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Abstract—State-of-the-art fault localization tools provide a
ranked list of suspicious code elements to aid the user in
this debugging activity. Statistical (or Spectrum-Based) Fault
Localization (SFL/SBFL) uses code coverage information of test
cases and their execution outcomes to calculate the ranks. We
propose an approach (called iFL ) in which the developer interacts
with the fault localization algorithm by giving feedback on the
elements of the prioritized list. Contextual knowledge of the user
about the current item (e. g., a statement) is exploited in the
ranked list, and with this feedback larger code entities (e. g., a
whole function) can be repositioned in the list. In our initial set of
experiments, we evaluated the approach on the SIR benchmark
using simulated users. Results showed significant improvements
in fault localization accuracy: the ranking position of the buggy
element was reduced by 72% on average, and iFL was able to
double the number of faults that were positioned between 1-5.

Index Terms—Statistical fault localization, spectrum based
fault localization, testing, interactive debugging, user feedback.

I. INTRODUCTION

Debugging is one of the most difficult and time consuming
tasks in software development and evolution, since it involves
human participation to a large degree and its subtasks are
difficult to automate. In this work, fault (bug) localization is
addressed, a necessary subactivity in which the root causes of
an observed failure are sought.

There is a class of approaches to aid fault localization
which are quite popular among researchers, called Statistical
Fault Localization (SFL), or Spectrum-Based Fault Localiza-
tion (SBFL) [1]–[3]. Recent studies highlighted some barriers
to the wide adoption of SFL, including a high number of
suggested elements to investigate [4], [5], and validity issues of
empirical research [6], among others. Kochar et al. performed
a systematic analysis of practitioner’s expectations in the
field [7], and also identified a number of challenges.

The basic intuition behind SFL is that those code elements
(statements, functions, etc.) are more suspicious to contain a
fault that are exercised by comparably more failing test cases
than passing ones, while non-suspicious elements are traversed
mostly by passing tests. One way to express the suspiciousness
is to assign a value to each code element, a suspiciousness
score, which can be used to rank the code elements.

When this ranked list is given to the developer for in-
vestigation, it is hoped that the fault will be found near
the beginning of the list, hence providing a useful advice.
A possible approach to measure the effectiveness of a SFL
method is to investigate the average rank position of the actual

faulty element relative to the total number of code elements [1]
(henceforth the Expense metric). In particular, research showed
that if the faulty element is beyond the 5th (or 10th according
to some other studies) element, the method will not be used
by practitioners because they need to investigate too many
elements in vain [3]–[5], [7].

There are many different scoring mechanisms, but these
are essentially all based on four fundamental statistics: counts
of passing/failing and traversing/non-traversing test cases in
different combinations [1], [3], [8]. Xie et al. examined the
equivalence and hierarchy between a number of formulae [8],
while Yoo et al. showed that there does not exist a perfect
scoring formula which outperforms known techniques found
by humans or even by automatic search-based methods [9].

One additional reason an SFL formula may fail is what
researchers call coincidental correctness [10]–[12] (i. e., the
situation when a test case traverses a faulty element without
failing). This can happen quite often since not all exercised
elements may have impact on the computation performed by
a test case [12], and if there are relatively more such cases
than traversing and failing test cases, the suspiciousness score
will be negatively affected [10].

In this work, we propose a form of an Interactive Fault
Localization approach, called iFL , which tries to address these
inherent challenges by involving the user’s knowledge about
the system. In traditional SFL, the developer has to investigate
several locations before finding the faulty code elements, and
all the knowledge he or she a priori has or acquires is not
used. In our approach, the developer interacts with the fault
localization algorithm by giving feedback on the elements of
the prioritized list. Contextual knowledge of the user about the
next item is exploited in the ranked list (e. g., a statement),
with which larger code entities (e. g., a whole function) can
be repositioned in their suspiciousness. This way, the next
proposed suspicious elements can be influenced in the hope
to reach the faulty element earlier.

