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Abstract. The aim of this paper is to introduce two widely applica-
ble regularization methods based on the direct modification of weight
matrices. The first method, Weight Reinitialization, utilizes a simplified
Bayesian assumption with partially resetting a sparse subset of the pa-
rameters. The second one, Weight Shuffling, introduces an entropy- and
weight distribution-invariant non-white noise to the parameters. The lat-
ter can also be interpreted as an ensemble approach. The proposed meth-
ods are evaluated on benchmark datasets, such as MNIST, CIFAR-10 or
the JSB Chorales database, and also on time series modeling tasks. We
report gains both regarding performance and entropy of the analyzed
networks. We also made our code available as a GitHub repository1.

Keywords: Deep learning · Generalization · Regularization · Weight
matrix.

1 Introduction

The importance of mitigating overfitting, i.e., the reduction of the generalization
ability of a deep neural network, has gained more importance with the broaden-
ing of the spectrum of using deep learning for solving real-world problems. This is
mainly due to the fact that artificial intelligence has become a tool widely used in
the academia and industry, and in several cases, no feasible way exists to collect
enough or perfectly representative data. The existing pool of methods is rather
numerous, nevertheless, new approaches can bring additional advantages. Before
introducing our proposal, it is worth briefly summarizing the aspects of the most
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popular regularization methods. Traditional constraints on the parameters (like
L1 and L2 norms) add a prior to the weight matrix distribution, so the method
takes its effect not directly on the weights, as the methods described in section 3.
Novel results [11] propose the usage of smaller batch sizes; more robust train-
ing and improved generalization performance is reported - while the variance
of the minibatch, in general, tends to be higher. Dropout [16] and its general-
ization, DropConnect [17], are approaching the effect of ensemble networks by
partially blocking different parts of the error propagation in the computational
graph throughout the training. Batch Normalization [7] affects the gradients, by
taking a normalization step improvements are reported both regarding accuracy
and rate of convergence.

Another approach of regularization, stemming from the scarceness of avail-
able data, is the augmentation of the dataset. For this purpose, data trans-
formations (e.g. random cropping, rotations for images) are applied or noise is
added, thus providing more samples with slight differences. However, in the case
of working with, e.g. time series or natural language, besides noise, it is rather
difficult to find the equivalent transformations which are extensively used in
the case of computer vision for data augmentation. For time series classifica-
tion, there exist methods of similar nature, such as Window Warping [5], which
scales a randomly selected slice of a signal. A promising result regarding noise
as means of regularization for reinforcement learning is given in [14], the use of
additive noise in the parameter space contributed to significant improvements
in several tasks. For recurrent networks, another type of regularization method
has turned out to be successful: Zoneout [9] can be considered as a variant of
Dropout for recurrent neural networks such as LSTM (Long Short-Term Mem-
ory, [6]). The main difference compared to Dropout is that Zoneout maintains
at least the identity - i.e., instead of dropping specific cells, the activation values
from the last step are used in the graph -, thus preserving information flow in
the recurrent connections.

This paper is organized as follows: section 2 briefly reviews the motivation for
the proposed methods, section 3 includes the detailed overview of the proposed
algorithms, the experimental setup is described in section 4, while the results
are introduced in section 5 and discussed in section 6.

2 Motivation

Considering the most widely-used approaches and the possibilities, we decided
to investigate more thoroughly the direct effects of regularization applied to
weight matrices. We refer to all of the tunable parameters of a layer (excluding
hyper-parameters) as weight or weight matrix in this paper. While doing so, we
also considered that in contrast to the real-world or artificial data, parameters
do not possess such a high degree of internal error-resilience. I.e., an improperly
designed method can lead to significant degradation of the training, even to
complete failure. As weights capture information about the underlying stochastic
process in a compact way, this is something which should be considered. Thus,
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such schemes are needed which do not cause significant parameter degradation
- if degradation occurs, it should be corrected before triggering early stopping.
This means, the intervention should be local and the change should be small.

