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Abstract 

Convolutional Neural Networks (CNNs) have been applied to various machine learn-

ing tasks, such as computer vision, speech technologies and machine translation. One 

of the main advantages of CNNs is the representation learning capability from high-

dimensional data. End-to-end CNN models have been massively explored in computer 

vision domain, and this approach has also been attempted in other domains as well. In 

this paper, a novel end-to-end CNN architecture with residual connections is presented 

for intent detection, which is one of the main goals for building a spoken language 

understanding (SLU) system. Experiments on two datasets (ATIS and Snips) were 

carried out. The results demonstrate that the proposed model outperforms previous 

solutions. 
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1 Introduction 

Spoken dialogue systems are agents that are intended to help users to access infor-

mation efficiently by speech interactions. Creating such a system has been a challenge 

for both academic investigations and commercial applications for decades. Spoken 

language understanding (SLU) is one of the essential components in spoken dialogue 

systems [1]. SLU is aiming to form a semantic frame that captures the semantics of 

user utterances or queries. The three major tasks in an SLU system are domain classi-

fication, intent detection, and slot filling. Intent detection can be treated as a semantic 

utterance classification problem [5,10]. Intent detection solutions classify speakers’ 

intent and extract semantic concepts as constraints for natural language. Take a weath-
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er-related utterance as an example, “Weather next year in Canada”, as shown in Fig-

ure 1. There are different slot labels for each word in the utterance and a specific in-

tent for the whole utterance. 

                   

 
  Figure 1. Snips corpus sample with the utterance and slot annotation. 

 

Slot filling can be formulated as a sequence labelling task [2,3]. Joint training of intent 

detection and slot filling models has been investigated [5,6]. The slot-gated SLU 

model, which incorporates attention and gating mechanism into the language under-

standing (LU) network was proposed by [5]. Moreover, conditional random field 

(CRF), introduced in [4], provides a framework for building probabilistic models to 

segment and label sequences and applies on different natural language processing 

(NLP) tasks (e.g., part of speech tagging, sentence classification, grapheme-to-

phoneme conversion).  Jointly modelling intent labels and slot sequences, thus, ex-

ploiting their dependencies by the combination of convolutional neural networks 

(CNN) and the triangular CRF model (TriCRF) can be beneficial [6]. With this 

approach, the intent error on Airline Travel Information System (ATIS) dataset was 

5.91% for intent detection, and the F1-score was 95.42% for slot filling. Bidirectional 

Gated Recurrent Units (GRUs) could also be used to learn sequence representations 

shared by intent detection and slot filling tasks [9]. This approach employs max-

pooling layer for capturing global features of a sentence for intent detection.  

Recently, encoder-decoder neural networks (also referred to as sequence-to-

sequence, or seq2seq models) have achieved remarkable success in various tasks, such 

as speech recognition, text-to-speech synthesis and machine translation [14,15,16]. In 

this structure, the encoder computes a latent representation of each input sequence, 

and the decoder generates an output sequence based on the latent representation. This 

type of network has been extended with attention mechanism [12,13] and applied to 

grapheme-to-phoneme conversion (G2P) [17]. Applying such models, intent detection 

and slot filling were also investigated [21,24]. The combination of the attention-based 

encoder-decoder architecture and alignment-based methods for joint intent detection 

and slot filling achieved 5.60% intent error on ATIS dataset [21]. 

In this work, we investigated CNN based residual networks for intent detection. 

Experiments were carried out on the ATIS and Snips dataset, which is widely used in 

SLU research. We show the effectiveness of the proposed models in different experi-

mental settings. Using pre-trained Word2vec [25] and Glove [27] embedding also 

help to get comparable results. The remaining part of the paper is organized as fol-

lows. In Section 2, we introduce word embedding methods. In Section 3, the used 

datasets are described. In Section 4 the proposed method is introduced. Section 5 

discusses the experiment setup and results on ATIS and Snips datasets. Section 6 

concludes the work. 



2   Word Embedding 

Word embeddings are used for representing words as vectors. Word embedding mod-

els generated with tool, such as Word2vec (skip-gram and continuous bag-of-words 

(CBOW)) [25], and GloVe [27], generate word vectors based on the distributional 

hypothesis, which assumes that the meaning of each word can be represented by the 

context of the word. Continuous Bag-of-Words (CBOW) and Continuous Skip-gram 

models are still powerful techniques for learning word vectors [25]. CBOW computes 

the conditional probability of a target word given the context words surrounding it 

across a window with a predefined size. Skip-gram predicts the surrounding context 

words based on the central target word [25, 28]. The context words are assumed to be 

located symmetrically to the target words within a distance equal to the window size in 

both directions. GloVe word embedding is a global log-bilinear regression model and 

is based on co-occurrence and factorization of the matrix in order to produce the word 

vectors. 