We evaluated the approach on the SIR benchmark [13]
using simulated users and measureming the Expense metric
improvements with respect to the traditional SFL method
Tarantula [14]. In this initial set of experiments, we observed
significant improvements in fault localization accuracy: the
ranking position of the buggy element was reduced by 72%
on average, and iFL was able to double the number of faults
that were positioned between 1-5.
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II. MOTIVATING EXAMPLE

For illustration, consider the example in Table I. This is a
part of program replace from the SIR. Line 116 is a predicate
inside function dodash, where an artificial fault is seeded: the
relation is changed and the +1 part is deleted (the original
version of the code line is shown in a comment). There are
three other functions in this program that closely participate
in exposing this particular fault, getccl, omatch and locate.
Function getpat is first called from the main program which
indirectly calls getccl and eventually dodash to calculate and
return a value. This value is subsequently passed to change
and eventually to omatch and locate where the fault will be
manifested in form of failing test cases.

Table I also shows the coverage relationship between some
typical test cases and the code elements in question, which ex-
pose different behavior with respect to the suspicious elements.
We can see that there are passing and failing test cases, and that
they are exercising different parts of the program. The faulty
statement is traversed both by passing and failing test cases.
Column ‘0. iteration’ corresponds to the suspiciousness scores
computed by the Tarantula method along with the ranking
position of the elements (ties are handled by averaging the
positions of elements with the same score). It can be seen that
there are several lines in functions getccl, omatch and locate
that have higher scores than the faulty one from dodash, which
will push it to the 11th-13th place.

We can explain the failure of the SFL in this case as follows.
Recall the Tarantula formula for a code element s [14]:

T (s) =

ef (s)
ef (s)+nf (s)

ef (s)
ef (s)+nf (s) +

ep(s)
ep(s)+np(s)

,

where the functions ef (s), nf (s), ep(s) and np(s) count
the number of test cases that execute s and fail, do not
execute s and fail, execute s and pass, do not execute s and
pass, respectively. Table II shows the four basic statistics for
lines 116 (the actual fault), 366 (one of the most suspicious
statements in the initial ranking) as well as 145 and 321 (the
two most suspicious statements in intermediate iterations of
our algorithm). We can observe that all failing test cases
are exercising statement 116 (30/30), while only (25/30)
statement 366. This, in itself, would make the first statement
more suspicious, however, the counts for the passing test
cases will change the result. In particular, a lot more passing
test cases exercise statement 116 (2280/5511) than statement
366 (1066/5511). In other words, there are comparably more
coincidentally correct tests for the actual faulty statement than
for the other, and despite the correct ordering in terms of
failing test cases, the final score will flip their relatioship.

III. INTERACTIVE FAULT LOCALIZATION

Our approach to improve SFL is to leverage the background
and acquired knowledge of the developer about the system
being debugged. Assuming that the SFL is performed on
statement level, the developer could potentially make decisions
on function level as well, thus guiding the SFL process in

bigger steps. In our approach, we call this the contextual
knowledge because, if given a code element (a statement), the
developer could leverage the knowledge about its context (the
function) and feed this information back to the SFL engine.

Suppose that the developer of our example is performing
SFL and starts with the first highest ranked element, statement
366 (see columns 4-7 in Table I). Now, the developer looks
at the function this statement belongs to and concludes that it
is not likely to contain the fault (because it was not changed
recently, or the developer examined it in a previous debugging
session, etc.). This knowledge is then fed back to the SFL
engine, which in turn reduces the suspiciousness scores for all
contained elements to 0, sending other highly ranked elements
to the end of the list. In the next iteration, the next highest
suspicious element is given to the user, statement 321 of
function locate. Now, based on contextual knowledge, the
developer decides that this function is not suspicious as a
whole, so the scores of all contained statements are reduced
to 0. This is repeated for line 145 in the next iteration. These
steps result in pushing several other elements to the end of the
list, and moving the faulty element, statement 116, to the next
rank position. This terminates the fault localization process
with success. In this example, the effort required to locate
the fault was reduced from 12 steps to only 5 (3 steps for
removing the three functions and two steps in the final iteration
to select the middle one from the three elements with the same
suspiciousness score1).

