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Abstract

A framework for the reduced-scaling implementation of excited-state correlation

methods is presented. An algorithm is introduced to construct excitation-specific local

domains, which include all the important molecular orbitals for the excitation as well

as for the electron correlation. The orbital space dimensions of the resulting compact

domains are further decreased utilizing our reduced-cost techniques developed previ-

ously [J. Chem. Phys. 148, 094111 (2018)] based on the natural auxiliary function and

local natural orbital approaches. Additional methodological improvements for the eval-

uation of density matrices are also discussed. Benchmark calculations are presented at

the second-order algebraic-diagrammatic construction level. Compared to our reduced-

cost algorithm significant, up to 3–9-fold speedups are achieved even for systems of
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smaller than 100 atoms. At the same time the additional errors introduced by the do-

main approximations are highly acceptable being about 2–4 meV on the average. The

presented reduced-scaling algorithm allows us to carry out correlated excited-state cal-

culations using triple-ζ basis sets with diffuse functions for systems of up to 400 atoms

or 13000 atomic orbitals in a matter of days using an 8-core processor.

1 Introduction

The interest in excited-state calculations of molecular systems has been significantly increas-

ing over the past decades, which encourages the development of more and more efficient

quantum chemical approaches for excited states. Accordingly, many theories have become

accessible over the time to investigate excited-state and transition properties, such as the

widely-used time-dependent density functional theory (TD-DFT),1,2 as well as the simple

semi-empirical3–6 and the more complex electron correlation7–29 wave function-based meth-

ods. Nowadays, the most popular approaches are the various TD-DFT methods since their

computational costs are relatively low, while the results obtained are adequate in most cases.

Such methods can be routinely applied to molecular systems of greater than 100 atoms, while

excitation energies can be recovered, in average, within 0.3 eV using the best functionals.

However, the drawbacks of TD-DFT are well-known for some challenging cases,30,31 such as

Rydberg and charge transfer (CT) states, or π → π∗ excitations of conjugated systems.

In general, more consistent and accurate results can be expected from the propagator-

based13,14 and coupled-cluster (CC) approaches utilizing the equation-of-motion7,8 (EOM)

or the linear-response9–11 theories. Using such methods arbitrary accuracy can be attained,

nevertheless, the computational demand of the high-accuracy methods imposes serious lim-

itations in practice. Appropriate compromises between calculation time and accuracy are

the simplest methods arising from the aforementioned theories, the second-order algebraic-

diagrammatic construction [ADC(2)]25,32 approach and the approximate second-order CC

singles and doubles (CC2) method,16–18 respectively. While the first effective implementa-
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tion and extensive applications of the latter were presented by Hättig and co-workers,19–21

the former was mostly studied in detail by Dreuw et al.33–37 Both methods are iterative

and scale as the fifth power of the systems size, however, it should be noted that, despite

their similar numerical accuracy, the ADC(2) method is more efficient. Since the secular

matrix for ADC(2) is Hermitian, one should solve only one system of equations to compute

excitation energies and transition properties.

Taking into account their scaling, the upper limit of the applicability of the ADC(2) and

CC2 approaches is around 50 atoms or 2000 basis functions. To make them competitive with

the less robust and accurate TD-DFT methods38–40 for more extended systems, effective ap-

proximations are needed to reduce computation times and storage requirements. The most

severe bottlenecks in the calculations are the evaluation and the storage of the four-center

electron repulsion integrals (ERIs) and the calculation of the intermediates including them.

Several approaches, such as the density fitting (DF) or the Cholesky-decomposition (CD)

techniques, avoid this problem by forming ERIs or intermediates in an alternative way. In

the DF scheme developed by Shavitt,41 Whitten,42 and Dunlap43 the four-center ERIs are

written as the products of two- and three-center integrals using an auxiliary (fitting) basis

set, which greatly facilitates the storage of integrals. Two further related methods worth

mentioning are the tensor hypercontraction44–46 and the natural auxiliary function (NAF)47

schemes, which go beyond the DF approximation. Both of them have been successfully ex-

tended to excited-state calculations.48–50 In the CD approach introduced by Koch et al.51,52

the four-center ERI tensor is decomposed, and the Cholesky-vectors giving negligible con-

tributions are disregarded. The benefits of the CD approach were also demonstrated for

CC2.53–55 Another simple technique for reducing the costs of correlated excited-state meth-

ods is the restricted virtual space approach, where the high-lying canonical virtual molecular

orbitals (MOs) are neglected. This approach was also tested at the ADC(2) and CC2 lev-

els.56–60

The approximations discussed above do not use or contain any information about the
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excited state. Significantly more efficient methods can be developed by determining the

MOs that play an important role in the excitation. One of the most popular schemes is

the natural orbital (NO) approximation,61–63 with which the MO space where the equations

are solved can be effectively reduced. In the NO approach, a one-particle density matrix,

which is formed using a lower-level wave function, is diagonalized, and the orbitals with

significant importance are selected from the resulting NOs. The approach is widely utilized

for ground-state calculations,64–67 and after a few early attempts, its importance for excited-

state theories started to increase recently.49,50,68–71 The developed approaches are not only

suitable for relatively cheap methods, such as ADC(2) and CC2 but could also extend the

applicability of higher-order ab initio methods to medium-sized molecules.

Further computational savings can be achieved if one takes advantage of the locality of

the MOs.72,73 In this case, not only the time required for the calculations is decreased, but

at the same time the scaling of the methods is also reduced. The first excited-state local

approaches were presented by Korona and Werner74 and Crawford et al.,75 who generalized

the ground-state local CC singles and doubles (CCSD) method of Werner and co-workers76 to

EOM-CCSD. In the local EOM-CCSD method developed by the former authors, the doubles

amplitudes were restricted using the information by inspecting the configuration interaction

singles (CIS) wave function,74 which idea has been taken over in several subsequent studies.

Thereafter, Korona, Schütz, Kats, and their co-workers developed various excited-state CC

methods using local approaches.77–82 In later publications the development of local CC2

and ADC(2) methods was reported,77,83 which were also extended to the calculation of

molecular properties78 and improved with Laplace transform techniques.79–82 Parallel to

those efforts, further papers were published by Russ and Crawford about the calculation of

excited-state properties.84,85 Promising results were also obtained by Hättig et al. extending

the pair natural orbital (PNO) approach to excited-state theories.86–89 The chain of spheres

exchange90 and the back transformed PNO based91–93 approaches developed by Izsák et

al., and the state-averaged PNO-EOM-CCSD scheme94 of Valeev et al. represent further
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cost-reducing ideas in this category. The recent local framework for calculating excitation

energies (LoFEx)95–97 and the correlated natural transition orbital framework (CorNFLEx)71

approaches of Baudin and Kristensen introduce somewhat different strategies. The latter is

an encouraging combination of the NO and the local approaches, where the reduced domains

of the MOs are constructed by analyzing an approximate second-order density matrix and

considering distance criteria for the orbitals. A comprehensive study was recently published

on the topic of reduced-cost approximations by Crawford, Kumar, and co-workers.98

In this paper we introduce a new approach to reduce the computation time for correlated

excited-state calculations. Our recent reduced-cost technique50 is combined with a state-

dependent local domain construction scheme, which also reduces the scaling of the algorithm.

It is worth emphasizing that the domain construction is completely automatic and free from

any distance-based parameters. The proposed algorithm adopts to the complexity of both the

ground- and the excited-state wave function. We discuss the most important considerations

about the domain assembly, and further improvements are presented for the density matrix

construction with respect to our latest work. The errors introduced by the approximations

are assessed in detail in various benchmark comparisons at the ADC(2) level. Finally, we

carry out calculations for extended molecular systems, which have not been possible so far.

2 Theory and implementation

2.1 Domain construction

The basic assumption of the theory presented here is that only a subset of molecular orbitals

contribute dominantly to an excited-state wave function, and the number of these orbitals

does not increase with the size of the system. Consequently, it is a good approximation to

evaluate the corresponding matrix elements within domains compiled from such orbitals. In

order to find an ideal domain construction algorithm, one important consideration should

be kept in mind. Since it is highly advantageous to solve the ground- and excited-state
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equations in the same basis, the domain should contain all the MOs which are required for

the adequate description of both states. Accordingly, for the excited state the domain has

to contain all the occupied and virtual MOs involved in the excitation. However, as these

orbitals can be far apart, it is desirable to augment the MO list with other orbitals that are

spatially close to the former ones. While the first step is essential for the excited state, the

latter is required for the accurate calculation of the ground-state wave function. To facilitate

the following discussion the most frequently used indices are collected in Table 1.

