
Are My Unit Tests in the Right Package?
Gergő Balogh

University of Szeged, Hungary
Software Engineering Department
geryxyz@inf.u-szeged.hu

Tamás Gergely
University of Szeged, Hungary

Software Engineering Department
gertom@inf.u-szeged.hu

Árpád Beszédes
University of Szeged, Hungary

Software Engineering Department
beszedes@inf.u-szeged.hu

Tibor Gyimóthy
University of Szeged, Hungary

Software Engineering Department
gyimothy@inf.u-szeged.hu

Abstract—The software development industry has adopted
written and de facto standards for creating effective and main-
tainable unit tests. Unfortunately, like any other source code
artifact, they are often written without conforming to these
guidelines, or they may evolve into such a state. In this work,
we address a specific type of issues related to unit tests. We seek
to automatically uncover violations of two fundamental rules: 1)
unit tests should exercise only the unit they were designed for, and
2) they should follow a clear packaging convention. Our approach
is to use code coverage to investigate the dynamic behaviour of
the tests with respect to the code elements of the program, and
use this information to identify highly correlated groups of tests
and code elements (using community detection algorithm). This
grouping is then compared to the trivial grouping determined
by package structure, and any discrepancies found are treated
as “bad smells.” We report on our related measurements on a
set of large open source systems with notable unit test suites,
and provide guidelines through examples for refactoring the
problematic tests.

Index Terms—Code coverage, unit testing, clusterization, pack-
age hierarchy, community detection, test smells and refactoring

I. INTRODUCTION

Source level testing is an integral part of most software
quality assurance approaches, and there are various types of it
including static testing, as well as white-box dynamic testing
techniques. In the present work, we deal with the latter; more
precisely, with unit level testing. The goal of unit testing is
to test a single, standalone unit of the software on itself, i.e.
isolated from the influence of other components. It does not
check either for problems related to the intercommunication
with other components, or more higher levels of functional-
ities. The importance of unit testing is increasing with the
popularity of agile development methodologies [1].

Unit tests are often implemented as integral parts of the
source of the system under test, written in the language of the
system, and usually with the help of specialized frameworks
like JUnit [2] for Java. Consequently, these tests might be the
subject of source code analysis, just as the system code itself.
Source code analysis may then be used for various purposes
including test code quality assessment, test comprehension,
refactoring, re-documentation, and others.

To develop and evolve high quality unit tests in a long
term, is not an easy task. Some researchers have addressed
this problem; to join this quest, in this work we approach unit
test quality from a different angle. There are two fundamental
properties of unit level tests that make them different from
higher level test, and that are emphasized in most testing

textbooks and unit test writing guidelines (see, e.g. [3]). The
first one is that a unit test should not test anything outside
the unit it is testing. The second expectation is that the test
code should be properly organized into the physical source
code structure, that is, following the structure of the source
code it tests. The goal of our research is to algorithmize
the verification of these properties in existing systems and
associated test cases. With it, we can then locate problematic
parts (bad smells) in the test code and eventually propose
suitable refactorings to increase this aspect of the tests’ quality.

But how can these properties be measured? How can we
decide whether a unit test is in the right package, or whether
it tests only that part of code it is intended to test? Our
approach is to use detailed code coverage information, that
is, to investigate the dynamic behaviour of the tests with
respect to the code elements of the program. It means that
we collect runtime information for each test case and record
individually what code elements (statements or methods, for
instance) each test case executed. This is then stored in a
coverage matrix, a binary matrix with test cases in its rows,
code elements in the columns and 1s in the cells if the given
element is reached when executing the given test case. Such
detailed coverage information may reveal whether a unit test
that physically belongs to a component covers only the code
of that component or does it exercise other units too.

Effectively, we want to compare two clusterings of the test
cases and code elements: one “as implemented” and the other
“as behaving.” The as implemented classification is simply
the physical structure of the program and test code, organized
into language packages. The other classification is derived
from the coverage matrix by applying an algorithm to detect
such tightly connected groups of tests and code based on their
dynamic relationship of code coverage. Typically, there does
not exist a real classification of tests and code without overlap,
so for this purpose we selected to apply a heuristic approach
proven in other domains to find highly coupled elements, that
is community detection [4], [5]. It will output sets of nodes
(mixed tests and code) which are tightly bound together.

In this work, we present our approach to automatically
compare these two clusterings by using suitable measures, and
pinpoint to the discrepancies between them. These discrepan-
cies can be thought of as “bad smells”, so we also elaborate
on the possible refactorings to bring the as intended and as
behaving structures closer together. As it turned out, it is not
simple to determine specific parts of the tests that should be
refactored, and how they should be modified.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/228402114?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


The concepts above have been empirically investigated on a
set of real size open source Java programs with significant test
suites. To summarize, we provide the following contributions:

1) We applied community detection algorithm on a code
coverage matrix to detect sets of closely related unit
tests and code elements.

2) We performed measurements on real open source sys-
tems, and compared the identified clusterings with the
trivial clustering based on physical code structure.

3) We categorized the discrepancies between the two into
typical cases, quantified their amount in the subject
programs, and provided guidelines how these can be
used as actual bad smells and associated refactorings
to improve the structures of existing tests.

The rest of the paper is organized as follows. In Section II,
we elaborate on the background of this research and provide
a motivating example. Section III explains the clustering
methods, while Section IV presents our related measurements.
Section V discusses the patterns which we found in the
differences of the clusterings, with proposed actual bad smells
and refactorings. Finally, Section VI deals with related work,
before we conclude in Section VII.

II. BACKGROUND

A. Best practices of unit test writing

Unit testing is a low level testing activity having a close
relation to the source code of the system under test. During
this test, we search for defects in and verify correct func-
tioning of software components (modules, programs, objects,
classes, etc.) which are separately testable [6]. There are
many guidelines how to write and organize unit tests (e.g.
[3], [7], [8], [9]), but most of them start by emphasizing two
basic test design concepts: “unit tests should be isolated” and
“test only one code unit at a time” [3]. In addition, unit
testing frameworks – such as JUnit, which is part of the
de facto unit test family of frameworks – have naming and
packaging conventions on how unit tests should be organized
with respect to their intended goal (unit to test) [2]. Also,
since different build systems and development environments
suggested similar conventions, these eventually became best
practices adopted by practitioners.