Given these considerations and constraints, our goal is to design robust, gen-
erally applicable regularization methods based on the direct modification of the
weight matrices.

3 Proposed Methods

In this section, we describe both proposed methods, collectively named WMM
(Weight Matrix Modification). Each of them modifies weights explicitly, but
the two approaches are different. WMM-WR (Weight Reinitialization) can be
considered as a way of expressing distrust of backpropagation by discarding
some of its parameter updates, while WMM-WS (Weight Shuffling) is a local
approach, which constrains its intervention based on an assumption regarding
the autocorrelation function of a specific weight matrix.

In this section W denotes a weight matrix, p a probability value, L the set
of affected layers and c a constant (called coverage). Thus, p determines the
probability of carrying out WMM-WR or WMM-WS and c specifies the size of
the window where the method takes effect. Weight matrices are considered two
dimensional as it is the general case (for 2D CNNs - Convolutional Neural Net-
works -, we consider the 2D filters separately – not the filter bank as a whole).
Nevertheless, it is done without loss of generalization, hence this property is not
exploited in the proposed methods. Please note that both methods are concern-
ing the weight matrices only and not the bias vectors, because our evaluations
showed that including the bias cannot bring further advantages.

3.1 Weight Reinitialization (WMM-WR)

As mentioned in section 2, the initial weight distribution can be crucial for good
results. Like the weight initialization scheme of [4], or the common choice of

W ∼ U

[
− 1
√
ni

,
1
√
ni

]
, (1)

where ni is the number of columns of the weight matrix W , and U denotes
a uniform distribution. From an information theoretical point of view, using
uniformly distributed weights corresponds to the principle of maximal entropy,
thus a high degree of uncertainty. However, the cited paper from Glorot and
Bengio [4], which can improve the convergence with normalizing the gradients,
also uses a uniform parameter distribution.

These considerations provide us means for proposing a regularization method
with a Bayesian approach. It is common in estimation theory to combine different
probability distributions, often weighted with the inverse covariance matrix. This
approach can also be used for weight matrices with a slight modification, which is
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needed to constrain the amount of change to maintain stability during training.
For this, we apply a sparse mask. Since we only modify a small amount of the
weights, it seemed not feasible to compute the statistics of the whole layer.
Different sparse masks are generated in each step, which is also not possible
for all combinations without significant speed degradation. Thus, the algorithm
either preserves the actual weights or draws a sample from the initial uniform
distribution.

Algorithm 1 describes the steps of WMM-WR. It is carried out based on
a probabilistic scheme, which is controlled by the p parameter. This approach
reduces the probability to introduce a high level of degradation into the net-
work, on the other hand, it also saves computational power, because the method
will not be applied in every step. First, a mask M is generated by sampling a
uniform distribution U . Then a window position is selected randomly (its size is
controlled by the c parameter) – which means that all items outside the window
are cleared in M . After that the same p is used as a threshold for ensuring spar-
sity, thus clearing the majority of the elements within the window. W ∗ denotes
the temporary matrix used for storing the samples from the distribution Uw, the
distribution used for initializing the weights at the start of the training. Based
on the mask values (which remained within the window after thresholding with
p), the elements of the original weight matrix Wi get reinitialized. Generating
both M and Uw is linear in the number of the weights, as in the case of memory
cost too.

In the case of overfitting, activations of a layer are distributed rather un-
evenly. As activation functions are in general injective, the distribution of the
weights is uneven, too. By reinitializing a random subset of weights, if weights
from the peaks of the weight distribution are chosen, overfitting can be reduced
with doing a modification step towards maximal entropy, thus smoothing the
histogram. On the other hand, reinitializing values near the mean would result
in small changes only. If the mean of the weight matrix is not the same as the ex-
pected value of the trained weight matrix, then reinitializing a subset of weights
expresses our distrust and is opting for maximal entropy, thus for uniform distri-
bution. Independent of the value of the mean of the whole layer, the reinitialized
subset itself has an expected value of zero (Equation 1), thus the method will not
result in a significant change, meaning reduced sensitivity. An interesting side-
effect of WMM-WR is the fact that it reduces the Kullback-Leibler divergence
between the actual distribution of the weights and the initial one. The reason for
this is that the same distribution is used for WMM-WR as for initializing the
layers. The method increases the entropy (at least momentarily, as a uniform
distribution is used), which effect will be investigated in section 5.