Table 1: Summary of index notations

µ, ν, . . . atomic orbitals (AOs)
p, q, . . . general (quasi-)canonical orbitals
i, j, . . . (quasi-)canonical occupied orbitals
a, b, . . . (quasi-)canonical virtual orbitals
i′, j′, . . . occupied localized molecular orbitals (LMOs)
a′, b′, . . . projected atomic orbitals (PAOs)
P,Q, . . . auxiliary functions

Following the early ideas of Korona and co-workers,74,77 to select the important MOs

involved in the excitation, we first solve the following CIS eigenvalue problem:

σCIS = ACISc = ωCISc, (1)

where ACIS is the CIS Jacobian, ωCIS stands for the CIS excitation energy, c contains the

corresponding singles coefficients, and σCIS is the so-called CIS sigma vector. It is important

to mention that this step does not require any additional calculation because the CIS or

another lower-level solution is anyway required for the demanding correlation calculations

as a starting guess. Since the CIS wave function is only necessary as an initial guess and

to determine the dominant orbitals, approximations can be introduced that speed up the

CIS calculations, such as the recently developed local fitting approach.99 After the CIS

calculation the canonical occupied MOs are localized using the Boys algorithm, while, to
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span the virtual space, projected atomic orbitals (PAOs)72 are constructed as

|a′〉 =

(
1−

∑
i′

|i′〉〈i′|
)
|µ〉. (2)

The CIS coefficients are transformed to the bases obtained as ca′i′ =
∑

iaCii′Caa′c
a
i , where Cii′

(Caa′) stands for the MO coefficient of the occupied LMO (PAO) basis. Subsequently, we

determine the order of the orbitals characterizing the importance of their contribution to the

wave function. To that end, motivated by Refs. 74 and 77, the norm of each column and row

of matrix ca′i′ is evaluated for all LMOs (PAOs), and these values are sorted into ascending

order. Starting from the largest one the squares of the norms are summed up until the sum

becomes larger than a predefined threshold TLMO (TPAO). The selected LMOs (PAOs) form

the P1(i
′) [P2(a

′)] domain. Obviously, the size of the domains can be arbitrarily controlled

with the threshold, furthermore, if the corresponding threshold is set to 1.0, all the orbitals

will be selected.

It is important to keep in mind that this procedure selects the important orbitals only

for the CIS wave function. If the overlap of the CIS and the single excitation part of the

final wave function is relatively small, it may be required to augment the domains with

additional orbitals. This problem was also realized by Kats and Schütz in the their local

CC2 approach,79 and it was resolved by the on-the-fly extension of the orbital domains in

the course of the diagonalization. Here, we propose a simpler, a priori extension scheme. It

can be assumed that the occupied orbitals involved in the excitations are close to each other

for a particular state, for example, they can be found on a chromophore group. Analogously,

the similar can be supposed for the virtual orbitals. Thus, if the domains are supplemented

with the environment of the selected orbitals, presumably all the important orbitals will be

chosen for the excitation. The orbital list extension procedure is illustrated in Fig. 1 and

performed as follows. First, a loose Boughton–Pulay (BP) atom list100 is defined for all the

LMOs using the TBPol completeness criteria. If this value is sufficiently chosen, only a few
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atoms are selected on which the corresponding LMO is practically localized. Thereafter, we

inspect for each LMO that is not included in the domain P1(i
′) whether its BP domain has

a common atom with the BP atom list of the LMOs already included in the P1(i
′) list. This

descriptor can be considered as a coarse-grained overlap measure of the two LMOs, hence

it provides a system specific, wave function-based tool and allows us to avoid the use of

distance-based criteria. If their overlap is significant with the LMOs of P1(i
′) in the form of

a common atom, the domain is augmented with the corresponding LMO. The P1(i
′) extended

with the surrounding LMOs will be denoted by P3(i
′). A similar process is executed for the

PAO domain. In this case, the atom domain assigned to a PAO consists of just one atom, the

atom on which AO µ of Eq. (2) is located. For simplicity, this atom will be referred to as the

central atom of the PAO. For each PAO included in the P2(a
′) list, all the other PAOs are

added to the domain which have central atoms common with PAOs included previously. The

extended domains will be denoted by P4(a
′). It is easy to see that P1(i

′) [P2(a
′)] is a subset

of the P3(i
′) [P4(a

′)] domain, and the latter contains information about the environment of

the orbitals involved in the excitation.

The excitations can also take place between two distant parts of the system. In this

case, the P3(i
′) and P4(a

′) domains can be very far from each other. If only the selected

orbitals were used in the calculations, the ground state correlation energy and amplitudes

would be close to zero, and of course, the excitation energy would also be highly inaccurate.

Accordingly, further supplementation of the domains is carried out, which is an important

advancement in our scheme compared to the related models.71,95 For that purpose we select

those PAOs which are close to the LMOs already included in the domain, and vice versa. At

this point we could use both the corresponding concise [P1(i
′), P2(a

′)] and extended [P3(i
′),

P4(a
′)] lists. Our numerical experience shows that the smaller domains are sufficient for

this purpose. Thus, in domain P5(a
′) all the PAOs are collected whose central atom can

be found in the BP atom list of the LMOs of the P1(i
′) list. Analogously, we inspect the

central atoms of the PAOs from the P2(a
′) list. If at least one of these atoms can be found in
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Figure 1: Illustration of the domain construction scheme. The dark blue, dark green, light
blue, light green, red, and yellow colors refers to the P1(i

′),P2(a
′),P3(i

′),P4(a
′),P5(a

′), and
P6(i

′) domains, respectively.

the BP domain of any LMO, the latter is added to the P6(i
′) list. The final domain, which

presumably includes all the important orbitals for the excitation and the electron correlation,

is formed as the union of the compiled lists: Pf(i
′, a′) = P3(i

′) ∪ P4(a
′) ∪ P5(a

′) ∪ P6(i
′).

It is important to note that, in practice, there may be a significant overlap among the

P1(i
′),P2(a

′),P3(i
′),P4(a

′),P5(a
′), and P6(i

′) domains.

The AO and auxiliary bases are also restricted to a smaller part of the molecular system

in order to achieve reduced scaling. These restrictions are again made system specifically

to ensure the accurate representation of the MOs and integrals required in the domain. To

exploit the locality of the LMOs in the integral transformation steps, each of the LMOs of

P3(i
′) ∪ P6(i

′) is projected onto a BP domain constructed with a significantly tighter BP

criterion (TBPot). For more details we refer to the documentation of our ground state local

correlation approaches.101,102 The union of such extended atom lists defines the initial atom

and correspondingly the AO list of the domain. In our experience the complete AO list of
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the domain is also sufficient to accurately expand the PAOs of the domain, in spite of the

fact that the PAOs are significantly more delocalized. In rare cases, PAOs located at the

edge of the domain are truncated too severely to be useful in the forthcoming correlation

energy calculations. In our ground-state schemes those handful of PAOs are simply discarded

from the higher level treatment, which can be afforded because their correlation energy

contribution would be negligible. We adopt this approach for the PAOs of P4(a
′) and P5(a

′).

In order to retain the most important PAOs of P2(a
′) in the domain, if necessary at all,

the atom list of the domain is extended with the most important BP atoms of the P2(a
′)

PAOs (controlled by TBPp), yielding the final domain atom and AO lists. Analogously, for

the accurate and efficient density fitting of each LMO-PAO pair density of the domain, the

auxiliary functions are used that are placed on the atoms of the union of the TBPol atom lists

of the LMOs included in P3(i
′) ∪ P6(i

′).