One of these conventions is about how tests are placed into
logical or physical modules (such as packages in the case
of Java and folders on the file system). Most environments
logically group test and program code together, while phys-
ically separating them from each other. This can mean, for
instance, that program code and the associated tests are put
in the same logical package or namespace, while they are
in separate folders on the file system. In addition, naming
conventions are often proposed. For instance, the name of a
test class is usually formed from the tested class name by
adding a “Test” suffix (or prefix) to it, and similarly, the name
of a test method usually start with the “test” prefix and if it
is designed to test a single method instead of a more general
behaviour then it continues with the name of the tested method.

For the purposes of the present research, we thus assume
that a well-designed unit test has two important properties:

1) A unit test should exercise the unit and only the unit it
was designed for. Execution of code in other units on
which the tested one is dependent should be eliminated
using stubs and mocks.

2) Unit tests should follow a clear naming and packaging
convention, which reflects both the purpose of the test
and the structure of the tested system, providing clear
traceability between the test cases and the tested units.

If the guidelines and conventions are not fully followed,
the interpretation of test results, comprehension of the testing
artifacts and their relation to the code, and the maintenance
of the tests in general will be compromised. In many systems,
the size and complexity of the unit tests is comparable to that
of the software itself [10], so this must be taken seriously.
As it is the case with software in general, violations of these
conventions are often not the result of poor test writing skills
of the programmers or testers but of the natural evolution of the
system [11], [12]. For instance, it is sometimes the case that
existing units are extended, modified or their physical location
is changed, while the associated tests are not immediately
updated to reflect the changes [10].

B. Motivating example

In order to fully understand what kinds of issues we seek to
find with our approach, consider the example in Figure 1. It
shows a client-server software with its tests, having two com-
ponents: a client consisting of the HttpClient and FtpClient
units and a server consisting of HttpServer and FtpServer. The
components are represented by the client and server packages
(also denoted by purple frames in the figure).

Following property #2 from above (naming and packaging),
the four test classes in the example are named TestHttpClient,
TestFtpClient, TestHttpServer and TestFtpServer, and each of
them is placed in the package where the class (unit) it is
intended to test is located. Now, consider property #1 (test one
unit only) and the client component, for instance. According
to this rule, tests of this component should only exercise
methods in the client package. The test case implemented
in testSendRequest() will invoke the method sendRequest() of
class HttpClient, which activates method processRequest() of
class HttpServer. However, since the outcome of the client unit
test depends on the behaviour of the server unit, this violates
the rule. Similar behaviour can be observed for testSendFile().

If similar situations accumulate in a system’s test suite,
the relationships of the tests and code as visible statically
from the packaging and naming might be different to what
the actual behaviour of the tests would show. To eliminate
the discrepancies between the two kinds of groupings, the
developers and testers have two basic options. They might
eliminate the existing relations that connect two units, or
reorganize the units to follow the existing relations.

In our example, testers might use mocks or stubs (included
in the client package as part of the tests) instead of the real
server objects when the clients are tested. In this case the



package main

package client

package server

HttpClient

+sendRequest()

FtpClient

+sendFile()

HttpServer

+processRequest()

FtpServer

+storeFile()

TestHttpClient

+testSendRequest()

TestFtpClient

+testSendFile()

TestHttpServer

+testProcessRequest()

TestFtpServer

+testStoreFile()

Fig. 1. A running example

relation between the send* and process* methods are elimi-
nated, and property #1 is not violated anymore. The second
possibility to correct the discrepancies is the reorganization of
the packages. The testers and developers might decide to use
http and ftp packages instead of client and server packages.
This way the previously violating relations will become in-
unit relations, which no more violates property #1. Note, that
the decision depends on several circumstances, and requires a
deep investigation of the affected elements and their relations.

The issue with the above mentioned and similar situations
is that their detection is difficult, especially if it is to be
done manually given the complexity of systems. Static analysis
might help but we would face difficulties to properly detect
connections between the units. Hence, we rely on lightweight
dynamic analysis, namely the coverage information between
the tests and the code elements, to find out the connections
between them. By comparing the obtained connections to the
relationship of the test and code in the packaging structure, we
will be able to detect suspicious discrepancies, and eventually
offer refactoring solutions to them.

III. CLUSTERING TESTS AND CODE

In the previous section, two important properties of well-
designed unit tests have been put forth: their executions are
restricted to the tested unit and they are properly named and
structured. To check whether this holds for a particular test
suite, the manual option would be to verify what pieces of code
each test case exercises (directly of indirectly) and compare

this to the physical location of the test. This is, however,
unfeasible for real-word test suites.

To automate this task, we employ two clustering algorithms
that can group together test and code items. The first one (Sec-
tion III-A) is based on code coverage, and captures dynamic
relations between the test suite and the system under test. This
is then compared to the other, trivial clustering (Section III-B),
that works from static information and captures the structural
properties of the tests and program code.

A. Community based clustering
In order to determine the clustering of the tests and code

based on the dynamic behaviour of the test suite, we will apply
community detection [4], [5] on the detailed code coverage
information. Detailed code coverage in this case is that, for
each test case, we record individually what code elements
(methods, in our case) it executed. This forms a binary
matrix (called coverage matrix), with test cases in its rows
and methods in the columns. A value of 1 in a matrix cell
indicates that the method is executed at least once during the
execution of the corresponding test case (regardless of the
actual statements and paths taken within the method body),
and 0 indicates that it has not been covered by that test case.
An example coverage matrix is shown in Figure 2, which
corresponds to our running example from Section II. The first
row, for example, shows that HttpClient.sendRequest() and
HttpServer.processRequest() were called during the execution
of TestHttpClient.testSendRequest().

