Provided by Repository of the Academy's Library

Poster:

Metadata, citation and similar papers at core.ac.uk

Aiding Java Developers with

Interactive Fault Localization in Eclipse IDE

Gerg6 Balogh, Ferenc Horvith, Arpad Beszédes
Department of Software Engineering, University of Szeged
Dugonics tér 13, H-6720 Szeged, Hungary
{geryxyz,hferenc,beszedes } @inf.u-szeged.hu

Abstract—Spectrum-Based ones are a popular class of Fault
Localization (FL) methods among researchers due to their rela-
tive simplicity. However, recent studies highlighted some barriers
to the wider adoption of the technique in practical settings. One
possibility to increase the practical usefulness of related tools is to
involve interactivity between the user and the core FL algorithm.
In this setting, the developer interacts with the fault localization
algorithm by giving feedback on the elements proposed by the
algorithm. This way, the proposed elements can be influenced in
the hope to reach the faulty element earlier (we call the proposed
approach Interactive Fault Localization, or iFL). With this work,
we present our recent achievements in this topic. In particular,
we overview the basic approach, our preliminary experimentation
with user simulation, and the supporting tool for the actual usage
of the method, iFL for Eclipse. Our aim is to provide a basis
for the investigation of the feasibility and effectiveness of the
technique, before moving on to more comprehensive experiments
with actual human subjects. We invite researchers for further
discussion on the topic, and for that, the method and tool will
be made accessible.

I. INTRODUCTION

This work deals with fault localization (FL), a debugging
subactivity in which the root causes of an observed failure are
sought. In particular, we present a technique to aid Spectrum-
Based Fault Localization (SBFL), a class of FL methods
popular among researchers [1]. The benefit of SBFL is that it
relies on two sets of information from test executions, which
are typically readily available or easily obtainable in existing
projects: detailed code coverage and test outcomes. Based
on statistical information about the number of failing and
passing test cases exercising different code elements of the
system, elements are assigned various suspiciousness scores
that can then be used to rank the code elements, thus aiding
the developer in the debugging activity.

There are barriers to the wider adoption of SBFL in pro-
gramming practice, such as a high number of elements to
investigate [2], [3], and other issues [4], [5]. A possibility
to increase the practical usefulness of SBFL tools is to
involve interactivity and hence improve the tool’s most crucial
performance property, fault localization effectiveness.

In our approach, called Interactive Fault Localization (iFL),
we involve the user’s previous or acquired knowledge about
the system. The developer interacts with the fault localization
algorithm by giving feedback on the elements of the prioritized
list. This way, the next proposed suspicious elements can be
influenced in the hope to reach the faulty element earlier.

II. INTERACTIVE FAULT LOCALIZATION
A. Related Work

The developer typically has additional information about
the system of which the SBFL engine is not aware. Other
researchers have explored the benefits of such information.
For example, Li et al. [6], [7] reuses the knowledge about
passing parameter values in a debugging session, Hao et al. [8]
asks for feedback about the execution trace, Gong et al. [9]
asks only for a simple yes/no feedback for a given statement.
Lei et al. [10] utilize test data generation techniques to produce
feedback for interacting with fault localization techniques
automatically. To our knowledge, however, contextual infor-
mation about higher level entities (for instance, statement vs.
enclosing function) has not yet been leveraged for interactive
SBFL. The contextual knowledge of the user about the next
item (e.g., a statement) is exploited in the ranked list, with
which larger code entities (e.g., a whole function) can be
repositioned in their suspiciousness.

B. Method

Program spectra
(test coverage

test results) Next suspicious element

Initial
SBFL ranking

iFL Engine User|

Actual
SBFL ranking @/

“I“\

Feedback

fault is,
found

Basic process of Interactive Fault Localization

element is not faulty,
Ranking neither its context

recalc.

element is not faulty, but the fault
is somewhere within the context

don’t know

Continue

Fig. 1.