The quasi-canonical MO basis construction of the domain follows closely the scheme of

our ground-state methods.101,103 In brief, the truncated LMOs are re-orthogonalized in the

metric of the domain’s AO basis, and then they are canonicalized utilizing the projection

of the Fock matrix onto the AO basis of the domain. The PAOs are also projected onto

the entire AO basis of the domain. The resulting functions are orthogonalized, the possible

quasi-linear-dependency of this basis is removed, and then all the PAOs are canonicalized

within the domain. This procedure yields the occupied (i) and virtual (a) quasi-canonical

MO bases of the domain. The required occupied-virtual and occupied-occupied three-center

two-electron integrals are then constructed relying on our highly-optimized, integral-direct,

low-scaling integral transformation implementation as discussed in Refs. 101 and 102.

We note that, as mentioned above, we use Boys LMOs, which do not preserve the separa-

tion of the σ- and π-orbitals. Of course, the domain construction algorithm outlined in this

subsection can be applied with other types of LMOs, such as Pipek–Mezey104 or intrinsic

bond orbitals,105 which are free of this issue. We prefer Boys orbitals because our experience

shows that they are somewhat more localized than the aforementioned alternatives resulting
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in smaller domains and shorter computation times.67,101–103 On the other hand, the mixing

of σ- and π-orbitals does not worsen the accuracy of the computed spectral properties or

increase the computation time as the surrounding σ- and π-orbitals are anyway selected by

our scheme.

2.2 Utilizing the NAF and NO approximations in the domain

Since the procedure performed in the domain is very similar to the algorithm described

in detail in our previous publications,49,50 only the most important formulas and modifica-

tions will be discussed in this subsection. In the DF approach the four-center ERIs can be

approximated with the

(pq|rs) =
∑
Q

JQpqJ
Q
rs , (3)

expression, and the J quantities are constructed from two- and three-center two-electron

integrals, (P |Q) and (pq|P ), respectively, in the form of

JQpq =
∑
P

(pq|P )(P |Q)−1/2, (4)

where (P |Q)−1/2 is the corresponding element of the inverse square root of the two-center

integral matrix. The NAF approach47 is a very efficient tool to reduce the size of the

auxiliary basis for excited-state calculations.49,50,71 Although the approximation is not based

on any physical or chemical consideration, it is very similar to the well-known natural orbital

approach. It utilizes the singular value decomposition of J to construct a reduced auxiliary

basis. In practice, it is more favorable to compute the singular vectors as the eigenvectors

of matrix W with elements

WPQ =
∑
pq

JPpqJ
Q
pq . (5)

The eigenvectors of this matrix, the so-called NAFs, are the right singular vectors of matrix

J, and the eigenvalues are the squares of the singular values. Using a predefined threshold,
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εNAF, the less important NAFs can be dropped to get a more compact representation of

J. It is easy to see that the J matrix transformed to the compressed basis is the best

approximation to the original J.

In the NO approximation the virtual-virtual block of the one-particle density matrix,

Dab = 〈Ψ|a+b−|Ψ〉 , (6)

is constructed and diagonalized, where a+ and b− are creation and annihilation operators,

as well as Ψ denotes a lower-level wave function. The eigenvectors of this matrix are the

virtual natural orbitals (VNOs), while its eigenvalues are interpreted as the corresponding

occupation numbers of the NOs. The VNOs with smaller occupation numbers usually give

a smaller contribution to the wave function. Accordingly, using a predefined truncation

threshold denoted by εVNO, the less important VNOs can be selected and disregarded. Our

previous studies49,50 have shown that VNOs derived from state-averaged density matrices

are highly suitable for the calculation of excitation energies and transition properties. This

density matrix is formed as D = (DMP2 + DCIS(D))/2, where DMP2 and DCIS(D) denote the

density matrices obtained from the second-oder Møller–Plesset (MP2) and the CIS with

perturbative second-order correction [CIS(D)] wave functions. The virtual-virtual block of

the approximate one-particle MP2 density matrix in a spatial orbital basis can be written

in the

DMP2
ab = 2

∑
ijc

tcaij t
cb
ij (7)

form, where the above first-order amplitudes, tabij , are given as

tabij =
(ia|jb)

εi + εj − εa − εb
=

(ia|jb)
Dab
ij

=

∑
Q J

Q
iaJ

Q
jb

Dab
ij

, (8)

with εi (εa) as the occupied (virtual) orbital energy. One of the bottlenecks of the MP2

density calculation is the assembly of the (ai|bj) integral list, which scales as n2
occn

2
virtnaux,
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where nocc, nvirt, and naux stand for the number of occupied orbitals, virtual orbitals, and

auxiliary functions, respectively. It can be seen that the computational requirements of the

above operation can be linearly reduced by decreasing the number of auxiliary functions.

If the three-center two-electron integrals represented in the NAF basis are employed in the

expression, the density can be calculated with arbitrary precision by changing a threshold,

which is different from εNAF and will be denoted by εNAFd. As we will see it in Sect. 3.2,

our numerical experience shows that about half of the NAFs can be dropped without any

significant inaccuracy in the final results. Accordingly, the computation times required for

the density construction can be about halved.

The CIS(D) density matrix is formed as the sum of the density matrices obtained from the

CIS wave function and its second-order perturbative correction. The latter, the approximate

D(D) contribution, analogously to the MP2 density, is defined as

D
(D)
ab = 2

∑
ijc

ccaij c
cb
ij . (9)

Here, the CIS(D) doubles coefficient, cabij , is given as

cabij =

∑
c[(ac|bj)cci + (ai|bc)ccj]−

∑
k[(kj|ai)cbk + (ki|bj)cak]

Dab
ij + ωCIS

=
V ij
ab + V ji

ba

Dab
ij + ωCIS

, (10)

where we have introduced a shorthand notation

V ab
ij =

∑
Q

JQbjY
Q
ai =

∑
Q

JQbj

(∑
c

JQacc
c
i −
∑
j

JQij c
a
j

)
. (11)

In general, it can be stated that the computation and storage of the occupied-virtual and

occupied-occupied blocks of the J integrals are feasible in the main memory. However, it

is not true for the more demanding virtual-virtual block. In order to avoid the expensive

index transformation from the AO to the MO basis and the unfavorable disk input/output

operations, an integral-direct route is followed for the calculation of intermediate Y Q
ai . To
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that end, the first term in the definition of the intermediate is recast in the

Y Q
ai ←

∑
c

JQacc
c
i =

∑
cµν

CµaCνcJ
Q
µνc

c
i (12)

form. First, we perform the half-transformation of the CIS coefficient by Cνc and then the

contraction of the AO integral list with the resulting half-transformed coefficient. At this

operation, the sparsity of the half-transformed coefficient matrix can be exploited utilizing

that Eq. (9) is invariant to the unitary transformation of the occupied indices. If the

occupied index is transformed to the LMO basis, a restricted domain can be constructed

for each occupied orbital inspecting the cνi′ =
∑

iCii′c
ν
i coefficients, and the transformation

in Eq. (12) can only be carried out for the AOs of the domain. This restricted domain

for a given LMO contains solely the AOs of atoms for which at least one AO has a large

element in the coefficient matrix and gives significant contribution to intermediate Y. To

select the corresponding atom list for LMO i′, the square of the matrix elements belonging

to AOs on the given atom are summed. If this value is larger than a predefined threshold,

εMOd, the AOs of the selected atom are added to the domain. It is easy to see that the

size of the domain can be arbitrarily controlled with the threshold. In addition, the NAF

approach can also be utilized for the calculation of intermediate V. The auxiliary index of

three-index quantities, that is, integrals JQbj and intermediates Y Q
ai , can be replaced by NAFs.

Unlike in the previous case, at this step we have found it advantageous to construct NAFs

that are optimal for both the J and the Y matrices. Therefore matrix W is constructed

with elements WPQ =
∑

ai(J
P
aiJ

Q
ai + Y P

ai Y
Q
ai ) and the 2εNAFd truncation threshold is applied.

Nevertheless, similar to the MP2 density, half of the NAFs can be safely neglected also in

this case.

Having the state-averaged density matrix for the corresponding excited state at hand,

the matrix is diagonalized and the NOs are canonicalized. Subsequently, the integrals are

transformed to the NO basis, which can be performed much more economically as the size
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of the NO basis is significantly smaller than that of the original MO basis. The final NAFs

for the excited-state calculations are formed at this point using all the occupied-occupied,

occupied-virtual, and virtual-virtual blocks of the NO integral list. The three-center quanti-

ties expressed in the compact NO and NAF bases can be easily stored in the main memory,

and the calculation can be performed without any modification in the canonical code.