Fig. 1. Basic process of Interactive Fault Localization

This example illustrates the basic approach we use to
improve SFL. Introducing user feedback to the loop has been
proposed by other researchers as well, though using different
approaches. The developer typically has additional information
about the system of which the SFL engine is not aware of. For
example, Li et al. [15], [16] reuses the knowledge about pass-
ing parameter values in a debugging session, Hao et al. [17]
asks for feedback about the execution trace, Gong et al. [18]
asks only for a simple yes/no feedback for a given statement.
To our knowledge, contextual information about higher level
entities (for instance, statement vs. enclosing function) has not
yet been leveraged for interactive SFL.

1Selecting the middle element in the case of score ties is the approach we
have chosen because it reflects the expected localization effort in terms of the
rank positions.



TABLE I
EXAMPLE CODE AND FAULT LOCALIZATION PROCESS WITH SEEDED FAULT

Source code Test cases Scores and ranks
Line Code 557 560 855 857 864 0. iteration 1. iteration 2. iteration 3. iteration

93 void dodash(delim, src, i, dest, j, maxset) • • • • • 0.658 (23.) 0.658 (20.) 0.658 (7.) 0.658 (5.)
115 else if ((isalnum(src[*i - 1])) && (isalnum(src[*i + 1])) • • • • 0.677 (14.) 0.677 (12.) 0.677 (5.) 0.677 (4.)
116 &&(src[*i - 1] > src[*i])) { //faulty version • • • • 0.707 (11.) 0.707 (9.) 0.707 (2.) 0.707 (1.)116 //&&(src[*i - 1] <= src[*i + 1])) { //original version
118 for (k = src[*i-1]+1; k<=src[*i+1]; k++) • • • • 0.707 (12.) 0.707 (10.) 0.707 (3.) 0.707 (2.)
122 *i = *i + 1; • • • • 0.707 (13.) 0.707 (11.) 0.707 (4.) 0.707 (3.)
123 }

131 bool getccl(arg, i, pat, j) • • • • • 0.658 (24.) 0.658 (21.) 0.658 (8.) 0
144 } else
145 junk = addstr(CCL, pat, j, MAXPAT); • • • 0.709 (10.) 0.709 (8.) 0.709 (1.) 0

305 bool locate(c, pat, offset) • • • • • 0.762 (5). 0.762 (3.) 0 0
313 flag = false; • • • • • 0.762 (6.) 0.762 (4.) 0 0
314 i = offset + pat[offset]; • • • • • 0.762 (7.) 0.762 (5.) 0 0
315 while ((i > offset)) { • • • • • 0.762 (8.) 0.762 (6.) 0 0
317 if (c == pat[i]) { • • • • • 0.765 (4.) 0.765 (2.) 0 0
318 flag = true; • • • 0.677 (15.) 0.677 (13.) 0 0
319 i = offset; • • • 0.677 (16.) 0.677 (14.) 0 0
320 } else
321 i = i - 1; • • • • • 0.768 (3.) 0.768 (1.) 0 0
322 }
323 return flag; • • • • • 0.762 (9.) 0.762 (7.) 0 0

327 bool omatch(lin, i, pat, j) • • • • •
366 if (locate(lin[*i], pat, j + 1)) • • • 0.811 (1.) 0 0 0
367 advance = 1; • 0.665 (18.) 0 0 0
368 break; • • • 0.811 (2.) 0 0 0

Pass/Fail Status P F F F P

TABLE II
BASIC SFL STATISTICS FOR THE EXAMPLE PROGRAM

Line ef ep nf np Tarantula score

116 30 2 280 0 3 231 0.707
145 25 1 882 5 3 629 0.709
321 30 1 662 0 3 849 0.768
366 25 1 066 5 4 445 0.811

Figure 1 shows a conceptual overview of our approach. The
process starts by calculating an initial rank based on some
traditional SFL approach (we used Tarantula, but any other
method could be used as well). The elements are then shown
to the user starting from the beginning of the list, and the SFL
engine is waiting for user feedback. The user investigates the
recommended element and gives one of the following answers:
1) fault is found, 2) element is not faulty, neither its context,
3) element is not faulty, but the fault is somewhere within the
context, or 4) don’t know. In our approach, the user makes the
feedback, but in the present state of our research, we perform
the experiments using simulated users.