Figure 1 shows a conceptual overview of our approach. The
process starts by calculating an initial rank based on some tra-
ditional SBFL approach (we experimented with Tarantula [11],
but any other base method could be used). The elements are
then shown to the user starting from the beginning of the list,
and the iFL engine is waiting for user feedback. The user

https://core.ac.uk/display/228402121?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

investigates the recommended element and gives one of the
following answers: 1) fault is found, 2) element is not faulty,
neither its context, 3) element is not faulty, but the fault is
somewhere within the context, or 4) don’t know.

Based on the feedback, the iFL engine performs the follow-
ing actions. In the case of (1), the process terminates, while at
(4) it is continued as usual with the next suspicious element
(this means that in the worst case when the developer has
no background knowledge, the method falls back to the pure
SBFL approach). In the remaining two cases, the iFL engine
makes adjustments to the suspiciousness scores, recalculates
the ranking and shows the next element from the new list to
the user in the next iteration.

C. Experiments with Defect4J

As a proof-of-concept, we performed an initial set of exper-
iments with the goal to have a preliminary view of how much
improvement can we expect from iFL in terms of improve-
ments in fault localization effectiveness. We implemented the
approach from Figure 1 to handle Java systems using simulated
users instead of real programmer feedback. The basic code
entity in the FL process was a Java method, while its class
was treated as the context. We implemented user simulation
so that it automatically gives reliable answers to cases (2) and
(3) based on the actually faulty element as follows: in case of
(2), the whole context gets O score, while for (3) everything
but the context is reduced to O.

TABLE I
IFL IMPROVEMENTS ON DEFECTS4J

Program Tarantula iFL Diff. Impr.
commons-lang 3.81 (0.19%) 2.00 (0.09%) -1.81 (-0.10%) 47.50%
commons-math 7.88 (0.17%) 7.21 (0.15%) -0.67 (-0.02%) 8.50%
joda-time 17.56 (0.43%) 4.70 (0.12%) -12.86 (-0.31%) 73.23%
Average 9.75 (0.26%) 4.64 (0.12%) -5.11 (-0.14%) 43.08%

The experiment was performed on real defects from the
Defect4] repository [12]. For the sake of simplicity, we con-
sidered only single method faults, and those faults where the
suspiciousness score was not 0. Table I shows the improve-
ments iFL achieved on Defects4]. The performance of the
original SBFL algorithm can be seen in column 2 (Tarantula),
which we used as the reference to evaluate iFL. We used the
Expense measure for this purpose, which is essentially the
number of elements that need to be investigated (using the
middle position in the case of ties). We present results both
in terms of absolute measure expressed in the number of code
elements, and a relative version compared to the length of
the rank list (shown in parentheses). A summarization row is
provided as well with the corresponding average values.

The base SBFL method prioritized the faulty code elements
roughly to the 10th place on average, which means that 10
executable code elements must be examined on average to
find the faulty one. Column 3 contains the same data for
iFL, which produces an Expense of 4.64 (0.12%) on average.
This means that in this case a programmer would need only

about 5 steps to find the fault on average, which is notably
better than for the original algorithm. Column 4 shows the
actual difference between the absolute and relative Expense
measures. Column 5 of the table contains a summary of
improvements in terms of relative changes in the Expense
values, expressed in percentage (that is, the difference over
the base SBFL value), which is 43.08% on average.

This initial set of experiments gave us confidence that
if such notable improvements can be achieved (assuming
perfect user responses), an investigation of the approach with
real users is worthwhile. As a first step, we implemented a
supporting tool in Eclipse as introduced below.

III. 1IFL — SUPPORTING TOOL FOR ECLIPSE
A. Motivation and Overview

Fault localization is a debugging activity which is, by
definition, part of a programmer’s work in which she has to
interact with the source code of the software being debugged.
It follows that this can be performed most effectively through
the IDE itself; hence the most logical form of supporting tools
is when they are integrated into the IDE.

With this in mind, we present iFL for Eclipse, which
is an Eclipse plug-in for supporting iFL for Java projects
developed in this environment. The plug-in reads the tree of
project elements (classes and functions) and lists them in a
table showing detailed information about those elements. This
information includes, among others, the suspiciousness scores
calculated using a traditional SBFL formula, such as Tarantula.
This table also enables direct navigation towards the project
tree and the contained source code elements.