2.3 General algorithm

To conclude this section we overview our general algorithm for the present reduced-scaling

approach.

1. Solve Hartree–Fock equations

2. Localize orbitals using Boys algorithm, construct the Boughton–Pulay atom lists

3. Solve CIS equations for all the excited states using our integral-direct local-fitting

algorithm,99 transform the CIS wave function to the LMO/PAO basis

4. Loop over excited states

4.a. Analyze the CIS wave function, select LMOs and PAOs important for the

excited state to construct domains P1(i
′) and P2(a

′)

4.b. Augment the domains with LMOs and PAOs important for the correlation

utilizing the BP atoms lists to construct domains P3(i
′), P4(a

′), P5(a
′), and P6(i

′),

and their union, the excited-state-dependent local domain Pf(i
′, a′)

4.c. Diagonalize the Fock matrix within the Pf(i
′, a′) domain to get the excited-

state-specific quasi-canonical MOs

4.d. Integral transformation to compute the occupied-virtual and occupied-occupied

three-center two-electron integrals in the quasi-canonical MO basis
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4.e. Calculate the MP2 and CIS(D) density with the aid of the NAF approach,

diagonalize the density matrices to construct the NO basis of the domain, truncate

the NO basis

4.f. Diagonalize the Fock matrix within the truncated NO basis to construct the

state-specific canonicalized NO basis

4.g. Transform the MO indices of the three-center integrals to the canonicalized

NO basis

4.h. Calculate NAFs in the canonicalized NO basis and transform the auxiliary

function index of the three-center integrals to the final NAF basis

4.i. Solve the excited-state problem within the state-specific canonicalized NO/NAF

basis

End loop

The algorithm presented is similar but contains essential changes compared to our pre-

vious reduced-cost scheme.49,50 First, the CIS problem is solved utilizing our effective and

almost error-free local-fitting approximation.99 Second, a state-dependent local domain is

constructed. The operations performed in the domain are very similar to the steps of the

reduced-cost approach, but some further approximations have been introduced for the den-

sity matrix calculation. That is, the NAF approach is exploited at the calculation of the

densities, and, in addition, an LMO-based AO domain is constructed for the intermediate

calculation utilizing the sparsity of the CIS coefficients in the domain. The virtual-virtual

block of the three-center integrals is not constructed explicitly for the densities, it is first

calculated in the small NO basis.

Notice that, in our scheme, each excited state is computed independently with a state-

specific MO and auxiliary function basis. Consequently, the resulting excited-state wave

functions will not be orthogonal to each other, which also means that the computation of

transition moments between two excited states would require further considerations.
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3 Results

3.1 Computational details

The new approach has been implemented in the Mrcc suite of quantum chemical programs

and will be available in the next release of the package.106

Since a CT excitation between two distant systems would probably be the biggest chal-

lenge for domain construction, we chose a well-known example from the literature and cus-

tomized it to inspect the errors introduced by the MO space reduction. The basic idea

originates from the paper of Dreuw et al.,31 where a CT transition of an ethylene – tetrafluo-

roethylene system was studied. If the separation is large enough, more than around 10 Å, the

matrix elements for a ground-state correlation calculation between the occupied orbitals on

one of the subunits and the virtual orbitals on the other subunit are practically zero. From

this point of view, the chosen example is fortunate, however, the final domain would contain

the entire molecules as they are rather small. Therefore, to be able to study the effects of

the truncation of the MO space and to determine the truncation parameters, an undecane

skeleton was connected to both subunits. The resulting tridec-1-ene – 1,1,2-trifluorotridec-

1-ene system, hereafter referred to as the CT system, is satisfactory in all aspects. The

coordinates are available in the supplementary material. For this test system Dunning’s

correlation consistent triple-ζ basis set (cc-pVTZ) were used,107,108 and the corresponding

auxiliary bases developed by Weigend et al. were employed.109–111

To benchmark the cutoff parameters for the density calculation with the selected MO

space truncation thresholds, the phenothiazine-isoalloxazine dyad (dyad for short)77 was

chosen. This molecule is one of the smallest ones from our benchmark set but large enough

to test the effects. In addition, its four lowest excited states include several important types

of excitations. In these calculations, the triple-ζ AO and auxiliary basis sets augmented with

diffuse functions (aug-cc-pVTZ)109,112 were applied.

With the selected truncation parameters, further benchmark calculations were performed
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to assess the errors and speedups for real-life compounds. For this purpose, a set of realistic

systems containing 51-127 atoms was assembled. These widely-studied molecules were taken

from the literature,49,50,77–81,95,96,99,113 and most of them are real challenges for local excited-

state methods since they have Rydberg or CT excitations, as well as conjugated or delocalized

electronic structures. Our test set includes the two borondipyrromethene-flavin dyads [Flv(a)

and Flv(b)],78 the above dyad molecule,77 a perylene bisimide derivative (bisimide deriva-

tive),113 leupeptin,95 met-enkephalin,95 D21L6,80 and the pyrene-phenothiazine-isoalloxazine

triad (triad).77 For these calculations, the aug-cc-pVTZ basis set was applied as well. To

demonstrate the applicability of the method, additional calculations were carried out for even

larger systems including up to 400 atoms and 13000 AOs. Two of the selected compounds

(C60Im–ZnP–BDP and WW-6 dye) play important roles in photovoltaics,114–116 bivalirudin

is a notable synthetic polypeptide in biochemistry,96 and the hydrated formamide (FA)

model is an excellent system to study the effects of the explicit solvation.71 The structure

of the molecules is depicted in the supplementary material. For the Zn atom in the solar

cell dyes, the auxiliary functions for the def2-QZVPPD117 basis were used. The sizes of the

investigated systems are collected in Table 2.

In the excited-state calculations the core orbitals were kept frozen. The oscillator strengths

(f) were evaluated in the dipole length approximation. The reported computation times are

wall-clock times determined on a machine with 128 GB of main memory and an 8-core 1.7

GHz Intel Xeon E5-2609 v4 processor.

3.2 Convergence with the truncation thresholds

First, using the constructed CT system, convergence tests were performed at the ADC(2)

level to determine the threshold parameters used for the domain construction. The structure

of the model system is presented in Fig. 2. Since the primary aim of these studies was to

identify the errors introduced by the domain approximations, the NO and NAF approxima-

tions were not utilized in these calculations. The BP parameters for the LMO (TBPot) and
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Table 2: The size of the systems studied and the number of the basis functions.

Number of Number of Number of
Molecule atoms AOs auxiliary functions
Flv(a) 51 2001 4506
Dyad 53 2051 4639
Bisimide derivative 60 2346 5280
Leupeptin 68 2254 4928
Met-enkephalin 75 2649 5891
CT system 78 1556 3819
Flv(b) 78 2829 6288
D21L6 98 3412 7590
Triad 127 4650 10383
C60Im–ZnP–BDP 202 8097 18431
Bivalirudin 293 10304 22778
WW-6 dye 311 10604 23445
FA@144 H2O 438 13455 28968

Figure 2: The CT model system and the orbitals involved in the CT excitation studied.

PAO (TBPp) atom lists were carefully selected for our ground-state local correlation meth-

ods,101,102 and no circumstances require their modification for the excited-state approach.

Accordingly, we employ the values determined in our previous studies, TBPot = 0.9999 and

TBPp = 0.98. In addition, the loose LMO atom list threshold, TBPol, is only necessary to

select the most important atoms, so the TBPol = 0.95 value is expected to be appropriate.

Consequently, systematic benchmarks are presented only for two of the so far introduced
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thresholds, for the most important ones, namely TLMO and TPAO.