Pre-trained word embeddings have proven to be highly useful in neural network mod-

els for NLP, e.g., in machine translation and text classification [11,19, 26]. In this 

work, we used 300-dimension Word2vec2 embeddings trained on Google News and 

100-dimension GloVe3  word embeddings trained on Wikipedia. 

3   Dataset 

We used the Airline Travel Information System (ATIS)4 dataset, which has been fre-

quently chosen by various researchers [5,11,38]. The dataset contains audio record-

ings from people making flight reservations. The training set contains 4,478 utteranc-

es, the test set contains 893 utterances, and 500 utterances are used for validation 

(referred to as development set in the paper). Besides ATIS, Natural Language Under-

standing5 benchmark dataset was also used. This balanced dataset is collected from 

the Snips personal voice assistant; the number of samples for each intent is approxi-

mately the same. The training set contains 13,084 utterances, the test set contains 700 

utterances, and 700 utterances as validation data (development set). All words are 

labelled with a semantic label in a BIO format, which ‘B’ means to begin, ‘I’ means 

inside, ‘O’ is outside. Words which don’t have semantic labels are tagged with ‘O’. 

For example, ‘Weather next year in Canada’ contains five words, and these words are 

labelled according to Figure 1. The sequence ‘next year’ is labelled as B-timeRange 

and I-timeRange and ‘Canada’ is tagged as B-country. The rest of the words in the 

utterance are labelled as ‘O’. 
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There are 120 slot labels and 21 intent types in ATIS; there are 72 slot labels and 7 

intent types in Snips dataset. Vocabulary size of these datasets is 722 and 11,241 in 

ATIS and Snips, respectively. Compared to single-domain ATIS dataset, Snips is 

more complicated, mainly due to the intent diversity and large vocabulary.  The intent 

diversity of ATIS and Snips dataset are shown in Table 1 and Table 2. 

 

Table 1. The number of intents in the training data of Snips. 

Type of intent Number 

PlayMusic 1914 

GetWeather 1896 

BookRestaurant 1881 

RateBook 1876 

SearchScreeningEvent  1851 

SearchCreativeWork 1847 

AddToPlaylist 1818 

 

 

Table 2. The number of intents in the training data of ATIS. 

Type Number 

atis_flight 3309 

atis_airfare 385 

atis_ground_service 230 

atis_airline 139 

atis_abbreviation 130 

atis_aircraft 70 

atis_flight_time 45 

atis_quantity 41 

atis_flight#atis_airfare 19 

atis_city 18 

atis_distance 17 

atis_airport 17 

atis_ground_fare 15 

atis_capacity 15 

atis_flight_no 12 

atis_meal 6 

atis_restriction 5 

atis_airline#atis_flight_no 2 

atis_aircraft#atis_flight#atis_flight_no 1 

atis_cheapest 1 

atis_ground_service#atis_ground_fare 1 

 

The intents in Snips are diverse and balanced. The maximal number of utterances are 

in the PlayMusic domain, the least number of utterances are in AddToPlaylist. The 

intent types in ATIS are unbalanced. For example, the intent atis_flight equals about 

73.8% of training data, while there are intents with one utterance only. Intents with 



small number of occurrences were excluded from training and evaluation (e.g. 

atis_day_name, atis_airfare#atis_flight, atis_flight#atis_airline, 

 atis_flight_no#atis_airline). 

4   Proposed Work 

This section first explains CNN and then introduces the proposed end-to-end CNN 

approach with residual connections for intent classification. 

4.1   Convolutional Neural Networks for Intent detection 

The architecture of an ordinary CNN is composed of different types of layers (such as 

the convolutional layers, pooling layers, fully connecting layers, etc.) [34] where each 

layer realizes a specific function. The convolutional layers are for representation 

learning, while the fully connected layers on the top of the network are for modelling a 

classification or regression problem. Convolutional neural networks are jointly per-

forming representation learning and modelling, which makes these models superior to 

other methods in many cases. Weight sharing in the convolutional layers is essential 

for the model to become spatially tolerant: similar representations are learned in dif-

ferent regions of the input, and the total number of parameters can also be reduced 

drastically.  

Increasing the number of layers in deep CNNs does not implicitly results in better 

accuracy, and some issues, such as vanishing gradient and degradation problems may 

arise as well. Introducing residual connection can improve the performance signifi-

cantly [29]. These kinds of connections allow the information and gradients to flow 

more into the deeper layers, increases the convergence speed and decreases the van-

ishing gradient problem. 

Convolutional neural networks were already successfully applied to various NLP tasks 

[33, 38, 39]. These results suggest investigating CNN based sequence models for 

intent classification. We expected that convolutional neural networks enhances the 

performance of intent detection task.  

 

4.2   Model architecture 

 

 

All utterances and their slots sequences are splatted as Input 1 and Input 2.  We use 

<BOS> and <EOS> tokens as beginning-of-utterances and end-of-utterances tokens in 

Input 1 and beginning-of-slots and end-of-slots tokens in Input 2, as shown in Table 3. 

 

Table 3. The structure of input and output. 