H
ttp

C
lie

nt
.s

en
dR

eq
ue

st
()

H
ttp

Se
rv

er
.p

ro
ce

ss
R

eq
ue

st
()

Ft
pC

lie
nt

.s
en

dF
ile

()

Ft
pS

er
ve

r.s
to

re
Fi

le
()

TestHttpClient.testSendRequest() 1 1 0 0

TestHttpServer.testProcessRequest() 0 1 0 0

TestFtpClient.testSendFile() 0 0 1 1

TestFtpServer.testStoreFile() 0 0 0 1

Fig. 2. A sample coverage matrix

The concept of clustering based on dynamic behaviour used
in this work can be illustrated by investigating different regions
in the coverage matrix. Groups of tests and methods that
form “dense regions” in the matrix may be grouped together
indicating that there is a tight correspondence between them
from dynamic point of view. These regions contain more 1
values in the cells, while outside of them in their rows and
columns the 0 values are more common. In our example,
such regions are marked with rectangles. The property of the
members of such groups (or clusters) is that their test cases
more probably cover their methods than other methods, and
that their methods are more probably covered by their test
cases than by other test cases.

Clustering coverage matrices to find such groups is not
simple, and generally there is not a single “perfect” clustering



Fig. 3. Sample coverage graph

possible. It would mean that members of a cluster show
complete coverage while there is no coverage reaching out of
any cluster. This is unrealistic for real software, so in practice
the clusters vary in size, number and coverage density. There
might be different approaches to detect these clusters, but they
are based on some kind of a heuristic that tries to maximize
the coverage within a cluster and minimize it outside.

Our choice for cluster identification was to use community
detection [5]. This set of algorithms is originally defined
on (possibly directed and weighted) graphs that represent
complex networks (social, biological, technological, etc.), and
recently have also been suggested for software engineering
problems [13], [14]. Community structures are detected based
on statistical information about the number of edges between
sets of graph nodes. So, in the next step we construct a graph
from the coverage matrix, whose nodes are the methods and
tests of the analyzed system (referred to as the coverage graph
in the following). A method and a test node in this graph
are connected with a single unweighted and undirected edge
if and only if the method was covered during the execution
of that particular test, i.e. there is a 1 in the corresponding
matrix cell. This way, we define a bipartite graph over the
method and test sets because no edge will be present between
two methods or two tests. Note, that for the working of the
algorithm, this property will not be exploited, i.e. each node is
treated uniformly in the graph for the purpose of community
detection. Figure 3 shows the coverage graph of our example.

The actual algorithm we used for community detection is
the Louvain Modularity method [4] (also used by Hamilton
and Danicic [14]), a greedy optimization method based on
internal graph structure statistics to maximize modularity. The
modularity of a clustering is a scalar value between −1 and
1 that measures the density of links inside the clusters as
compared to links among the clusters. The algorithm works
iteratively, and each pass is composed of two phases. In the
first phase it starts with each node isolated in its own cluster.
Then it iterates through the nodes i and its neighbors j,
checking whether moving node i to the cluster of j would
increase modularity. If the move of node i that results in
the maximum gain is positive, then the change is made. The
first phase ends when no more moves result in positive gain
of modularity. In the second phase a new graph is created
hierarchically by transforming the clusters into single nodes
and creating and weighting the edges between them according

to the sum of the corresponding edge weights of the original
graph (including loop edges created from intra-cluster edges).
Then the algorithm restarts with this new graph, and repeats
the two phases until no change would result in positive gain.

When this algorithm is applied on the coverage graph
of our example program, it starts with 8 clusters, each
containing a single method. Then, at the end of the first
phase of the first iteration two clusters will be formed:
the algorithm puts the TestHttpServer.testSendRequest(),
HttpServer.sendRequest(), HttpClient.processRequest(),
and TestHttpClient.testProcessRequest() into one cluster,
and TestFtpServer.testSendFile(), FtpServer.sendFile(),
FtpClient.storeFile(), and TestFtpClient.testStoreFile() into
another cluster. These are the clusters we identified and
marked with green frames in Figure 1. In the second phase
of the first iteration, the algorithm constructs a new graph
consisting of two nodes (corresponding to the two clusters)
and only two loop edges for these nodes. In the next iteration
of the algorithm no change is made (i.e. both nodes remain
isolated), so the algorithm ends up with these two clusters.

B. Package based clustering

Through package based clustering, our aim is to detect
groups of tests and code that are connected together by the
intention of the developer or tester. The placement of the
unit tests and code elements within a hierarchical package
structure of the system is a natural classification according to
their intended role. When tests are placed within the package
the tested code is located in, it helps other developers and
testers to understand the connection between tests and their
subjects. However, it might happen that the developers did
not follow unit testing guidelines or the system evolved such
that due to package reorganization the package structure does
not reflect the actual role of the tests. Hence, it is interesting
to ask how package based clustering will relate to community
based clustering.

Our package based clustering simply means that we assign
the fully qualified name of the innermost containing package
to each test and method, and treat tests and methods belonging
to the same package members of the same cluster. There are
two important things to note here: first, we do not consider
the physical directory and file structure of the source code
elements as they appear in the file system (although in Java
these usually reflect package structuring). Second, names of
the test and code elements are not considered either; the
classification if a particular piece of code is a unit test or
regular code is determined by the rules of JUnit (such as the
special annotations), our unit testing framework.1

In the case of our running example, the method
sendRequest() and the test testSendRequest() are both located
in the client package, which is in the main package, hence
both of these items are put into the main/client cluster. The
respective methods of the other two classes of the same

1As mentioned, this is our assumption of how developers intend to organize
their unit tests, which might not hold for some projects.



package will belong to this cluster as well, and a similar
structuring will be obtained also in the main/server package.
(These are indicated by purple rectangles in Figure 1.)