Unfortunately, the effects of these two parameters are difficult to examine separately in

practice. The primary purpose of the TLMO (TPAO) threshold is to control the number of

important LMOs (PAOs), which are required to properly describe the excitation (see the

scheme of Sect. 2.1). However, it is obvious that the number of the LMOs (PAOs) included

in domain P6(i
′) [P5(a

′)] depends on the value of TPAO (TLMO) and the size of domain P4(a
′)

[P3(i
′)]. In other words, if all PAOs are selected to domain P4(a

′), regardless of the value

of TLMO, all LMOs would be added to the final domain. This is required to accurately

evaluate the correlation contribution of the orbitals. The same statements can be made

about the relationship of domain P3(i
′) and the final number of the PAOs. Nevertheless, the

role of the two thresholds are much less coupled for two distant systems, and their effects

can be discussed separately for such cases. For the selected model system, the excitation

occurs from the trifluorotridecene unit to the tridecene unit. If one sets TLMO to 1.0, all the

LMOs and PAOs are selected on the trifluorotridecene unit, however, the number of orbitals

on the other unit can be controlled arbitrarily. In this case, the size of P2(a
′) is directly

influenced by threshold TPAO, but, of course, this also affects the additional selected orbitals

in domains P4(a
′) and P6(i

′). On the other hand, if TPAO is set to 1.0, all the LMOs and

PAOs are selected on tridecene, but the number of the selected LMOs, PAOs, as well as

the sizes of the domains P1(i
′), P3(i

′), and P5(a
′) can be varied with threshold TLMO on the

trifluorotridecene unit. The errors with respect to the canonical ADC(2) calculation and the

sizes of the domains are visualized in Fig. 3.

Inspecting the plots in both cases we can observe that the decrease of the errors, apart

from a short interval, are monotonic in the entire range. Considering that the error should

be less than an order of magnitude smaller than the intrinsic error of the ADC(2) method,

which is 0.2 to 0.3 eV, the TPAO and TLMO thresholds must necessarily be equal to or tighter

than 0.92 and 0.999, respectively. Relying on the results of further numerical experiments

and threshold combinations, we recommend TPAO = 0.94 and TLMO = 0.999 as the default

20



0.00

0.05

0.10

0.15

0.20

0.6 0.7 0.8 0.9
0

20

40

60

80

100
E

rr
o

r 
in

 t
h

e
 e

x
c
. 
e
n

e
rg

y
 /
 e

V

P
e
rc

e
n

ta
g

e
 o

f o
rb

ita
ls

 s
e
le

c
te

d
 

o
n

 th
e
 triflu

o
ro

trid
e
c
e
n

e
 u

n
it

TPAO

P6 (i’) domain

P2 (a’) domain

P4 (a’) domain

0.00

0.05

0.10

0.15

0.20

1 2 3 4 5
0

20

40

60

E
rr

o
r 

in
 t

h
e
 e

x
c
. 
e
n

e
rg

y
 /
 e

V

P
e
rc

e
n

ta
g

e
 o

f o
rb

ita
ls

 s
e
le

c
te

d
 

o
n

 th
e
 trid

e
c
e
n

e
 u

n
it

−lg(1−TLMO)

P1 (i’) domain

P3 (i’) domain

P5 (a’) domain

Figure 3: Error of the ADC(2) excitation energy (blue) and the size of the domains (red)
as a function of the corresponding truncation threshold. A charge transfer state with the
canonical ADC(2) excitation energy of 12.03 eV was selected as reference. See the text for
further details.

truncation parameters, as well as TLMO = 0.9999 as a tight threshold for occupied orbitals.

This choice ensures that the error in the excitation energies introduced by the LMO and

PAO truncation is sufficiently small with the default thresholds, while the tight value for

the LMO truncation allows the calculation of more accurate properties. For our CT system,

with TPAO = 0.94, only 24% of the PAOs are selected based on the CIS excitation vector, but

they are taken from many atoms. As a result, unfortunately, almost all the PAO orbitals are

included in domain P4(a
′), and all the LMOs are selected to the domain P6(i

′). Hence, the

PAO truncation on trifluorotridecene unit is practically error-free. In contrast, significant

gains come from neglecting LMOs on the tridecene unit. At TLMO = 0.999 (0.9999), 27%

(33%) of the LMOs are included in domain P1(i
′). This is supplemented to 50% (56%)

based on the BP domains, and 38% (47%) of the PAOs are selected for the correlation. The

truncation of the AO and auxiliary bases seems to be very conservative because it does not

have any significant effect on the error introduced. With the default (tight) threshold, if

both the PAOs and LMOs are restricted, the error in the excitation energy is 0.02 (0.01) eV.

The selection of the appropriate εMOd and εNAFd parameters for the density calculation

requires further numerical analysis. For this study, the dyad molecule was chosen, and the
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NAF and VNO approaches within the domain were utilized with the default εNAF = 0.1 a.u.

and εVNO = 7.5× 10−5 cutoff thresholds for the NAF and VNO selection, respectively. The

results are visualized in Fig. 4. Inspecting the plots we can observe that the errors decrease
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Figure 4: Error of the ADC(2) excitation energy as a function of the εMOd (left panel)
and εNAFd (right panel) truncation thresholds for the four lowest excited states of the dyad
molecule. The reference is the case where no further approximations are used for the density
construction.

continuously with tightening the parameters. The use of the LMO-based AO domains instead

of the full AO list in Eq. (12) becomes practically error-free at the εMOd = 10−6 value for

all the excitations of this test system. Note also that the evaluation of intermediate Y does

significantly not contribute to the total wall-clock time since the rate-determining step in Eq.

(12) scales as n2
AOnoccnaux, where nAO stands for the number of AOs. For these reasons the

conservative εMOd = 10−7 threshold is suggested. With this εMOd choice, the AO basis can

be compressed by about 20% for the system investigated. Presumably, this gain can be more

favorable for larger systems. Although the errors are somewhat larger in the case of the NAF

approximation, they are still under 10 meV in the inspected range. In order to minimize the

error introduced by the NAF approach, the εNAFd = 0.005 a.u. cutoff parameter is proposed.

With the selected threshold, the errors do not exceed 1 meV, while the percentage of the

dropped NAFs are around 55 and 65% for the MP2 and CIS(D) density, respectively. We

expect that the number of operations required for Eqs. (8) and (11) can be halved with

negligible errors in general since the NAF approximation is fairly system-independent.
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3.3 Benchmark calculations

Further benchmark calculations were performed for the selected realistic molecular systems

at the ADC(2) level. These systems of 51 to 127 atoms are primarily important in the

field of photochemistry. We attempted to inspect all important types of excitations, such

as valence excited states (n → π∗, σ → π∗, and π → π∗), Rydberg, as well as charge

transfer excitations. In order to compare the errors introduced by the reduced-cost and the

reduced-scaling algorithms, extensive benchmark calculations were carried out using different

truncation thresholds. For the reduced-cost algorithm, εVNO = 7.5 × 10−5 and εNAF = 0.1

a.u. thresholds were used as default values, while εVNO = 1.5 × 10−5 and εNAF = 0.1 a.u.

were applied in the tight case. In line with our previous results, we have found that the

NAF approximation is practically error-free, so further tightening of the NAF threshold is

not necessary. In the case of the reduced-scaling calculations, the εVNO = 7.5 × 10−5 and

εNAF = 0.1 a.u. thresholds were used to obtain the VNOs and final NAFs for both the default

and tight calculations. For the MP2 and CIS(D) density construction the εNAFd = 0.005 a.u.

parameter was used in every case. The default and tight calculations only differ in the

domain construction. For the former, the TLMO = 0.999 and TPAO = 0.94 cutoff parameters

were applied, while TLMO = 0.9999 and TPAO = 0.94 were used for the latter.

The errors of the excitation energies and the corresponding oscillator strengths with

respect to the best estimates are presented in Table 3. The statistical error measures given

in the table are the mean deviation (MD), the mean absolute deviation (MAD), and the

maximum absolute deviation (MAX). First, we discuss the results obtained with the reduced-

cost algorithm, because the relevant performance analysis was not part of our previous

study.50 In this case, all the errors are highly acceptable. The MD (MAD) is 5 (12) meV

for the excitation energies using the default thresholds, while the MAX does not exceed 40

meV. The oscillator strengths, except for the S4 state of the D21L6 molecule, are practically

error-free: their MD is zero, while their MAD (MAX) is 0.002 (0.022). The errors obviously

decrease by tightening the VNO threshold. The MAD and MAX are halved for the excitation
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Table 3: Reference ADC(2) excitation energies (ωref , in eV), oscillator strengths (fref), the
error of excitation energies (δω, in eV) and oscillator strengths (δf) with various approaches
using the aug-cc-pVTZ basis set.