Based on the feedback, the SFL engine performs the follow-
ing actions. In the case of (1), the process terminates, while at
(4) it is continued as usual with the next suspicious element
(this means that in the worst case when the developer has
no background knowledge, the method falls back to the pure
SFL approach). In the remaining two cases, the SFL engine
makes adjustments to the suspiciousness scores, recalculates
the ranking and shows the next element from the new list to
the user in the next iteration.

In our experiments, we used the following approach: in case
of (2), the whole context (i. e., function) gets 0 score, while
for (3) everything but the context is reduced to 0. This means

that we are assuming the following about the user: A) We
assume that the developer is competent and is able to give
reliable answers of types (2) or (3), so that we can safely
perform the nullation of the scores B) We assume that the
developer can make a decision about the context as a whole,
i. e., she can decide about every statement of a function in one
step. If the developer would need to investigate each statement
individually, we would fall back to the traditional process.

If these assumptions hold, the ranking position of the faulty
element can only be reduced. Performing a sensitivity study to
assess the effects of user imperfections on the improvements
provided by iFL is a topic for future work.

IV. DESCRIPTION OF THE EXPERIMENT

The iterative approach requires the interaction between the
user and the fault localization engine. At this phase of research,
we are using simulated users, since an empirical study with
actual human participation would require a large effort with
uncertain outcomes. The same approach has been followed by
most of the related research, e. g. [17], [18].

The main goal of our study was to find out how much
improvement in localization effectiveness and accuracy can
iFL achieve over a traditional non-interactive SFL method?

A. Experiment Setup

For SFL, we used the Tarantula algorithm [14] for sus-
picioness score calculation, since it is reported to be one
of the most successful ones in different settings [3], and
is often referred in literature. Regarding the user responses
and SFL engine actions, we adopted a relatively simple but
strict approach (meaning that there are no intermediate or
uncertain responses or actions). Of the four possible responses
explained in Section III, we will not use the fourth one, “don’t



know”. Furthermore, the given strategy for the actions will
be employed, that is, reducing either the whole context or
everything but the context to 0.

For user simulation, we used the actual position of the
known fault, looking at its context and comparing it to the
context of the actually recommended element in the rank list.
We then generated the corresponding answers.

B. Evaluation Method

For computing the effectiveness of an SFL method, we
follow the strategy to look at “elements that need to be
investigated” by the programmer before finding the fault [1],
using the “expected case” in the case of ties of the suspicioness
scores [19]. We express this in a set of measures called
Expense with two variants: an absolute one counted with the
number of code elements (E) and a relative version compared
to the length of the rank list (E′), which is the program
size. Relative expense is frequently used in literature, but
Parnin and Orso argued that absolute rankings are more helpful
in practical situations [5]. The following formulae express
precisely how to calculate these values (following [20]):

E =
|{i|si > sf}|+ |{i|si ≥ sf}|+ 1

2
, E′ =

E

N
· 100% ,

where N is the number of code elements, for i ∈ {1, . . . , N}
si is the suspiciousness score of the ith code element and f
is the index of the faulty code element.

To compare the iFL method to the traditional SFL, we will
compute the Expense metrics (both absolute and relative) for
both approaches, and compare them in terms of improvement
relative to traditional SFL. In each iteration of the approach
one block of code is decided upon (either the function of the
context or everything outside it), hence each iteration will be
counted as an equivalent of one rank position for calculating
Expense. The amount of improvement will then be calculated
for each defect and suitable averages will be produced.

Apart from the general average improvement, there is a
set of improvements which are particularly important. As
mentioned earlier, the practical usability of SFL depends on
the position of the faulty element (in absolute terms, not in
relative). Recent user studies report that developers tend to
investigate only the top 5 or at most the top 10 elements in the
recommendation list provided by localization methods before
giving up [4], [7]. To measure and express the improvement
between iFL and the traditional SFL approach, we used the
concept of accuracy following Sohn and Yoo [21]. It counts
the number of faults that have been localized within the top n
places of the ranking (@1, @3 and @5).