Interactivity between the tool and the programmer is
achieved by providing the capability to send feedback to
the FL engine about the next element in the table based on
user knowledge. It involves the context of the investigated
element: in our case, Java classes and methods. This gives
an opportunity to change the order of elements in the table
and hopefully arrive at the faulty element more quickly.

We have determined two general requirements for our tool:
1) iFL for Eclipse should be extensible to make it possible to
integrate various already existing SBFL algorithms and future
iFL algorithm variants; 2) the usage of any iFL implementation
should not generate unnecessary overhead by disturbing the
typical workflow of the developer. In this section, we give a
short description of the main features of iFL for Eclipse from
the perspective of the end user and an overview of the main
implementation-related details.

iFL for Eclipse is a plug-in supporting Java 10 and later,
and Eclipse 2018-12 and later, so it is part of the well-known
workspace of developers. It is published via an update site
and can be installed using common Eclipse functionality. The
current version of iFL for Eclipse is available at https://github.
com/sed-szeged/iFL4Eclipse.

B. Interactive Fault Localization Session

The interaction with the iFL for Eclipse follows a session
based process. The main steps of this process are shown in

Figure 2. There could be only one active session, which is
tied to the selected (active and loaded) Java project.

start iFL session |—)| analyze source code |—)| load scores

developer/user

inspect (first) item

FL algorithm

reorder list

provide feedback

update scores H
: i

[bug is not found]
[bug is found]

Fig. 2. Overview of an iFL Session

After the user initiates the session, iFL for Eclipse begins
analyzing the project and listing the source code items cur-
rently present with their suspiciousness scores. The user can
load scores produced by external tools.

The core cycle of the session is basically an interaction
between the user and the iFL algorithm. The algorithm sug-
gests the most likely location of the bug by providing a list
of methods ordered by their suspiciousness scores. The user
inspects the provided list and gives feedback based on her
experiences by choosing one of the provided options. After
that, iFL for Eclipse reorders the list and the cycle starts over
again. The user can break the loop either by forcing the session
to terminate or by choosing the option “item is faulty”, which
indicates that the developer successfully located the bug.

C. Score List

After the initial scan of the source code, iFL for Eclipse
displays a list of methods currently present in the selected
Java project (Figure 3). We use the JDT! library to retrieve
the associated properties. All of these attributes are given by
using the de facto standard notation for Java bytecode.

[# Problems @ Javadoc [E) Declaration | < Interactive Fault Localization 37 Load scores... Hideundefined ~ = O

[filter scores <= 0,0000 0,0000 < > 0931

Score Name Signature Parent type Path Linginfo Contextsize ~

0,0009 disposeFonts org.eclipsewb.. SWTResource.. Hproject\FL.. 12792 17 methods

0,0000 hookContext.. org.eclipsese.. MainPart Hi\project\iFL.. 1336 12 methods
0,000 fillocalPullDo... org.eclipsese.. MainPart Hi\project\iFL.. 1812 12 methods
0,0000 contributeToA... org.eclipsese.. MainPart Hi\project\iFL.. 1626 12 methods
0,0000 getll org.eclipsese.. MainPart HiAproject\iFL.. 3475 12 methods

Fig. 3. Score List

There are altogether seven properties per method, and five
of them are retrieved directly from the source code. These

Thttps://www.eclipse.org/jdt/

are their name, signature, enclosing type and the location of
the containing file (given as full path and starting offset). The
remaining attributes are computed by the iFL algorithm (the
scores) or derived from the source code (size of the context,
i.e. the count of methods in the enclosing type).

1) Load Scores from External Analysis: The user can load
suspiciousness scores from an external source. The informa-
tion should be in a comma separated data format with headers.
The only required columns are name and score. These
features make it possible to use any SBFL algorithm with
iFL for Eclipse.

2) Navigation to Source Code Item: Currently, we support
two easy ways to navigate to the inspected method. The user
can either double click on an item or select several of them
and then use the context menu option “Navigate to selected”
(Figure 4). After that, Eclipse opens the source file with the
default editor and navigates to the specific position.

