA fractions from '?>C-control gradients were more sim-
ilar over the entire BD range and were dominated mainly by two
T-RFs: the 117- and 475-bp fragments.

Bacterial 16S rRNA gene amplicons were sequenced from
heavy, medium and light gradient fractions of *3C-gradients at
both time points, as well as for >C-control gradients and non-
density resolved DNA from the initial sediment (Fig. 2, Table
S1, Supporting Information). Libraries from heavy DNA after
3 and 7 d appeared especially enriched in reads affiliated to
Quatrionicoccus spp., Zoogloea spp., as well as other uncultured
Rhodocyclaceae. In combination with T-RFs previously reported
for bacterial rRNA genes from the same site (Tancsics et al. 2013)
the affiliation of T-RFs detected across gradients was thus pos-
sible (Fig. 3). The 117-bp T-RF in the “heavy” fractions repre-
sented amplicons affiliated to Quatrionicoccus spp (up to ~60%
read abundance in heavy DNA). The 119-bp and 475-bp T-RFs
were linked to Zoogloea spp. and a yet uncultured member of the

Rhodocyclaceae, respectively. In contrast, sequences represented
by the 117-bp T-RF in the light fractions appeared mainly affili-
ated to Azoarcus spp. Thus, 16S rRNA gene sequencing resolved
labeled and unlabeled bacterial populations apparently repre-
sented by the same (117-bp) T-RF. Besides, the 242- and 306-bp
T-RFs detected in light fractions represented amplicons affiliated
to Geobacter spp. and the Bacteroidetes. The 430-bp T-RF enriched
inintermediate fractions represented reads related to Rhodoferax
spp.

Furthermore, amplicon sequencing revealed that intermedi-
ate DNA fractions were still highly dominated by Rhodocyclaceae,
but reads within the Comamonadaceae were also observed,
mostly affiliated to the yet uncultured lineage of genus Rhod-
oferax. In the light DNA fractions the abundance of reads within
the Betaproteobacteria decreased while sequences affiliated to the
Gammaproteobacteria (Aeromonas and Pseudomonas spp.), Deltapro-
teobacteria (Geobacter spp.), Epsilonproteobacteria (Arcobacter and
Sulfurospirillum spp.) as well as Bacteroidetes consistently became
more abundant in both 3C-gradients (Fig. 2, Table S1, Supporting
Information).

Subfamily 1.2.C-type C230 genes detected in SIP
gradient fractions

The diversity of 1.2.C-type C230 genes at the Siklds site has been
investigated previously (Tancsics et al. 2012, 2013). However, the
majority of the genotypes detected could not be affiliated to
known bacterial degraders of BTEX compounds at that time. To
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address this, a T-RFLP fingerprinting assay targeting 1.2.C-type
C230 genes was applied to screen density resolved C230 geno-
types. In contrast to 16S rRNA gene targeted T-RFLP fingerprint-
ing, heavy and intermediate DNA fractions showed similar C230
fingerprints (Fig. 4). Dominant C230 T-RFs in heavy fractions
were the 333- and 806-bp T-RFs at both time points, of which the
first was also highly abundant in the inoculum. Further minor T-
RFs (157- and 469-bp) were also enriched in heavy fractions. The
dominant T-RF in the light fractions was at 802-bp, highly abun-
dant also in the initial inoculum. Furthermore, C230 T-RFs at
778-,101- and 446-bp were exclusively detectable in light DNA.

To identify these T-RFs, clone libraries of C230 amplicons
were generated and sequenced from the inoculum, as well as
heavy and light DNA fractions of the day 3 microcosm. Thus, the
333-bp T-RF represented known C230 genes of Zoogloea oleivo-
rans (Fig. 5), while the 806-bp T-RF represented a yet unaffiliated
C230 genotype with low similarity (86% at the nucleotide level)
to the cdo gene of P. putida MT15. Other minor T-RFs in heavy frac-
tions represented unaffiliated C230 genes as well. In contrast,
the 802-bp T-RF dominating the C230 gene pool in light DNA
fractions, represented sequence types with high similarity (99%)
to a yet unaffiliated, but heterologously characterized C230 gene
(Brennerova et al. 2009). Furthermore, the 101-, 446- and 778-
bp T-RFs represented three 1.2.C-type C230 genes of Pseudoxan-
thomonas spadix. However, other amplicons related to yet unaf-
filiated C230 genes were also comprised in these fingerprinting
peaks.