C. Subject Programs

Seven small C/C++ programs from the Software-artifact
Infrastructure Repository (SIR) [13] were included in the
experiments, which are the so-called “Siemens” suite. This
benchmark contains seeded faults, which were produced by
mutation, and both the original and faulty versions are avail-
able. The subject programs are listed in Table III. Column 2

shows the size of the programs in lines of code (LOC) includ-
ing the comment and empty lines, along with the number of
executable code elements (CE) for which coverage information
could be obtained. In column 3, the number of functions in the
program is given (this corresponds to the context in iFL ). The
number of test cases in the test suite is presented in column
4, while the 5th one contains the number of available faulty
versions (each version has exactly one fault in it).

The last column (Number of suitable faults) of Table III
shows the number of defects we were able to use in the
experiments: 1) We filtered out versions where there were
multiple faulty code elements; 2) We omitted faults where
GCOV was unable to record coverage e. g., headers and
macros; 3) We omitted cases where the suspiciousness score of
the faulty code element assigned by the actual SFL technique
was zero (these cannot contain the fault due to no failing test
cases traversing them).

TABLE III
DETAILS OF SUBJECT PROGRAMS FROM SIR

Program LOC No. Tests No. No. suitable
(CE) func. faults faults

printtokens 726 (277) 18 4 130 7 1
printtokens2 570 (262) 19 4 115 10 7
replace 564 (400) 21 5 542 32 22
schedule 412 (225) 18 2 650 9 2
schedule2 374 (198) 16 2 710 10 4
tcas 173 (95) 9 1 608 41 31
totinfo 565 (187) 7 1 052 23 18

Total 3 384 (1 644) 108 21 807 132 85

V. RESULTS

Table IV shows the improvements iFL achieved on SIR.
The performance of the original SFL algorithm can be seen
in column 2, which we used as the reference to evaluate iFL.
Both absolute and relative versions of the Expense measure
defined in Section IV are provided. A summarization row
is provided as well with the corresponding average values.
SFL prioritized the faulty code elements to the 25th place
on average, which means that 15% of the executable code
elements must be examined on average to find the faulty one.

Column 3 contains the same data for iFL, which produces
an Expense of 6.86 (4.25%) on average. This means that in
this case a programmer would need only about 7 steps to
find the fault on average, which is notably better than for the
original algorithm. Column 4 shows the difference between
the absolute and relative Expense measures. Column 5 of the
table contains a summary of improvements in terms of relative
changes in the Expense values, (that is, the difference over the
SFL base value in percentage), which is 72.42% on average.

Relative improvements are presented in more detail in
Figure 2 in form of distributions per subject program. The
median of the relative differences is similar for all programs,
it is around 50-80%. But, for some subjects, the values take a
wide range and for others they are more concentrated.

Table V shows the results of the accuracy metric for both
traditional SFL and iFL . We can observe that iFL has much



TABLE IV
E (E′) OF TARANTULA AND iFL ON SIR

Program Tarantula iFL Diff. Impr.

printtokens 5.00 ( 1.81%) 2.00 ( 0.72%) -3.00 ( -1.08%) 60.00%
printtokens2 30.71 (11.72%) 7.21 ( 2.75%) -23.50 ( -8.97%) 76.51%
replace 19.18 ( 4.80%) 4.70 ( 1.18%) -14.48 ( -3.62%) 75.47%
schedule 10.75 ( 4.78%) 5.50 ( 2.44%) -5.25 ( -2.33%) 48.84%
schedule2 77.38 (39.02%) 14.25 ( 7.18%) -63.12 (-31.84%) 81.58%
tcas 21.65 (22.78%) 5.58 ( 5.87%) -16.06 (-16.91%) 74.22%
totinfo 26.00 (13.90%) 10.33 ( 5.53%) -15.69 ( -8.39%) 60.36%

Average 24.85 (15.43%) 6.86 (4.25%) -17.99 (-11.19%) 72.42%
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Fig. 2. SIR improvement distribution by programs

TABLE V
ACCURACY OF TARANTULA AND iFL ON SIR

Program @1 @3 @5
SFL iFL Diff. SFL iFL Diff. SFL iFL Diff.