This clustering eventually reflects the intention of program-
mers and testers of this system because it clearly reflects
what should be tested with what tests, and as such they
are easy to locate within the code structure. However, as
we elaborated at the end of Section II, this contradicts to
what the behaviour based grouping shows (see the green
rectangles in Figure 1), because the tests testSendRequest()
and testSendFile() of main.client will cover respective methods
from main.server. In other words, there is a discrepancy
between the two clusterings, which we will investigate in more
detail in the following sections.

IV. CLUSTERING MEASUREMENTS

Our first set of measurements, presented in this section,
deals with the overall level of agreement between the package
based and the community based clusterings of the tests and
code elements. The classification of the concrete differences
will be performed in Section V.

A. Experiment setup

In our experiments, we used a set of open source Java
programs that are non-trivial both in their size and in terms
of their test suites. We searched for small and medium
sized projects on GitHub [15] whose test suites are based
on the JUnit framework [2], and preferring those that had
been used in some previous experiments. The selected eight
subject programs and their properties are listed in Table I. The
build processes of the systems were extended to include code
coverage measurement, for which purpose we used the Clover
coverage measurement tool [16]. This tool is based on source-
code instrumentation, which gives more precise information
about source code entities [17]. We decided to use method-
level coverage analysis, i.e. the atomic code element of a
coverage matrix in its columns is a Java method.

The lists of methods and test cases were then processed to
extract package based clustering information as described in
Section III-B. Next, we performed the community detection
method described in Section III-A on the detailed coverage
data.

TABLE I
SUBJECT PROGRAMS AND THEIR BASIC PROPERTIES

Program Version LOC Methods Tests

checkstyle 6.11.1 114K 2 655 1 487
commons-lang #00fafe77 69K 2 796 3 326
commons-math #2aa4681c 177K 7 167 5 081
joda-time 2.9 85K 3 898 4 174
mapdb 1.0.8 53K 1 608 1 774
netty 4.0.29 140K 8 230 3 982
orientdb 2.0.10 229K 13 118 925
oryx 1.1.0 31K 1 562 208

Fig. 4. A sample cluster similarity graph showing Inclusion measures

B. Similarity metrics

At this point, we have two sets of clusters on the tests and
code items: one based on the physical structure of the code and
tests (according to property #2), and another one based on the
coverage data of the tests showing their behaviour (according
to property #1). In an ideal case these are the same: there
is a one-to-one assignment between the clusters of the two
clusterings. However, we expected that there is a disagreement
between the two, so we first looked for methods to quantify
the disagreement on an overall level.

In the related literature, there were several methods pro-
posed to compare two clusterings and express their similarity.
They are usually based on various similarity measures; Wagner
and Wagner [18] provide a list of these. Our choice was to use
Jaccard index, so we computed this measure on the clusterings
derived for our subject programs. Jaccard index ranges from
zero to one, and it is based on counting pairs of objects that
are “classified” in the same way in both clusterings.

The resulting similarity values are shown in the second
column of Table II. While the obtained values might indicate
the level of agreement on a very high level, the index computa-
tion algorithms may prefer or disregard different properties of
the clusterings (e.g. the number of nodes put in a separate
cluster by both clusterings), and some of them are more
sensitive to small changes in certain input parameters than
others [18]. Due to these reasons and the fact that it shows
only an overall picture without pinpointing to actual issues,
we abandoned these high level measurements from the rest of
the experiments.

Therefore, we decided to compare the resulting clusters
on a more detailed level: each cluster of one clustering was
compared to each cluster of the other. This way, we got
pairwise relations for all possible combinations of the cluster
correspondence, which can be represented as a weighted com-
plete bipartite directed graph (referred to as cluster similarity
graph – CSG in the following). Nodes of this graph are the
clusters of each of the clusterings in two disjoint sets, and
the edges contain labels corresponding to a similarity measure
defined for pairs of clusters from the two clusterings.



We will use a non-symmetric similarity measure, which will
enable a more detailed kind of analysis. The Inclusion measure
for two clusters C1 and C2 expresses in what degree C1 is
included in C2. Value 0 means no inclusion, while 1 means
that C2 fully includes C1. This measure is computed as:

I(C1,C2) =
∣C1 ∩C2∣
∣C1∣

.

Inclusion measure forms a CSG, where an edge from the
package based cluster node P to a community based cluster
node C is weighted by I(P,C) and the reverse edge from
C to P has I(C,P ) as its weight. The edges start from the
included cluster and point to the container.

We illustrate the CSG of our example in Figure 4.
In this, for clusters Pmain/client , Pmain/server , CHTTP,
and CFTP, we can measure 8 inclusion measure
values (i.e. I(Pmain/client ,CHTTP), I(Pmain/client ,CFTP),
I(Pmain/server ,CHTTP), I(Pmain/server ,CFTP), and their
reverses I(CHTTP, Pmain/client), I(CFTP, Pmain/client),
I(CHTTP, Pmain/server), I(CFTP, Pmain/server)). As each
cluster contains 4 items of which exactly 2 can be found in
one of the clusters of the other type, the inclusion measure
for any allowed cluster combination is 2/4, indicating that all
edges of the graph have a weight of 0.5.

C. Cluster similarity graph statistics

Table II shows statistics about the cluster nodes of the CSG-
s computed for our subject programs. The clst columns show
the number of corresponding cluster nodes in the CSG. The
following columns show statistics on the number of nodes
these clusters contain from the underlying coverage graphs,
i.e. methods and test cases. Note, that the total number of
nodes (as the product of the cluster number and their average
size) may differ from those presented in Table I. The reason
for this is that the clustering algorithm cannot handle isolated
nodes (i.e. the methods that are not covered by any test cases),
so these items are excluded from the clustering.

Different programs show quite different properties. We can
find programs where much more community based clusters
were detected than package based clusters (e.g. commons-
lang), but the opposite situation can also be found (e.g.
orientdb). The minimum, maximum, median, and average
values, both the absolute and the percentile ones, also vary
in a wide range for different programs. By comparing these
values of the package based clusters, we can observe the trend
that there are more smaller clusters and fewer larger ones. This
phenomenon is more emphasized among the community based
clusters: except for mapdb (where the size of the community
based clusters seems to be more balanced), there are a lot of
really small clusters (with a couple of elements only) and there
are only very few large ones.