Reduced-cost algorithm Reduced-scaling algorithm
Tight Default Tight Default

Molecule Character ωref
a fref

a δω δf δω δf δω δf δω δf

Flv(a) π → π∗ 2.593 0.294 0.000 0.002 0.008 0.008 0.003 0.015 0.006 0.029
π → π∗ 2.863 0.185 -0.003 0.000 0.005 0.002 -0.003 0.014 0.001 0.020
n, σ → π∗ 3.207 0.000 -0.004 0.000 0.012 0.000 0.016 0.000 0.017 0.000
n, σ → π∗ 3.319 0.001 -0.008 0.000 -0.009 0.000 -0.008 0.000 0.001 0.000

Dyad π → π∗ 2.939 0.170 -0.003 0.002 0.005 -0.001 -0.002 0.002 -0.001 0.003
CT 3.150 0.006 -0.002 0.000 0.017 0.000 0.016 0.000 0.016 0.000

n, σ → π∗ 3.312 0.001 -0.006 0.000 0.002 0.000 -0.010 0.000 -0.006 0.000
n, σ → π∗ 3.376 0.001 -0.006 0.000 0.012 0.000 0.016 0.000 0.025 0.000

Bisimide der. π → π∗ 2.464 0.686 0.002 -0.001 0.016 -0.003 -0.004 0.005 -0.004 0.006
π → π∗ 3.415 0.000 0.003 0.000 0.018 0.000 0.028 0.000 0.028 0.000
π → π∗ 3.636 0.000 0.000 0.000 0.015 0.000 0.006 0.000 0.006 0.000
π → π∗ 3.670 0.019 0.002 0.000 0.020 0.002 0.027 0.007 0.042 0.025

Leupeptin Rydberg 4.065 0.001 -0.013 0.000 -0.025 0.000 -0.019 0.000 -0.011 0.000
Rydberg 5.123 0.001 -0.006 0.000 -0.005 0.000 0.007 0.000 0.025 0.000
Rydberg 5.137 0.002 -0.009 -0.001 -0.006 -0.001 0.003 -0.001 0.033 0.000
Rydberg 5.289 0.003 -0.008 0.000 -0.007 0.000 -0.005 0.000 0.011 0.000

Met-enkephalin Rydberg 4.749 0.018 0.002 0.000 0.013 0.001 0.012 0.001 0.017 0.001
Rydberg 4.998 0.000 0.004 0.000 0.020 0.000 0.019 0.000 0.025 0.000
Rydberg 5.303 0.000 -0.003 0.000 -0.040 0.000 -0.036 0.000 -0.026 0.000
Rydberg 5.351 0.000 -0.014 0.000 -0.010 0.000 -0.003 0.000 0.007 0.000

Flv(b) π → π∗ 2.423 0.362 0.000 0.001 0.008 0.006 -0.006 0.018 -0.005 0.037
CT 2.746 0.000 -0.006 0.000 0.000 0.000 -0.009 0.000 0.025 0.000

π → π∗ 2.843 0.168 -0.003 0.000 0.005 0.001 -0.002 0.020 -0.004 -0.044
n, σ → π∗ 3.126 0.000 -0.005 0.000 0.011 0.000 0.018 0.000 0.024 0.000

D21L6 CT 2.588 1.051 − − 0.011 0.005 -0.005 0.012 0.011 0.022
π → π∗ 3.353 0.107 − − 0.015 0.002 -0.006 0.000 0.009 -0.010
Rydberg 3.449 0.057 − − 0.014 0.003 0.002 -0.004 0.002 0.042
Rydberg 4.036 0.040 − − 0.008 -0.022 0.010 -0.019 0.009 -0.024

Triad π → π∗ 2.811 0.111 − − − − -0.002 -0.010 -0.029 0.040
n, σ → π∗ 3.188 0.001 − − − − 0.012 0.000 0.036 0.000
π → π∗ 3.584 0.001 − − − − -0.001 0.000 0.002 0.000
π → π∗ 3.758 0.354 − − − − -0.005 0.028 0.000 -0.027

MD -0.004 0.000 0.005 0.000 0.002 0.003 0.009 0.004
MAD 0.005 0.000 0.012 0.002 0.010 0.005 0.015 0.010
MAX 0.014 0.002 0.040 0.022 0.036 0.028 0.042 0.044

a The reference value for the properties is taken from the best available calculation, which is the canonical ADC(2) value for
the Flv(a), dyad, bisimide derivative, leupeptin, met-enkephalin, and Flv(b) molecules. For the D21L6 and the triad
molecules, because of their size, only reduced-cost results are available as a reference.

energies, while the MAD is also zero for the oscillator strengths. Significant difference among

the various types of excitations cannot be observed, which suggests that the approximations

can be used in a black-box manner for arbitrary type of excited state. Concerning the

reduced-scaling algorithm, the results are also very encouraging. With the default thresholds,

the MD (MAD) of the excitation energies is 9 (15) meV, while the MAX is still 42 meV.
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In other words, with the domain construction, the error measures increase by 2-4 meV with

respect to the reduced-cost algorithm. However, if one takes a closer look at the errors,

a small amount of error compensation occurs between the domain and the reduced-cost

approximations. Despite the excellent results for the excitation energies, the errors are more

notable for the oscillator strengths. Their MD (MAD) is 0.004 (0.010), while their MAX is

0.044, which are significantly higher compared to the reduced-cost algorithm. However, as

it can be seen, the relative error in the most intense transitions is still acceptable being at

most about 10%. Accordingly, these errors have no effect on the assignation of absorption

spectra. Of course, in particular cases, it may be important to carry out more accurate

calculations, and that is why we have introduced a tighter cutoff parameter for the domain

construction. With the tight settings the error measures can be reduced by 5-7 meV for the

excitation energies and can be halved for the oscillator strengths. In this case, all the MD,

MAD, and MAX errors of the excitation energies are slightly lower compared to the default

reduced-cost algorithm, which can be explained by error compensation. The errors in the

oscillator strengths are somewhat still higher, however, they are firmly more moderate.

The above results show the accuracy of the reduced-cost and reduced-scaling algorithms,

but the computational resources required by them are also important. To characterize this,

the sizes of the bases in which the time-consuming operations were performed, the total

wall-clock times, and the overall speedups with respect to the canonical calculations are

collected. The results for the reduced-cost algorithm are presented in Table 4. Inspecting

the results we can observe that 59.7% of the VNOs and 83.3% of the NAFs can be dropped

on the average using the default thresholds. These averages are fairly representative, as the

differences between the maximum and minimum values are around 5% and 2% for the VNOs

and NAFs, respectively. Accordingly, both the operation counts in the rate-determining steps

and the memory requirement can be reduced by about a factor of 35. As the calculation

of the one-particle densities and integral transformations requires extra operations, it is

important to determine the overall speedups. The total wall-clock time in the canonical
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Table 4: The percentage of VNOs and NAFs dropped, total wall-clock times (in hours), and
overall speedups with the reduced-cost algorithm using various thresholds.

Tight Default
Dropped Dropped Total Dropped Dropped Total

Molecule VNOs NAFs wall time Speedup VNOs NAFs wall time Speedup
Flv(a) 35.8 71.8 23.7 5.2 58.1 82.2 10.8 11.5

35.7 71.8 58.1 82.1
35.9 71.9 58.4 82.2
36.0 71.9 58.4 82.2

Dyad 36.2 73.1 32.8 5.0 58.3 82.8 14.5 11.3
35.6 72.9 58.0 82.7
36.4 73.1 58.6 82.9
35.7 72.9 58.0 82.7

Bisimide der. 37.6 72.7 41.7 5.7 59.7 82.7 23.2 10.3
37.5 72.7 59.8 82.8
35.2 72.4 57.4 82.5
37.6 72.7 59.8 82.8

Leupeptin 39.5 73.5 27.1 5.0 61.6 84.2 13.4 10.1
38.2 73.3 60.3 83.9
37.7 73.2 59.8 83.9
38.4 73.3 60.5 83.9

Met-enkephalin 36.2 72.8 90.7 4.7 58.6 83.3 45.0 9.5
38.0 73.1 60.5 83.5
36.9 72.9 59.2 83.3
34.0 72.6 56.3 82.9

Flv(b) 38.7 73.0 114.6 5.9 60.7 83.3 54.5 12.3
39.1 73.0 61.3 83.4
39.3 73.1 61.5 83.5
39.4 73.1 61.6 83.5