printtokens 0 0 - 0 1 +1 1 1 -
printtokens2 1 2 +1 3 4 +1 4 4 -
replace 2 5 +3 6 14 +8 7 18 +11
schedule 0 0 - 0 1 +1 1 1 -
schedule2 0 0 - 0 0 - 0 1 +1
tcas 0 5 +5 6 9 +3 6 18 +12
totinfo 0 0 - 2 3 +1 5 6 +1

Total 3 12 +9 17 32 +15 24 49 +25

higher accuracy than Tarantula in all three settings. For faults
that were found in the 1st ranking position, iFL delivers 4
times more items compared to Tarantula. In the other two cases
(@3 and @5), the advantage is practically twice as with the
original algorithm. These are significant improvements, since
accuracy counts the number of faults that have been localized
within the most useful top n places of the ranking.
Summary: Compared to Tarantula, iFL achieved 72%
improvement in Expense, and resulted in 12, 32 and 49
faults in the top 1, 3 and 5 ranking positions, respectively,
which means a 2-4 times better accuracy than Tarantula.

VI. RELATED WORK

SFL/SBFL is one of the main approaches to fault local-
ization [1]. However, these methods are still finding their
way to be employed in practice [6], [7], [22]. For instance,
most studies are carried out using artificial faults [3], and
still the faulty element is usually placed far from the top
of the rankings [4], [5]. Abreu et al. [20] investigated the

accuracy of fault localization methods in practice. Since SFL
heavily relies on the coverage and the pass/fail information,
test suite properties directly affect fault localization [11], [23].
GZoltar [24] provides the ranked list of diagnosis candidates
to help the user in practice. The FLINT method [25] improves
the effectiveness of fault localization by trying to reduce the
Shannon entropy regarding the locality of the fault.

Our approach is to use a context aware feedback method,
hence the closest related works to our approach are the ones
that change the ranking of program elements based on the
user feedback iteratively [15]–[18], [26], [27]. Among these
there are three closely related works [17], [18], [27]. These
papers also incorporate the Siemens suite into their set of
subject programs. However, the setup of the experiments and
the metrics used for the evaluation are different in every case,
which makes it difficult to compare our results directly to
the reported ones in these works. The differences include the
set of defects, the total number of code elements, different
interpretation of the localization effectiveness metrics, etc.

For reference, Gong et al. report [18] that their approach
yields about 12% absolute improvement in Expense over
Tarantula. The best performing approach of Hao et al. [17]
is reported to achieve about 8% in a similar measure. Lei et
al. [27] used a similar metric to ours to measure the relative
effectiveness improvement. They conclude that the improve-
ment is around 21% compared to the 72% achieved by iFL.

We concentrated on the analysis of test case executions, but
there are other approaches for fault localization as well. These
include, slicing [28], statistical [29], model [30], mutation [31],
metamorphic testing [32], and IR-based techniques [33].

Approaches, that may incorporate user feedback, are loosely
related to the topic of this article e. g., the works of Zeller et
al. on delta debugging [34], crowd debugging [35], Lin et
al. [36], as well as algorithmic debugging and testing [37].

VII. CONCLUSIONS

In this work, we presented iFL , an approach to extend tra-
ditional Statistical Fault Localization by providing the ability
for the developer to interact with the SFL algorithm. The user
gives feedback on the elements of the prioritized list, based
on which the suspiciousness scores are adjusted. We exploit
contextual knowledge of the user about the next item in the
ranked list, with which larger code entities can be repositioned
in their suspiciousness.

In the present phase of the research, we used simulated
users, which might not accurately represent real life scenarios.
However, the empirical results show quite big improvements
with respect to a traditional method: the localization efficiency
in terms of Expense improved on average by 49-82% com-
pared to Tarantula. Furthermore, considering the most impor-
tant top n items of the ranked lists, our approach has 2-4 times
better accuracy than the original SFL algorithm. This lets us
believe that usable improvements would be obtained also with
real users, which suffer from various imperfections such as
limited knowledge and error proneness. It is therefore our next
goal to evaluate the method by simulating user imperfection



and eventually with real users and various expense measures,
and on different benchmarks. We also plan to investigate
how the different user actions affect our method, and other
strategies for the adjustment of suspiciousness scores.

Measurement data are available at: http://tinyurl.com/ifldata
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