DISCUSSION

Although the diversity of bacterial communities and subfamily
1.2.C-type C230 gene pools at the Siklds site has been previously
investigated (Tancsics et al. 2012, 2013), the affiliation of detected
C230 genotypes and their possible role in oxic or hypoxic degra-
dation processes remained unclear. The aim of this study was
to address this by means of *C-labelling in combination with
fingerprinting and sequencing of 16S rRNA and I1.2.C-type C230
gene amplicons from SIP gradients.

Toluene-degrading communities in site sediments were
investigated at two time points of 3C labelling. A dominance of
Rhodocyclaceae-related sequences was found in heavy DNA frac-
tions. Especially, a Quatrionicoccus-related bacterium was thus
identified as important hypoxic toluene degrader. The genus
Quatrionicoccus contains only the type species Q. australiensis,
which was isolated from activated sludge and is described as
a strictly aerobic, Gram-negative coccus (Maszenan et al. 2002).
The high abundance of this bacterium in the groundwater of the
Siklds site has been noted earlier (Farkas et al. 2017). However,
aromatic hydrocarbon degrading capability of the type strain
has not been tested, and it is currently not available in cul-
ture collections. The two most closely related genera of Qua-
trionicoccus are Ferribacterium and Dechloromonas spp., the lat-
ter including Dechloromonas aromatica, a well-investigated aro-
matic hydrocarbon degrader (Coates et al. 2001). This is reported
to degrade aromatic hydrocarbons using a dioxygenase-based
pathway (not subfamily 1.2.C C230-based) under respiration of
oxygen, chlorate or nitrate, giving rise to speculations about
cryptic catabolic pathways at the interphase of aerobic and
anaerobic metabolism (Salinero et al. 2009; Weelink, van Eekert
and Stams 2010; Lueders 2017).

The second most abundant labeled degrader lineage detected
in heavy DNA was Zoogloea spp. Screening of subfamily 1.2.C
C230 genes across gradient fractions indicated consistent
labelling of meta-cleavage pathway encoding genes affiliated to
Zoogloea. Members of this genus are primarily known for their
floc-forming ability in sewage treatment plants, making them
critical components of activated sludge processes (Shao et al.
2009). Within the genus, Z. resiniphila and Z. oleivorans have been
described as degraders of petroleum hydrocarbons (Farkas et al.
2015; Monh et al. 1999). Jechalke et al. (2013) has investigated ben-
zene degradation by a biofilm community in an aerated ground-
water treatment pond. rRNA-SIP revealed a prominent role of
Zoogloea-related degraders in the system. The present study
substantiates an important role of these aromatic hydrocarbon
degraders in oxic or micro-oxic groundwater environments.
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Figure 5. Neighbor-joining tree showing the phyloge
light DNA fractions of day 3 *C-toluene SIP gradient.
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Clones from this study are in bold, GenBank accession numbers are indicated. Clone naming includes measured
T-RF lengths (Alul digestion). Clones dominantly or exclusively found in the heavy DNA fractions are highlighted in grey. Bootstrap values are shown as percentages
of 1000 replicates; only values over 50% are shown. The subfamily I.2.A-type C230 gene of TOL plasmid pWW53 was used as outgroup. Scale bar, 0.1 substitutions per
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The second most abundant C230 genotype detected in heavy
DNA was the as-yet unidentified catabolic gene lineage repre-
sented by the 806 bp T-RF. The high abundance and marked
enrichment of this gene in 3C-labelled DNA suggests that it
could be affiliated to one of the dominating degraders identified
in labelled 16S rRNA genes. It is tempting to speculate that this
C230 genotype could actually be hosted by the Quatrionicoccus-
relatives, however also other scenarios cannot be excluded,
since degradation of toluene by these bacteria must not essen-
tially involve catabolic pathways via C230. Also, we have pre-
viously tentatively affiliated (Tancsics et al. 2013) the 806-bp T-
RF C230 phylotype to the yet unidentified Rhodocyclaceae-related
16S sequences which were also found, albeit at much lower
abundance, in heavy DNA fractions. The closest relative of these
bacteria is Polynucleobacter acidiphobus (~95.5% 16S rDNA similar-
ity). However, as long as isolates of either of these Rhodocyclaceae-
related degraders or of Quatrionicoccus spp. are not available,
these interpretations must clearly be cautioned. Alternatively,
metagenomics of single-cell approaches (Blainey 2013; Rinke
et al. 2014) may also help to resolve this dilemma.