D21L6 39.8 74.6 288.8 − 61.9 84.4 115.8 −
38.5 74.4 60.6 84.2
39.3 74.5 61.5 84.3
39.3 74.5 61.5 84.3

Triad − − − − 61.4 83.7 549.8 −
− − 59.8 83.5
− − 58.9 83.4
− − 61.7 83.8

Average 37.4 73.0 5.3 59.7 83.3 10.8
Maximum 39.8 74.6 5.9 61.9 84.4 12.3
Minimum 34.0 71.8 4.7 56.3 82.1 9.5

case contains the time required for the integral-direct CIS, MP2, and ADC(2) calculations,

which algorithms are also well-optimized. For the reduced-cost algorithm, it includes the

integral transformation from the AO to the MO basis, the computation of the complete MO

space NAFs, the time required for the CIS solution, the one-particle density calculations, the

integral transformation to the VNO basis, the final NAF construction and transformation,

as well as the time spent in the MP2 and ADC(2) calculations.50 Taking into account all of
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these steps, the overall speedup gained with the default thresholds is 10.8 in average, while

the minimum (maximum) speedup is 9.5 (12.3). The balanced speedups can be attributed

to the systematic behavior of the VNO and NAF space truncations: the percentage of both

the VNOs and NAFs retained fluctuates within a narrow range. Similar conclusions can

be drawn for the tight parameters. Then 37.4% and 73.0% of the VNOs and NAFs can be

neglected on the average, respectively, which means a reduction of about 10-times in the

size of the integral list and in the operation count of the most expensive steps. The average

speedup is 5.3, and the minimum and maximum values of the space reductions and the

speedups are also well-balanced.

The above values were also collected for the reduced-scaling algorithm together with the

corresponding parameters which are only relevant in the state-dependent local domain. The

percentage of various orbitals and functions dropped as well as the speedups with respect to

the reduced-cost algorithm are collected in Table 5.
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Table 5: Percentage of AOs, auxiliary functions, LMOs, and PAOs dropped at the domain construction; percentage of VNOs
and NAFs dropped inside the local domain with respect to the canonical bases of the domain; as well as the speedups with
respect to the reduced-cost algorithm using various thresholds.

Tight Default
Dropped Overall Dropped Overall

Molecule AOs Aux. LMOs PAOs VNOs NAFs Speedupa speedupb AOs Aux. LMOs PAOs VNOs NAFs Speedupa speedupb

Flv(a) 0.0 10.5 8.1 12.8 61.4 83.5 0.8 0.9 0.0 20.6 20.7 24.6 66.7 85.9 1.0 1.2
0.0 11.9 9.2 12.3 61.2 83.4 0.8 0.0 11.9 16.1 25.3 65.0 85.2 1.0
0.0 11.9 9.2 17.1 61.7 83.5 0.9 0.0 11.9 16.1 26.5 65.4 85.3 1.1
0.0 16.6 25.3 28.4 68.7 86.7 1.3 9.2 40.1 40.2 44.4 74.9 89.2 1.7

Dyad 0.0 1.0 0.0 5.4 58.3 82.5 0.7 0.8 0.0 3.0 4.7 11.8 60.5 83.4 0.7 0.8
0.0 1.0 0.0 0.7 57.8 82.4 0.7 0.0 1.0 0.0 0.7 57.8 82.4 0.7
10.1 31.7 32.6 33.9 72.1 88.2 1.8 23.7 41.8 39.5 45.8 75.5 89.6 2.1
0.0 1.0 0.0 0.0 57.8 82.4 0.7 0.0 1.0 0.0 2.3 58.0 82.4 0.7

Bisimide der. 0.0 3.5 0.0 6.7 59.7 82.4 0.8 1.0 0.0 3.5 0.0 8.8 59.7 82.4 0.8 1.1
0.0 28.8 28.6 32.2 71.4 87.4 1.7 0.0 28.8 28.6 32.2 71.4 87.4 1.7
0.0 5.2 2.0 12.7 58.8 82.7 0.8 0.0 5.2 2.0 12.7 58.8 82.7 0.8
0.0 9.2 12.2 20.5 62.2 84.5 1.1 0.0 28.8 28.6 32.2 68.9 87.1 1.6

Leupeptin 3.1 50.1 52.3 63.0 82.5 92.7 2.4 1.7 14.3 64.6 66.3 73.6 87.6 94.8 2.8 2.6
0.0 18.6 15.1 29.2 67.5 86.7 1.2 0.0 35.0 39.5 51.4 77.1 90.7 2.1
0.0 25.4 22.1 41.9 70.7 88.0 2.0 16.3 64.3 65.1 72.5 86.7 94.6 4.2
0.0 25.7 23.3 32.4 70.5 88.1 1.5 3.1 36.8 38.4 48.1 76.4 90.4 2.1

Met-enkephalin 53.1 63.6 64.8 67.0 85.1 94.0 5.0 5.1 54.9 67.0 69.4 71.4 87.0 94.8 5.1 5.3
53.1 63.6 64.8 64.5 85.5 94.1 5.9 54.9 67.0 69.4 68.7 87.2 94.9 6.1
33.9 43.9 49.1 48.2 78.5 91.4 4.3 37.3 51.1 56.5 54.9 81.1 92.5 4.6
37.3 47.5 51.9 50.9 78.1 91.5 5.2 38.2 51.8 58.3 56.8 80.6 92.6 5.5

Flv(b) 0.0 7.8 8.8 12.6 64.0 84.6 1.1 1.3 1.6 14.3 18.4 20.9 67.7 86.3 1.4 1.9
0.0 2.9 0.0 2.4 61.2 83.2 0.9 0.0 7.8 9.7 11.7 64.6 84.8 1.1
0.0 8.5 9.7 14.6 64.9 84.9 1.5 0.0 26.7 29.0 39.8 72.7 88.1 2.6
0.0 21.4 22.8 33.0 70.3 87.0 2.1 26.0 52.0 50.9 57.2 81.0 91.7 4.0

D21L6 12.1 24.5 22.9 27.9 70.6 87.7 2.0 2.2 14.8 30.3 28.2 40.3 73.1 88.6 2.6 2.7
12.1 24.5 22.9 27.9 69.6 87.5 2.3 14.8 29.7 27.5 35.6 71.5 88.2 2.7
6.7 18.7 17.6 22.7 68.2 86.8 1.9 6.7 24.1 25.2 29.9 70.8 88.1 2.6
12.1 24.5 22.9 27.9 70.3 87.6 2.5 13.5 27.1 26.7 31.6 71.5 88.2 2.8

Triad 4.0 17.6 15.7 23.5 66.5 85.9 1.2 2.5 9.4 24.4 23.8 29.9 69.4 87.2 1.8 3.9
7.4 14.5 11.9 21.5 64.9 85.2 1.3 7.9 25.7 29.2 36.9 72.0 88.3 2.7
43.6 68.1 68.1 69.7 86.8 94.6 8.1 44.1 69.2 71.4 71.8 87.9 95.1 8.1
25.7 58.6 59.5 64.5 84.8 93.4 7.9 42.5 69.5 68.7 74.0 88.3 94.9 8.7

Average 9.8 23.8 23.5 29.0 69.1 87.0 2.3 1.9 13.5 32.4 33.4 38.9 73.0 88.7 2.7 2.4
Maximum 53.1 68.1 68.1 69.7 86.8 94.6 8.1 5.1 54.9 69.5 71.4 74.0 88.3 95.1 8.7 5.3
Minimum 0.0 1.0 0.0 0.0 57.8 82.4 0.7 0.8 0.0 1.0 0.0 0.7 57.8 82.4 0.7 0.8

a The time required for the reduced-cost CIS calculations is distributed equally among the excited states. b Overall speedup for the entire calculation for all the investigated
states.
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The results are in line with the expectations. The sizes of the bases are heavily influenced

by several factors, thus, their comparison is rather difficult. Perhaps one of the most relevant

factors is the size of the molecule, but, in addition, the properties of the electronic structure,

the character of the excited state, and the shape of the molecular orbitals involved in the

excitation are also important. For the first three molecules no significant improvement

can be achieved. The Flv(a) and dyad molecules are relatively small (51 and 53 atoms,

respectively), while the bisimide derivative has an extended delocalized electronic structure.