In general, community based cluster nodes contain less ele-
ments than the package based ones (see the median percentiles,
for instance). These together draws up that some really small
parts of the software are tested in isolation as units, while a
large part of the code together with its tests forms a monolythic

block in which no single units can be detected. However,
where there are more community based clusters than package
based ones, our concept of a unit might be too coarse grained
(i.e. we could check the program with class-based clustering).

Table III shows statistics on the relations between the
clusters in the CSG. The all rel. column shows the total
number of relations in the graphs, while the following one
counts only those that have non-zero weights (i.e. where the
Inclusion measure value between two clusters is not 0). In the
rest of the statistics, only these non-zero relations are used.

The density column shows the ratio of non-zero relations
and all relations. This value might indicate an overall picture
on how the clusters are in general related to each other.
However, since it does not reflect the distribution of values
within the non-zero range it is not always good as a general
indicator. A lot of zero-value and a few high value relations
are typical of well-structured systems while a lot of non-zero
but low values indicate worse structuredness. The medians and
averages of inclusion values can give additional insight besides
density values (shown in the last two columns of the table).
Low average and median inclusion values together with high
density are signs of worse structuredness (for example, joda-
time and mapdb), while the same with low density (such as
orientdb) probably indicate better structured programs.

Further, high average and median inclusion might also
indicate good structure, especially combined with low density.
This is the case with netty and oryx. An interesting addition is
that systems netty, orientdb and oryx are the only ones having
separately buildable sub-modules, meaning they are probably
better structured by design, and these systems scored the best
according to our metrics as well.

TABLE III
STATISTICS ON INCLUSION MEASURE OF OUR SUBJECT PROGRAMS

all rel. n. z. density min. max. med. avg.

checkstyle 2160 278 12.9% 0.001 1.000 0.082 0.248
commons-lang 7150 616 8.6% 0.000 1.000 0.147 0.468
commons-math 5822 514 8.8% 0.001 1.000 0.038 0.218
joda-time 378 132 34.9% 0.000 1.000 0.082 0.227
mapdb 56 30 53.6% 0.001 1.000 0.224 0.367
netty 3060 150 4.9% 0.001 1.000 0.493 0.527
orientdb 10920 608 5.6% 0.001 1.000 0.077 0.283
oryx 2106 106 5.0% 0.016 1.000 0.751 0.623

These global statistical data could be analyzed further,
however, similar to the global Jaccard index presented in
Table II, they give only an overall picture of the structure
of the unit tests. To see the details and infer information that
can directly lead to the enhancement of the tests, we need a
deeper analysis of the CSG-s.

V. SMELLS AND REFACTORINGS

In this section, we summarize our observations we made
after carefully investigating the details of the two clusterings
computed for our subject systems. Due to the large number
of clusters and their relations that were determined by the
automatic methods (see data in Tables II and III), we could not
investigate all of them. Instead, we systematically examined



TABLE II
STATISTICS ON CLUSTER SIMILARITY GRAPHS OF OUR SUBJECT PROGRAMS. PERCENTAGES IN PARENTHESES ARE RELATIVE TO THE TOTAL NUMBER

OF NODES IN THE COVERAGE GRAPHS.

Jaccard package based clusters community based clusters
index clst. min. max. median average clst. min. max. median average

checkstyle 0.12 24 5 (0.1)% 608 (15.5)% 129 (3.3%) 164.0 (4.2%) 45 2 (0.1%) 924 (23.5%) 2 (0.1%) 87.4 (2.2%)
commons-lang 0.21 13 4 (0.1)% 2102 (35.5)% 216 (3.7%) 454.8 (7.7%) 275 2 (0.0%) 1033 (17.5%) 3 (0.1%) 21.5 (0.4%)
commons-math 0.15 71 2 (0.0)% 1850 (16.6)% 78 (0.7%) 156.9 (1.4%) 41 2 (0.0%) 1621 (14.6%) 7 (0.1%) 271.7 (2.4%)
joda-time 0.16 9 1 (0.0)% 4531 (59.1)% 259 (3.4%) 852.4 (11.1%) 21 2 (0.0%) 1937 (25.2%) 2 (0.0%) 365.3 (4.8%)
mapdb 0.22 4 6 (0.2)% 2699 (95.1)% 66 (2.3%) 709.3 (25.0%) 7 3 (0.1%) 854 (30.1%) 427 (15.1%) 405.3 (14.3%)
netty 0.30 45 4 (0.1)% 4218 (54.9)% 56 (0.7%) 170.7 (2.2%) 34 2 (0.0%) 1806 (23.5%) 35 (0.4%) 225.9 (2.9%)
orientdb 0.08 130 1 (0.0)% 465 (8.8)% 17 (0.3%) 40.5 (0.8%) 42 2 (0.0%) 1645 (31.3%) 7 (0.1%) 125.2 (2.4%)
oryx 0.39 27 2 (0.3)% 117 (17.9)% 14 (2.1%) 24.2 (3.7%) 39 2 (0.3%) 66 (10.1%) 11 (1.7%) 16.8 (2.6%)

each community cluster and its surroundings using a script and
based on the Inclusion values related to these clusters, looked
for various patterns in the graphs. We verified the correctness
of the algorithm and its implementation by randomly selecting
and checking some of the reported cases.

In order to ease our manual investigations, we visualized
the cluster similarity graphs with the following rules (see, for
instance, Figure 6):

1) Each cluster is represented by a rectangle, whose color
encodes its type: purple is package based, green is
community based.

2) We reduce the number of connections between the nodes
by displaying only those that have the first three highest
values among the outgoing edges for each node.

3) The similarity measures are displayed as labels on the
edges.