3.2 Weight Shuffling (WMM-WS)

As already mentioned in section 1, noise has a wide range of applicability from
the dataset to the weights. Instead of using Gaussian white noise, we consider
using non-white, correlated noise directly for a neighborhood of weights. We
refer to a neighborhood of weights as a rectangular window (determined by the
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Algorithm 1 Algorithm for WMM-WR

Input: L, p, c
for all Wi ∈ L do

if p > U [0; 1) then
M ← U [0; 1)
M ← window (M, c)
M ← threshold (M,p)
W ∗ ← Uw

Wi [Mjk == 1] = W ∗

end if
end for

parameter c) with dimensions comparably smaller than the size of the weight
matrix itself. Because the weights are intended to represent the characteristics
of the underlying stochastic process, they should be correlated with each other
(i.e. white noise itself is not appropriate for capturing the underlying process).
Consequently, by selecting a continuous subset of the weights, the correlation
should still hold, hence the process to be modeled stays the same. Shuffling them
within the bounds of a local window can be interpreted as using correlated noise
for that given subset. Interestingly, this transformation is invariant regarding
both the weight distribution and the entropy of the matrix – the latter of which
will be investigated in section 5.

A more expressive way is to think about WMM-WS as a type of a ’param-
eter ensemble’, i.e., weights in a neighborhood are forced to fit well a range of
input locations. As the ensemble approach, or the approximations of it - such as
Dropout -, have been proven to be successful in practice due to the utilization (or
simulation) of an averaging step, an improved degree of robustness is expected
from WMM-WS as well.

The steps of WMM-WS are described in Algorithm 2. As in the case of Algo-
rithm 1, we have a probabilistic first step which stochastically decides whether
WMM-WS will be carried out or not (using parameter p). The mask M is sam-
pled from a Bernoulli-distribution B directly (as we need a binary mask), thus
the density of the mask is independent of the parameter p. For the selection of
the local window, c is used as for WMM-WR. Having generated the mask, the
weights indexed by M are shuffled for each weight matrix of the layer subset L
(filters of convolutional and gates of recurrent layers are handled independently
from each other). The complexity of the algorithm is determined with the shuffle
operator, which scales linearly in the number of the weights while selecting the
local window has a constant computational cost.

4 Experimental setup

Due to the fact that WMM intervenes into the training loop on the lower levels
in the software stack, we have searched for a framework which provides such
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Algorithm 2 Algorithm for WMM-WS

Input: L, p, c
for all Wi ∈ L do

if p > U [0; 1) then
M ← B [0; 1]
M ← window (M, c)
shuffle (Wi [M ])

end if
end for

a low-level interface. PyTorch [13] was chosen to be used for the implementa-
tion because it makes possible to modify fine details of the training process. We
utilized Ignite [1], a high-level library for PyTorch, which was built by the com-
munity to accelerate the implementation of deep learning models by providing
a collection of frequently used routines.

The framework of the proposed methods is schematically depicted in Fig. 1:
Ignite provides the wrapper which merges the PyTorch model with WMM uti-
lizing its callback interface. Due to the fact that while designing WMM nei-
ther architecture- nor task-specific assumptions were made, our approach pro-
vides great flexibility, which will be elaborated shortly. For hyper-optimization,
a Bayesian approach (tree of Parzen estimators) was used, based on a method
shown in [2].