03241 Control HiprojectufL.. 410 3 methods.

0321 bdeChunkL.. Hi\project\ifL.. 82 2methods

0315 fthodscore.. Hi\project\ifL.. 702 8methods

oA mpleView Hi\project\iFL.. 4658 9 methods

03101 ses——option HiprojectyifL.. 653 7methods

03051 LabelP: Hi\oroject\FL, 043 2methods

Fig. 4. Context Menu of Score List’s Item

3) Acquiring User Feedback: The user can give various
kinds of feedback about the inspected method by using the
context menu of the list (Figure 4). The possible options
depend on the underlying iFL algorithm. The currently im-
plemented ones are: (1) the item is faulty (the process stops),
(2) it is not faulty nor its context (they are moved lower in the
rank) and (3) it is not faulty (score of the selected item is set
to 0). The table also includes an iconographic depiction of the
increase or decrease of scores as the result of the interaction
with the user.

4) Hide Undefined Scores: There may be methods for
which the underlying algorithm is unable to compute initial
scores (because none of the test cases cover these or some
other shortcomings of the SBFL algorithm). We denote these
with “undefined” score value in the list (Figure 3). Because iFL
algorithm cannot update these scores, iFL for Eclipse provides
a feature to exclude these from the list.

D. Integration of New iFL Algorithm Variants

Different variants of the iFL algorithm could be used to
leverage the developer’s knowledge. When developing iFL
for Eclipse, we implemented one of these, but the underlying
architecture enables easy integration of other variants as well.

The architecture of iFL for Eclipse consists of several layers.
The main UI of the tool is an Eclipse part, a graphical panel,
serving as the front end. It is connected to the back end
components, whose purpose is the update of scores and the
recalculation of the rank list based on user input. In Figure 5,
the layers related to Eclipse infrastructure are located at the
bottom (marked with purple), while the layers of the plug-
in are placed over these (marked with green). The Standard

Widget Toolkit (SWT?) and Eclipse Java development tools
(JDT) provide the connection between them.

e
X

Fig. 5. Overview of the iFL for Eclipse Architecture

iFL for Eclipse UI | iFL Algorithm

IDE Interfaces

Eclipse Plug-in Ifrastructure

Eclipse IDE UI

We separated the usage of the Eclipse Plug-in infrastructure
from the rest of the iFL for Eclipse by creating an IDE
Interfaces layer. Both the UI, whose main task is to provide
communication with the user, and the iFL algorithms rely on
the functionality of this layer.

This general structure makes it possible to easily replace
the underlying iFL algorithm. Currently, new implementations
have to be included into the iFL for Eclipse code base, but we
plan to extract this by using extension points so that other plug-
ins could more easily provide their variants of iFL algorithms.

E. Present State

At the present state of our research agenda, the demon-
strated tool serves our research purposes: to investigate the
feasibility and effectiveness of iFL. As such, it is in a
prototype state, not thoroughly tested and validated. The tool
will be made open source, along with the results of associ-
ated experiments, to enable other researchers its independent
validation and further development. Regarding functionality,
it currently includes the basic features, and there are many
possibilities for further development. Our primary plans are
to increase usability and flexibility concerning user feedback
actions and the underlying FL. computation. Ongoing research
is to perform user studies to investigate the effectiveness of
the proposed iFL approach and the tool itself.

IV. CONCLUSIONS

We present an Interactive Fault Localization approach
whose aim is to increase the practical usefulness of Spectrum-
Based Fault Localization by introducing the programmer to the
FL process in a feedback loop. The programmer’s background
knowledge about the code elements in the rank list provided
by the base FL algorithm is reused for adjusting the ranking
scores in the next iteration. We present the results of our initial
experiments on a large Java benchmark using simulated users,
and also a supporting tool integrated into the Eclipse IDE,
which enables the application of the method with real users.

A. Call for Action

At the present state of our research, we have laid down the
foundations for experimentation with iFL. However, for that
several aspects need to be addressed. The most obvious one,
and maybe the most difficult as well, is to choose the correct

Zhttps://www.eclipse.org/swt/

variation of the underlying algorithm. For example, what are
the most meaningful options and actions for the user response?
How to define the granularity of the analysis? What constitutes
the best context of a source code item?, and so on.