Besides the abundant peaks of fully '*C-labelled DNA
detected in heavy gradient fractions, a distinct community was
also observed in intermediate gradient fractions. Here, 16S rRNA
reads of the genus Rhodoferax were consistently enriched, Rhod-
oferax ferrireducens being their closest relative (~96% 16S rDNA
similarity). These bacteria have been frequently reported from
oxygen-limited or anaerobic subsurface environments contam-
inated with petroleum hydrocarbons (Callaghan et al. 2010;
Aburto and Peimbert 2011; Tancsics et al. 2010, 2013; Larentis,
Hoermann and Lueders 2013; Tischer et al. 2013). Moreover, pre-
vious SIP studies have indicated a role of this lineage in the aer-
obic degradation of phenantrene and naphthalene (Jeon et al.
2003; Martin et al. 2012). Results of our present study suggest that
these bacteria may also have arole in the degradation of toluene,
although labeling was not as apparent as for other dominating
degraders. This could potentially be explained by the fact that
certain Rhodoferax species grow very slowly (Kaden et al. 2014),
and it was shown that R. ferrireducens is more adapted for high
growth yields than rapid growth (Zhuang et al. 2011).

The main unlabeled lineages detected in the microcosms
were affiliated to Geobacter and Azoarcus spp. Members of both
genera are well known as anaerobic toluene degraders (Lued-
ers 2017). While both may have originally been active in deeper
oxygen-limited sediments at the site, they were clearly not
active in our hypoxic microcosms. More surprisingly, reads
affiliated to Pseudomonas spp. also remained unlabeled dur-
ing SIP incubation. P. putida is one of the most widely uti-
lized model organisms for the study of aerobic toluene degra-
dation (Martinez-Lavanchy et al. 2010). On the other hand,
Pseudomonas-affiliated subfamily 1.2.C-type C230 genes, which
could have enabled these bacteria to take part in the degra-
dation of toluene under hypoxic conditions (Kukor and Olsen
1996), were not detected in the Siklés samples. It also has to
be noted that Pseudoxanthomonas spadix (capable of degrading
all BTEX-compounds) usually harbors three subfamily 1.2.C-type
C230 genes in its genome (Kim et al. 2008; Lee et al. 2012). All of
them were detectable, but remained unlabeled in our study, just
like the 16S rRNA genes of Pseudoxanthomonas spp. Nevertheless,
toluene concentration in the microcosms was ~1 mM, which can
be toxic even for some toluene-degrading bacteria (Rabus et al.
1993) and could cause their inactivity as well.

The most dominant C230 genotype in the light fractions
(802-bp T-RF) showed high similarity with metagenomic C230
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clones retrieved by Brennerova et al. (2009) from jet-fuel contam-
inated soil. Functional genomics showed that the enzyme coded
by this C230 genotype preferred 3-methylcatechol as substrate,
an intermediate of aerobic toluene degradation. Nevertheless,
bacteria harboring this C230 genotype were not labeled in our
SIP microcosms. It is possible to speculate that these degraders
could actually prefer nitrate as electron-acceptor under hypoxic
conditions, while utilizing available oxygen for catabolic oxyge-
nases (Wilson and Bouwer 1997). Since we did not add nitrate to
the microcosms, and the fact the Siklds site is depleted in nitrate
(Tancsics et al. 2013), such degraders may have remained inac-
tive during our experiment.

In summary, this study shows that a notable diversity of
degraders within the Rhodocyclaceae is active in hypoxic toluene
degradation in sediments from the Sikl6s site. This includes pre-
viously unidentified degraders related to Quatrionicoccus spp., as
well as their tentatively affiliated catabolic gene lineages. We
also show that identified microaerobic toluene degraders mostly
harbored subfamily I.2.C-type C230 genes, which may be of cru-
cial importance for the degradation of aromatic hydrocarbons
under oxygen-limited conditions. However, not all C230 geno-
types were actually *3C-labelled, suggesting that ecophysiolog-
ical fine-tuning, rather than catabolic repertoire contributes to
niche definition between aerobic and hypoxic degraders of BTEX
compounds in groundwater systems.
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