4) Instead of using some arbitrary identifiers for the clus-
ters, we generated a string that could be used as a
mnemonic for the content of the cluster. This string
is composed using a simple string processing of the
names of the methods and tests in the clusters with the
following steps.

a) We remove the largest common substring of all
names of the coverage graph. It usually contains
the name of the system and the root package, for
example: com.cloudera.oryx. for oryx.

b) We take the longest common substring of all
names of methods and tests in that particular
cluster and use it as a summary of the cluster,
for example: code "*kmeans/common/" . . .
tested by test "*kmeans/common/"

c) We collect the 10 most common words of the rest
of the names of methods and tests and use these
to show other relevant members of the cluster. For
example: also: Centers math3 apache
commons Ljava Validity Statistics
Cluster Real linear etc.

d) We include the number of contained nodes in the
cluster in the last line.

We observed different patterns in the CSG-s, but they could
be grouped roughly into two categories: “normal structures”
(discussed in Section V-A) and “anomalies” (Section V-B).
Normal scenarios either show one-to-one correspondence be-

tween the two clusterings or the discrepancies are such that
can be justified by engineering decisions, and that actually
show valid designs. Anomalies, on the other hand, show some
kind of bad smells in the design, which could be eventually
fixed by suitable refactorings.

In the present research we do not aim to provide a sys-
tematic way of automatically detecting these bad smells and
suggest refactorings. Instead, we aim to categorize the different
scenarios with our initial ideas for their refactoring, and
quantify them in our subjects (discussed in Section V-C).

A. Normal scenarios

These scenarios reflect situations when the design of the test
cases and their location seems normal and modification is not
necessary. In the ideal case a single unit observable along the
test suite structure is also observable from the actual behaviour
of the tests. The methods and the tests are exactly the same in
both clusters, hence they are alternative manifestations of the
same entity. The inclusion measures between the two clusters
are 1 in either direction in these cases. These patterns will be
referred to as Ideal in the following. A possible relaxation of
this scenario could be to use a threshold value less than 1 for
the measures above which the clusters are treated identical.

Figure 5 shows an Ideal case from oryx: the two clusters
are formed from the 4 tests and 18 methods of the com-
mons.servercomp package.

Fig. 5. Perfect correspondence between the two clusterings (Ideal pattern).
Example is from oryx.



Figure 6 shows a scenario that we also treat as a normal
one. Namely, we have one package based cluster that consists
of more community based clusters. This reflects the situation
when the definition of the unit the testers use is not atomic
(e.g. working with classes as units, while methods could also
be separately tested). In this case the tests of the single unit are
partitioned, and different test cases are testing (covering) dif-
ferent parts of the unit, and the partitions together correspond
to the cluster as a whole. This pattern will be called in the
following the Clear-cut scenario. The property of Clear-cuts
with a package based cluster P and its associated community
clusters Ci is that P is the union of the Ci clusters. This
means that each Ci cluster is fully included in the P cluster
(I(Ci, P ) = 1) and the union of Ci clusters fully includes P
(i.e. ∑i I(P,Ci) = 1). This could also be modified so that a
threshold is used for the measures instead of 1.

The Clear-cut example in Figure 6 is from the oryx program.
The package based cluster is defined for the common/stats
package. However, community detection revealed that there
are (at least) three distinct clusters corresponding to the
behaviour of the tests: two for the concepts of double and
integer calculations, respectively, and some common tests for
the JVM environment. These three community clusters are
fully included in the package based cluster (shown by the edge
labels I = 1.0). Note, that the sum of the inclusion values in
the opposite direction is not 1 as would be expected, because
(as mentioned earlier) we show only related clusters with the
three highest values.

Fig. 6. Example for Clear-cut pattern from oryx.

B. Anomalies

We treat anomaly to be present in the clustering comparison
when package based clusters do not clearly correspond to a
set of associated community clusters as in the case of the
Clear-cut pattern. In other words, anomaly is when a package
based cluster P does not fully include a community based
cluster C, that is I(C,P ) < 1. In this case the remaining

elements of C (those not included in P ) will be included in
other package based clusters Pi, resulting in inclusion values
I(C,Pi) < 1. We will refer to this pattern as the Anomaly
pattern. In this case, a single community contributes to more
package based clusters, meaning that tests are bypassing unit
borders, seemingly violating property #1. Similarly to the
normal scenarios, this one could also be relaxed by lowering
the threshold for inclusion below 1.

Note, that here we do not examine how packages are
included in communities, i.e. the I(Pi,C) weights of edges
starting from the package clusters and ending in the commu-
nity. Such an examination might help to distinguish sub-types
of anomalies, which is not the topic of the present research.

Fig. 7. The Anomaly pattern shows that parts of more than one package result
in a community cluster. Example is from joda-time.

An anomaly pattern can be seen in Figure 7, which is from
joda-time. At least three package based clusters include the
same community cluster with inclusion values 0.64, 0.24, and
0.04. Although the 0.04 inclusion value and lower values (not
represented in the figure) are small enough to be treated as
insignificant, the two highest values are worth to be consid-
ered. The community cluster seems to represent a quite large
amount of functionality (see the number of its elements). This,
by itself, might be an indicator that the contained tests and
code should be separated. We can observe, further, that there
is one common concept, “period”, which is in all of the related
package clusters as well. However, the two most important
package based clusters are seemingly implementing different
concepts: “date”, “time”, etc. So, the question arises if the
community should be separated by limiting the functionality of
its tests, or the package based clusters should maybe integrated
together to better reflect their behaviour?

In general, the first solution can be performed through
rewriting the tests. The testers should investigate what relations
in the code cause the involvement of other units, and then



they should try to eliminate these dependencies by mocking
or stubbing the cross-unit entities. However, sometimes the
implementation does not allow this kind of replacement (e.g.
when the code directly creates some cross-unit instances). In
such cases only the second solution may be potentially appli-
cable: the developers and testers should reorganize the units,
creating a single one that better reflects the relationships and
the dynamic behaviour of the code and the tests. Furthermore,
these two solutions can be applied together. For example, in
a first step the community cluster could be broken up into
several ones by mocking the tests, and then a reorganization
of the units could form the packages that reflect the behaviour
of the system.