Furthermore, there are several challenges that need to be
addressed by iFL related to the everyday workflow of devel-
opers while debugging. For example, they usually wander off
from the inspected item and evaluate several code constructs
simultaneously. Next, the source code may be changed during
the fault localization session to try out different ideas to better
understand the causes of the error, etc.

A tool that aims to successfully aid programmers in their
debugging activity, including iFL for Eclipse, must face these
challenges. One of the goals of this paper is, admittedly, to
engage other researchers in further discussion on this topic.

ACKNOWLEDGMENTS

Arpiad Beszédes was supported by the Janos Bolyai
Research Scholarship of the Hungarian Academy of Sci-
ences. Ministry of Human Capacities, Hungary grant 20391-
3/2018/FEKUSTRAT is acknowledged. We thank Rita Bartfai
for her help with the poster design.

REFERENCES

[1] W. E. Wong, R. Gao, Y. Li, R. Abreu, and F. Wotawa, “A survey on
software fault localization,” IEEE Transactions on Software Engineering,
vol. 42, no. 8, pp. 707-740, 2016.

[2] X. Xia, L. Bao, D. Lo, and S. Li, ““Automated Debugging Considered
Harmful” Considered Harmful: A User Study Revisiting the Useful-
ness of Spectra-Based Fault Localization Techniques with Professionals
Using Real Bugs from Large Systems,” in 2016 IEEE International
Conference on Software Maintenance and Evolution (ICSME). 1EEE,
oct 2016, pp. 267-278.

[3] C. Parnin and A. Orso, “Are automated debugging techniques actually
helping programmers?” in Proceedings of the 2011 International Sym-
posium on Software Testing and Analysis, ser. ISSTA *11. New York,
NY, USA: ACM, 2011, pp. 199-209.

[4] F. Steimann, M. Frenkel, and R. Abreu, “Threats to the validity and
value of empirical assessments of the accuracy of coverage-based fault
locators,” in Proceedings of the 2013 International Symposium on
Software Testing and Analysis, ser. ISSTA 2013. New York, NY, USA:
ACM, 2013, pp. 314-324.

[5]1 P. S. Kochhar, X. Xia, D. Lo, and S. Li, “Practitioners’ expectations on
automated fault localization,” in Proceedings of the 25th International
Symposium on Software Testing and Analysis - ISSTA 2016. New York,
New York, USA: ACM Press, 2016, pp. 165-176.

[6] X. Li, M. d’Amorim, and A. Orso, Iterative User-Driven Fault Local-
ization. Cham: Springer International Publishing, 2016, pp. 82-98.

[71 X. Li, S. Zhu, M. d’Amorim, and A. Orso, “Enlightened debugging,”
in Proceedings of the 40th IEEE and ACM SIGSOFT International
Conference on Software Engineering (ICSE 2018). ACM, 2018.

[8] D. Hao, L. Zhang, T. Xie, H. Mei, and J.-S. Sun, “Interactive Fault
Localization Using Test Information,” Journal of Computer Science and
Technology, vol. 24, no. 5, pp. 962-974, sep 2009.

[9] L. Gong, D. Lo, L. Jiang, and H. Zhang, “Interactive fault localization

leveraging simple user feedback,” in IEEE International Conference on

Software Maintenance, ICSM. 1EEE, 2012, pp. 67-76.

Y. LEI, X. MAO, Z. DAI, and D. WEI, “Effective fault localization

approach using feedback,” IEICE Transactions on Information and

Systems, vol. E95.D, no. 9, pp. 2247-2257, 2012.

J. A. Jones and M. J. Harrold, “Empirical evaluation of the tarantula

automatic fault-localization technique,” in Proc. of International Con-

ference on Automated Software Engineering. ACM, 2005, pp. 273-282.

R. Just, D. Jalali, and M. D. Ernst, “Defects4j: A database of existing

faults to enable controlled testing studies for java programs,” in Pro-

ceedings of the 2014 International Symposium on Software Testing and

Analysis. ACM, 2014, pp. 437-440.

[10]

[11]

[12]