Input 1 Input 2 Output 

<BOS> weather next year 

in Canada <EOS> 

<BOS> O B-timeRange I-timeRange 

O B-country <EOS> 

GetWeather 

 



Regarding Input 1, an embedding layer with pretrained word vectors, such as 

Word2vec or GloVe, was applied. Regarding Input 2, the slots were tokenized, and 

embedding was applied, which is intended to map positive integer values in an array 

to float values. The proposed model was applied on both inputs separately, and then 

the output of these models (referred to as Model 1 and Model 2) are combined (see 

Figure 2). Model 1 and Model 2 contains convolutional layers with residual connec-

tions. After embedding, a 1D convolutional layer with 16 filters is applied, which 

isfollowed by a stack of residual blocks. Through hyperoptimization, the best result 

was achieved by 3 residual blocks, and the number of filters in each residual block 

was 32, 64, 128. Each residual block consists of 2 convolutional layers followed by 

batch normalization layer [32] and ReLU activation. The filter size of all convolution-

al layers is 5. These blocks are followed by one more batch normalization layer and a 

ReLU activation. The architecture ends with a fully connected layer coupled with 

softmax activation function. The model architecture is shown in Figure 3. 

 

 
                 Figure 2. Proposed model architecture. 

 



 
Figure 3. End-to-end CNN structure for intent detection task. f, d, and s are the number of the 

filters, length of the filters and stride, respectively.  

 

In general, using CNN for intent detection is similar to a standard classification prob-

lem, ATIS dataset is under the flight reservation domain with 17 intents, Snips with 7 

intents. 

 

5   Evaluation and Results 

We used NVidia Titan Xp (12 GB) and NVidia Titan X (12 GB) GPU cards hosted in 

two i7 workstations with 32GB RAM. For training and inferrrence the Keras deep 

learning framework with Theano [30] backend was used.  

We trained the models both with Word2vec and Glove vector representations. 

After training the models predictions were performed on the test dataset, and the re-

sults were evaluated with confusion matrices and accuracy.  

The results of the experiments are shown in Table 4. We compared our solution with 

state-of-the-art intent detection models, such as Slot-Gated (Intent Attention) [5], 

Attention-based BiRNN [22], and Recursive Neural Network [36] models. Better 

results by using different approaches are also published, but in those cases different 

variations or parts of the ATIS dataset were used [17, 23]. In Table 4, the first column 

shows the applied architecture models; the second and third columns show overall 

accuracy for each model on ATIS and Snips dataset. For Snips, we are able to get 

100% accuracy using pretrained Glove vectors on the test set.  

The confusion matrix is an effective method to visualize and to examine the perfor-

mance of binary and multi-class classifiers [34]. Generally, the confusion matrix 

shows the detailed number of correctly classified and misclassified intents. The diago-

nal represents the correct predictions. Each entry outside the diagonal shows how 



many tokens from each intent (y-axis) were incorrectly assigned to other intents (x-

axis).  

Figure 4 shows the confusion matrix of the proposed model using GloVe pretrained 

vectors on ATIS dataset. The intent atis_flight is 73.8 % of training dataset and it is 

the most part of test dataset too. 629 utterances were classified correctly out of 630. 

The number of utterances in atis_restriction is zero in test data. Figure 5 and Figure 6 

show the confusion matrix of the proposed model using GloVe and Word2vec 

pretrained vectors on Snips dataset, respectively. In Figure 5, the proposed model 

correctly classified 629 utterances out of 661 for the atis_flight and 46 out of 51 for 

the atis_airfare intent. The accuracy of these intents is 95.2 and 90.2%, respectively. 

More than half of the test utterances of atis_distance and atis_meal were misclassified. 

In Figure 5, all intents are correctly classified for Snips test dataset by using GloVe 

pretrained vectors. 

 
Table 4. The accuracy (%) of previous works and the proposed models on ATIS and Snips 

 test datasets  

Model ATIS Snips  

Slot-Gated (Intent Attention) [ 5] 94.1 96.8 

Attention-based BiRNN [22] 92.6 - 

Recursive Neural Network [36] 95.40 - 

Word2vec + CNN with residual connections 

 (proposed work) 

95.46 99.7 

Glove + CNN with res. Con. (proposed work) 94.40 100 

 

              
Figure 4. Confusion matrix of ATIS test dataset by using GloVe pretrained vectors. 



 
Figure 5. Confusion matrix of Snips test dataset by using GloVe pretrained vectors. 

 

 

 
Figure 6. Confusion matrix of Snips test dataset by using Word2vec pretrained vectors. 

 



6   Conclusions and Future Work 

In this paper, an end-to-end CNN model with residual connections for intent detection 

were proposed. 300-dimensional Word2vec embeddings pretrained on Google News 

and 100-dimension GloVe word embeddings pretrained on Wikipedia were used for 

word representations. The results were evaluated with the help of confusion matrix 

and accuracy. The proposed method outperformed previous solutions in terms of ac-

curacy.   
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