C. Distribution of patterns in the subjects

We automatically searched for the presence of the patterns
in our subject systems using the script mentioned at the begin-
ning of this section. It examines each package or community
cluster and their surroundings on the cluster similarity graph,
and using the inclusion measure determines one of the three
cases. The corresponding statistics are shown in Table IV. The
table is divided into three regions, representing the three cases
elaborated in the previous sections. For the Ideal and Clear-cut
patterns we base our measurements on the number of package
based clusters that are involved in such scenarios, while in
case of the Anomaly pattern the number of affected community
clusters will be used. The first column in each region shows
the actual count of the given pattern occurrence found in the
corresponding subject, while possible occurrences denotes the
total number of clusters of the corresponding type. The last
column in each region shows the ratio of these elements.

TABLE IV
COUNT OF CLUSTER COMPARISON PATTERNS IN THE SUBJECT SYSTEMS

smell Ideal Clear-cut Anomaly

oc
cu

rr
en

ce
s

po
ss

ib
le

oc
c.

oc
cu

rr
en

ce
s

%

oc
cu

rr
en

ce
s

po
ss

ib
le

oc
c.

oc
cu

rr
en

ce
s

%

oc
cu

rr
en

ce
s

po
ss

ib
le

oc
c.

oc
cu

rr
en

ce
s

%

checkstyle 0 24 0% 1 24 4% 13 45 29%
commons-lang 0 13 0% 0 13 0% 15 275 6%
commons-math 0 71 0% 0 71 0% 15 41 37%
joda-time 0 9 0% 0 9 0% 8 21 38%
mapdb 0 4 0% 0 4 0% 4 7 57%
netty 4 45 9% 1 45 2% 12 34 35%
orientdb 2 130 2% 0 130 0% 13 42 31%
oryx 8 27 30% 4 27 15% 8 39 21%

We can observe that, although there are ideal and clear
cut scenarios for some programs, most of the clusters –
furthermore, in four systems (commons-lang, commons-math,
joda-time, and netty) all of them – are involved in anomalies.
Our plan was not to investigate each pattern occurrence in
detail in this phase of the research; instead, we manually
checked the systems with most detected anomalies. This indi-
cates the need of reorganization of units or re-implementation
of the unit tests, especially for programs like joda-time and
mapdb. For example this manual inspection revealed that

joda-time uses a very small number of packages to group
the tests and methods. The intention of the developers is
encoded into pre- and postfixes of the class names, for exam-
ple TestDateMidnight Basics, TestDateMidnight Constructors
and TestDateMidnight Properties. This information could be
expressed by moving the relevant items into different pack-
ages. However, to ensure causal relationship between these
properties and the high number of anomalies, further investi-
gation is required.

VI. RELATED WORK

We organize this section along the lines of the following
topics, which our work is based on: test smell analysis,
software clustering detection, and community structures.

There is a large body of work in the area of code smells, and
researchers only recently started to apply similar concepts to
check software tests and test code for quality issues. For tests
that are implemented as executable code, Van Deursen et al.
introduced the concept of test smells, which indicate poorly
designed test code [19], and listed 11 test code smells with
suggested refactorings. Our work best relates to their Indirect
Testing smell. Meszaros broadened the scope of the concept,
by describing test smells that act on a behaviour or a project
level, next to code-level smells [9]. There are also some
follow-up researches that use these ideas in practice. For
example, Breugelmans and Van Rompaey present TestQ which
allows developers to visually explore test suites and quantify
test smelliness. They also demonstrate its use on test suites for
both C++ and Java systems [7]. Van Rompaey and Demeyer
also proposed a visualization of unit tests that focused on
the relations between test code and production code to help
software engineers understand the structure and quality of the
test suite of large systems [8]. Our work significantly differs
from these approaches because we are not concerned in code-
oriented issues in the tests but in their dynamic behaviour and
relationship to their physical placement.

We proposed a related approach to group related test and
code elements together, but this was based on manual classifi-
cation done by the testers and developers [20]. In the method,
various metrics are computed and used as general indicators
of test suite quality, and later it has been applied in a deep
analysis of the WebKit system [21].

There are various approaches and techniques for automat-
ically grouping different items of software systems together
based on their structural or behavioural properties. Mitchell
and Mancoridis [13] examine the Bunch clustering system
which, unlike other software clustering tools, uses search
techniques to perform clustering. Schwanke’s ARCH tool [22]
determined clusters using coupling and cohesion measure-
ments. The Rigi system [23], by Müller et al. pioneered the
concepts of isolating omnipresent modules, grouping modules
with common clients and suppliers, and grouping modules that
had similar names. The last idea was followed up by Anquetil
and Lethbridge [24], who used common patterns in file names
as a clustering criterion.



The concept of community structure arises from the analysis
of social networks in sociology. Community structures can be
identified in many other real world graphs and have applica-
tions in biology, economics and engineering, among others.
Recently, efficient community detection algorithms have been
developed which can cope with very large graphs with millions
of nodes and potentially billions of edges [4]. Application
of these algorithms to software engineering problems is
emerging. Hamilton and Danicic [14] introduced the concept
of dependence communities on program code and discussed
their relationship to program slice graphs. They found that
dependence communities reflect the semantic concerns in the
programs. Šubelj and Bajec [25] applied community detection
on classes and their static dependencies to infer communities
among software classes. We performed community detection
on method level, using dynamic coverage information as
relations between production code and test case methods,
which we believe is a novel application of the technique.

VII. CONCLUSION

This work addressed the quality of unit test suites from
a novel angle. Our approach is to compare the physical
organization of tests and tested code in the package hierarchy
to what can be observed from dynamic behaviour of the tests.
The application of community detection algorithms for the
latter is a viable approach, and we believe that this kind
of analysis of unit tests may reveal knowledge about them
not investigated earlier. Our results indicate that for realistic
systems, there are a quite lot of discrepancies between the
package based and community based structures. But it does not
necessarily mean that each of these need to be fixed in the first
place by some kind of refactoring of test code. Furthermore,
it is not generally possible to decide if there is a problem with
the placement of test cases in the package structure or with
the way test cases invoke elements of the tested code.