Regarding the parameters of WMM, the following intervals were chosen. For
p and c (coverage) a log-uniform distribution was selected to avoid a big value for
both parameters at the same time, the intervals were [0.05; 0.4] and [0.03; 0.35],
respectively. Each layer was affected by WMM-WS or WMM-WR with an equal
probability.

To prove the general applicability of the proposed methods, we set up a
testing environment with different model architectures and datasets. Tests were
carried out with fully connected, convolutional and LSTM (Long Short-Term
Memory, [6]) layers. In case of convolutional layers, regardless of the filterbank
representation of the kernels, WMM operations were, of course, restricted to
operate only within one filter. For LSTM the effect of WMM on different gates
was investigated, the same holds for GRU (Gated Recurrent Unit, [3]) as well.

For evaluation, several datasets were investigated. The MNIST [10] dataset
and its sequential (row-by-row) variant were split up into 55,000-5,000-10,000
samples (28x28 pixels, 10 classes, for each handwritten digit) for training, vali-
dation, and test purposes. The networks consisted of 2 convolutional and 2 fully
connected or 2 LSTM and 1 fully connected layers for the traditional and se-
quential approaches, respectively. For CIFAR-10 [8] the same splitting policy was
used (the samples are 32x32x3, 10 classes), in that case, the network consisted
of 2 convolutional (with a max pooling between them) and 3 fully connected
layers. The JSB Chorales [15] task was organized into 229-76-77 chorales (with
a window length of 25, 88 classes) for training, validation, and test purposed.
Although being a multilabel problem a one-layer LSTM was sufficient. Besides



WMM Regularization for Deep Neural Networks 7
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Fig. 1: Structure of the framework for WMM

classification, regression problems were also investigated, for that purpose an ar-
tificially generated (synthetic) dataset was used, using also a 55,000-5,000-10,000
data split (window size 50). The synthetic time series were fed into the neural
network both with and without colored noise, and consisted of the linear com-
bination of sinusoidal, exponential and logarithmic functions. Our intent with
this choice - which is somewhat similar to that of the Phased LSTM [12] paper
- was, to begin with simpler datasets and proceed to more complex ones. For
both variants of the regression task, a network of 2 LSTM and 1 fully connected
layers was used.

5 Results and discussion

During the analysis of the results, several factors were considered. The three most
important factors were performance (accuracy/MSE (Mean Squared Error)),
entropy and robustness.

Our analysis intended to identify the tasks where the proposed approach
turns out to be advantageous. Nonetheless, we could even make useful con-
clusions with datasets such as MNIST, where state-of-the-art results are near
perfect, using it as a testbed for algorithm stability. For each dataset and each
of the proposed methods, we have conducted more than 2000 experiments. The
aim of which was to evaluate the behavior of both methods empirically, mainly
for describing parameter sensitivity (see Fig. 5 and its discussion below).

To clearly identify the effects of WMM and to prevent overfitting originating
from the simple nature of some datasets, the networks used for evaluation were
not very deep (maximum depth was 5 layers). During the evaluation, a refer-
ence model (for each task, respectively) was constructed from the best result
using L2-regularization, Batch Normalization [7] or Dropout [16], which were
chosen as they are currently among the most successful and most widely-used
regularization techniques.
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Fig. 2: The effect of WMM on performance metrics (higher values are better)

The figures included in this section are comparing different aspects of the
networks. We compared the average of the top 5 best results utilizing WMM to
the best results of other regularization techniques. The effect of the proposed
methods regarding performance metrics is depicted in Fig. 2 (higher is better),
we converted accuracy and MSE to be able to display them on the same scale
(it displays relative change).

Regarding performance, the change is not significant for MNIST (traditional
and sequential approach) and JSB Chorales (below 0.1%). In the case of the
synthetic dataset, performance suffers even from degradation. On the other hand,
for CIFAR-10 WMM-WR brought a performance boost of 7%, while WMM-WS
one of 3%. The biggest performance increase (over 10%) was experienced in the
case of the synthetic sequential dataset with colored noise.