The latter will be our main direction for future work.
More precisely, we plan to investigate in what situations
do violations of clustering indicate the need for refactoring,
and when should we suggest moving test cases to different
packages or the internal working of the test case should be
modified instead. This way, we would obtain a real bad smell
and refactoring catalog for this particular kind of test code
quality issues. Our plans for the continuation also include
more detailed analysis of the anomaly patterns, to define more
specific cases. Finally, we would like to compare the approach
to what manual classification can reveal about the system and
the tests, and how these can be combined with other (possibly
static) test code measurement aspects.

ACKNOWLEDGMENT

This work was supported by the János Bolyai Research
Scholarship of the Hungarian Academy of Sciences.

REFERENCES

[1] L. Crispin and J. Gregory, Eds., Agile Testing: A Practical Guide for
Testers and Agile Teams. Addison-Wesley Professional, 2009.

[2] “JUnit Java unit test framework homepage,” http://junit.org/, last visited:
2016-05-27.

[3] P. Hamill, Unit Test Frameworks: Tools for High-Quality Software
Development. O’Reilly Media, Inc., 2004.

[4] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, “Fast
unfolding of communities in large networks,” Journal of statistical
mechanics: theory and experiment, vol. 2008, no. 10, p. P10008, 2008.

[5] S. Fortunato, “Community detection in graphs,” Physics reports, vol.
486, no. 3, pp. 75–174, 2010.

[6] R. Black, E. van Veenendaal, and D. Graham, Foundations of Software
Testing: ISTQB Certification. Cengage Learning, 2012.

[7] M. Breugelmans and B. Van Rompaey, “Testq: Exploring structural
and maintenance characteristics of unit test suites,” in WASDeTT-1: 1st
International Workshop on Advanced Software Development Tools and
Techniques, 2008.

[8] B. Van Rompaey and S. Demeyer, “Exploring the composition of unit
test suites,” in Automated Software Engineering-Workshops, 2008. ASE
Workshops 2008. 23rd IEEE/ACM International Conference on. IEEE,
2008, pp. 11–20.

[9] G. Meszaros, xUnit test patterns: Refactoring test code. Pearson
Education, 2007.

[10] A. Zaidman, B. V. Rompaey, S. Demeyer, and A. v. Deursen, “Mining
software repositories to study co-evolution of production & test code,”
in 1st International Conference on Software Testing, Verification, and
Validation, April 2008, pp. 220–229.

[11] T. Mens, “Introduction and roadmap: History and challenges of software
evolution,” in Software evolution. Springer, 2008, pp. 1–11.

[12] T. M. Pigoski, Practical software maintenance: best practices for
managing your software investment. Wiley Publishing, 1996.

[13] B. S. Mitchell and S. Mancoridis, “On the automatic modularization of
software systems using the bunch tool,” IEEE Transactions on Software
Engineering, vol. 32, no. 3, pp. 193–208, 2006.

[14] J. Hamilton and S. Danicic, “Dependence communities in source code,”
in Software Maintenance (ICSM), 2012 28th IEEE International Con-
ference on. IEEE, 2012, pp. 579–582.

[15] “GitHub homepage,” https://github.com/, last visited: 2016-05-27.
[16] “Clover Java and groovy code coverage tool homepage,”

https://www.atlassian.com/software/clover/overview, last visited:
2016-05-27.

[17] D. Tengeri, F. Horváth, Á. Beszédes, T. Gergely, and T. Gyimóthy,
“Negative effects of bytecode instrumentation on Java source code
coverage,” in Proceedings of the 23rd IEEE International Conference on
Software Analysis, Evolution, and Reengineering (SANER 2016), Mar.
2016, pp. 225–235.

[18] S. Wagner and D. Wagner, Comparing clusterings: an overview. Uni-
versität Karlsruhe, Fakultät für Informatik Karlsruhe, 2007.

[19] A. v. Deursen, L. Moonen, A. v. d. Bergh, and G. Kok, “Refactoring test
code,” in Extreme Programming Perspectives, G. Succi, M. Marchesi,
D. Wells, and L. Williams, Eds. Addison-Wesley, 2002, pp. 141–152.

[20] D. Tengeri, Á. Beszédes, T. Gergely, L. Vidács, D. Havas, and
T. Gyimóthy, “Beyond code coverage - an approach for test suite assess-
ment and improvement,” in Proceedings of the 8th IEEE International
Conference on Software Testing, Verification and Validation Workshops
(ICSTW’15); 10th Testing: Academic and Industrial Conference - Prac-
tice and Research Techniques (TAIC PART’15), Apr. 2015, pp. 1–7.

[21] L. Vidács, F. Horváth, D. Tengeri, and Á. Beszédes, “Assessing the test
suite of a large system based on code coverage, efficiency and unique-
ness,” in Proceedings of the IEEE 23rd International Conference on
Software Analysis, Evolution, and Reengineering, the First International
Workshop on Validating Software Tests (VST’16), Mar. 2016, pp. 13–16.

[22] R. W. Schwanke, “An intelligent tool for re-engineering software modu-
larity,” in Software Engineering, 1991. Proceedings., 13th International
Conference on. IEEE, 1991, pp. 83–92.

[23] H. A. Müller, M. A. Orgun, S. R. Tilley, and J. S. Uhl, “A reverse-
engineering approach to subsystem structure identification,” Journal of
Software Maintenance: Research and Practice, vol. 5, no. 4, pp. 181–
204, 1993.

[24] N. Anquetil and T. Lethbridge, “Extracting concepts from file names: a
new file clustering criterion,” in Proceedings of the 20th international
conference on Software engineering. IEEE Computer Society, 1998,
pp. 84–93.

[25] L. Šubelj and M. Bajec, “Community structure of complex software
systems: Analysis and applications,” Physica A: Statistical Mechanics
and its Applications, vol. 390, no. 16, pp. 2968–2975, 2011.