For the tasks utilizing recurrent networks (sequential MNIST, JSB Chorales,
synthetic data) the best results were achieved by different choices of the LSTM
gates. In case of WMM-WR the modification of the weights of the forget gate
was proven to be the best for the sequential MNIST task, while for the other
three problems the cell gate was the best choice. For WMM-WS the output gate
was preferred (synthetic + JSB Chorales) – the sequential MNIST task resulted
in modifying the weights of the last, fully connected layer.

Partially due to the fact that the proposed methods have an effect onto the
entropy of the networks – WMM-WR is expected to increase (as the distribution
used for reinitialization is uniform, thus has maximal entropy), while WMM-WS
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Fig. 3: The effect of WMM onto the entropy of neural networks (lower values are
better)

to retain it – so we decided to compare also entropy values for the different tasks.
These results are shown in Fig. 3 (lower is better), where we also compare to
the respective reference models (which are the best using other regularization
methods).

For MNIST the change is not too significant, but in general, WMM was able
to compress the networks by 2 − 9%, except WMM-WS for the not sequential
task. For CIFAR-10, the compression is more significant, both methods rank in
the same range.

In the case of the only multilabel dataset, JSB Chorales, the results were
rather astonishing: while WMM-WR has not brought a significant change,
WMM-WS compressed the network by almost a factor of two. This superiority of
WMM-WS compared to WMM-WR regarding data compression is also charac-
teristic of both variants of the synthetic dataset. Nevertheless, in the latter case
WMM-WR also reduced entropy for the synthetic data, but there is a difference
of 27% between the noiseless and noisy cases.

Generally speaking, WMM-WS with its entropy-invariant approach was able
to reduce entropy more than WMM-WR. Despite using a probability distribu-
tion according to the principle of maximal entropy, WMM-WR is also able to
compress the networks. The analysis of the temporal change of entropy in the
case of WMM-WR is shown in Fig. 4 using the best results, where the legend
shows the L parameters of Algorithm 1, also including the gates of the LSTM
layer and the ranking according to MSE (the smaller the number, the lower the
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Fig. 4: Temporal entropy change during WMM-WR (JSB Chorales, lower values
are better)

MSE). Although the entropy momentarily increases due to WMM-WR, in the
end, it can help to compress the network, as shown in Fig. 4.

The robustness of the proposed methods is also a crucial factor. Fig. 5 shows
the distribution of MSE w.r.t p∗c (c is the coverage parameter) during Bayesian
hyper-optimization. The L parameter is color-coded in the figures, none denotes
models without WMM (i.e. the reference). In the case of WMM-WR (Fig. 5a),
the plot has a horizontally elongated form, which means smaller sensitivity to
parameter change (the less elongation in the y-direction, the better). Although
using WMM-WR imposes a higher variance due to its stochastic nature (the
scatter plot displays the results of the whole hyper-optimization loop, containing
also the not that good results at the beginning), it is clear to see that better
results can be achieved with it. A rather unexpected observation was, that in the
case of WMM-WS (Fig. 5b) the bounding ellipse is rotated with 90◦ compared
to Fig. 5a, thus showing higher stochastic sensitivity - nevertheless, the Bayesian
optimization loop resulted in several good parameter sets.

6 Conclusions

In this paper two, weight matrix-based regularization methods were proposed
and investigated for deep neural network applications. The main advantages of
both WMM-WR and WMM-WS are their architecture- and task-independence.
Our evaluations resulted in the following conclusions: both methods are capable
of reducing overfitting, first of all in the case of noisy data, but also for CIFAR-
10 better results were reported for the networks used throughout testing. On
the other hand, WMM-WR and WMM-WS also have shown their potential con-
cerning model compression. The capabilities of WMM regarding noise reduction
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Fig. 5: Illustration of the robustness examination for the synthetic dataset (with
noise)

will be investigated more thoroughly in the future, we also intend to introduce
an adaptive way (i.e. based on the statistics of the weight matrix) for selecting
the by WMM affected areas.
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