However, the effective size of the system was successfully reduced for some excitations via

the domain approximation [the S4 state of Flv(a), the S3 state of the dyad, as well as the S2

and S4 transitions of the bisimide derivative]. In these cases the time required for the rate-

determining steps are decreased but the overall speedups are moderate. This can be explained

by the fact that the local-fitting CIS algorithm is more expensive than the in-core reduced-

cost CIS algorithm for these systems, and the costly integral transformation to the NO basis

must be performed for each state separately. For larger systems, significant speedups can

be gained: for the molecules above 78 atoms we observe up to 3–9-fold improvement with

respect to the reduced-cost algorithm. Comparing the default and tight thresholds, we can

observe that about 10% more LMOs are retained with the latter, however, the number of

the VNOs and NAFs does not differ significantly. That is, the accuracy of the calculation is

primarily influenced by the number occupied orbitals.

3.4 Extended systems

To demonstrate the efficiency of the algorithm presented, further calculations were performed

for more extended molecular systems. Such extensive calculations with more than 200 atoms

using the aug-cc-pVTZ basis set are not feasible on our hardware even with our reduced-

cost algorithm. The calculated excitation energies and oscillator strengths, the sizes of the

various bases, and the wall-clock times measured are collected in Table 6.
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Table 6: ADC(2) excitation energies (ω, in eV) and oscillator strengths (f) computed with the present approach, the percentage
of basis set reduction (see the caption of Table 5), as well as the wall-clock times (in hours) required for the various rate-
determining steps of the calculations using the aug-cc-pVTZ basis set.

Dropped Wall-clock time
Molecule Character ω f AOs Aux. LMOs PAOs VNOs NAFs CIS Domaina Densityb ADC(2) Total
C60Im–ZnP–BDP π → π∗ 1.826 0.000 48.0 59.3 59.5 62.5 83.6 92.9 71.1 1.9 14.7 22.9 110.6

π → π∗ 1.895 0.000 48.0 59.9 60.1 63.3 83.8 93.0 71.3 1.9 13.8 21.8 108.8
π → π∗ 2.235 0.048 46.0 61.3 62.8 64.8 84.8 93.7 58.8 1.9 11.8 5.6 78.1
π → π∗ 2.250 0.046 46.0 61.3 62.8 64.8 84.8 93.7 56.2 1.9 11.8 5.8 75.7

Bivalirudin π → π∗ 4.808 0.022 80.4 90.9 91.8 91.7 96.4 98.6 19.6 0.7 0.2 0.0 20.5
π → π∗ 5.164 0.001 70.3 85.1 88.4 87.8 94.8 98.0 25.3 0.7 0.6 0.1 26.6
π → π∗ 5.371 0.001 76.8 84.7 87.0 86.6 94.7 97.9 22.0 0.7 0.6 0.2 23.5
π → π∗ 5.769 0.103 77.2 86.1 87.0 87.4 94.6 97.8 31.8 0.7 0.6 0.3 33.3

WW-6 dye π → π∗ 1.990 0.693 33.2 56.6 53.9 65.0 84.0 92.9 114.9 2.4 53.5 38.9 209.7
FA@144 H2O n→ π∗ 5.790 0.000 46.2 93.9 90.8 93.8 97.0 98.6 90.6 2.2 1.4 0.1 94.3

a Time required for the domain construction including the transformation of CIS coefficients, calculation of PAOs, construction of BP
domains, compilation of atom and MO lists. b Time required for the calculation of NOs and NAFs including the integral transformations.
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Inspecting the results similar statements can be made as for the smaller examples. The

sizes of the bases and the wall-clock times highly depend on the factors mentioned in the

previous subsection. However, for these large molecules, all the basis set sizes can be almost

halved for any type of excitation by employing the domain approximation. Consequently,

the calculation of the VNOs and NAFs, as well as the demanding excited-state correlation

calculation can be performed with significant savings. As it can be seen, the cubic-scaling

local density fitting CIS calculation is the rate-determining step of the whole procedure in

all the cases. For the lowest excited state of the C60Im–ZnP–BDP system, which is the least

suitable for sizeable cost-reduction, the occupied, virtual, and auxiliary indices can be cut

by about 60% with the domain construction. On the basis of operation count estimates the

corresponding speedup factor for the VNO and NAF construction is about 100. The final

LMO, VNO, and NAF bases are compressed by about 63, 84, and 93% compared to the

corresponding canonical bases, thus, the speedup in the ADC(2) part is about 2000-times.

For this system the reduced-scaling CIS calculation takes 70 hours, which is approximately

65% of the total wall-clock time. This ratio and the basis set reduction are even better with

increasing system sizes.

The effects of the explicit solvation was tested on the lowest excited state of a solvated

formamide molecule with an increasing number of water molecules as introduced by Baudin

and Kristensen.71 The change of the excitation energy as a function of the size of the solvation

shell is shown in Fig. 5. The tendencies are greatly in line with those of Ref. 71 in spite of the

different basis sets (aug-cc-pVTZ here, aug’-cc-pVDZ in Fig. 9 of Ref. 71). As we can see, the

canonical calculations were performed for up to 30 water molecules, whereas the reduced-

cost approximation allowed us to carry out calculations with up to 44 solvent molecules.

Since the errors of the reduced-cost and reduced-scaling CIS results are negligible (below 5

meV), they are not presented. The maximum error of the ADC(2) excitation energy in the

considered range using the reduced-scaling algorithm is 30 meV with respect to either the

canonical or the reduced-scaling calculation. The times required for the canonical ADC(2),
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Figure 5: CIS and ADC(2) excitation energies (in eV) for solvated formamide with various
approximations using the aug-cc-pVTZ basis set.

the reduced-scaling CIS, and the reduced-scaling ADC(2) calculations including the domain

construction as well as the evaluation of VNOs and NAFs are presented in Fig. 6. The

Figure 6: Wall-clock times (in hours) required for the canonical ADC(2), reduced-scaling
CIS, and reduced-scaling ADC(2) calculations including the domain construction as well as
the VNO and NAF evaluation for the solvation of formamide.
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plots verify the effectiveness of the reduced-scaling method. As it can be seen, the ADC(2)

calculation within the domain takes the least time for all solvent region sizes using the present

reduced-scaling algorithm. The improvement in efficiency is significant even for 15 water

molecules, while the time required for the ADC(2) step of the domain calculation hardly

changes with increasing the number of water molecules. Here we can effectively exploit that

the investigated excitation is localized on the formamide molecule and its first few solvent

shells. The rate-determining step of the procedure is the cubic-scaling CIS calculation in

all the cases. This highlights the importance of employing the local fitting approximation

in our reduced-scaling CIS implementation. For instance, for the largest cluster with 144

water molecules the reduced-scaling CIS algorithm is almost two orders of magnitude faster

than the conventional one. Hence the use of quartic-scaling CIS approaches, even with

significantly smaller basis sets can be problematic for large molecules.71 Accordingly, the

local fitting approach is an effective tool to speed up the CIS, the rate-determining step of

these calculations.

4 Conclusions

An algorithm was presented for the construction of excitation-dependent local orbital do-

mains for the reduced-scaling calculation of excitation energies and transition properties.

The various aspects of the selection of the basis functions, auxiliary functions, and molec-

ular orbitals were discussed in detail. The approximation was successfully combined with

our previously developed reduced-cost techniques,49,50 further compressing the size of the

orbital domains using virtual natural orbitals and natural auxiliary functions. Additional

methodological improvements were also discussed for the calculation of MP2 and CIS(D)

density matrices, such as the utilization of the NAF approach and the sparsity of the CIS

coefficient vector.

To determine the cutoff parameters a suitable model system was constructed. Inspecting
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a charge transfer excitation between two distant systems allowed us to separately study the

effects of the thresholds and to define default and tight values for them. With the selected

thresholds, additional benchmark calculations were performed for realistic molecular sys-

tems at ADC(2) level. We compared the errors of the reduced-cost and the reduced-scaling

algorithms in detail, furthermore the performance of the approximations was also assessed.

Our results show that the errors introduced by the domain construction were highly accept-

able, being about 2-4 meV. In turn, on top of the about an order of magnitude performance

improvement of the reduced-cost approach, an additional, up to 3–9-fold speedup can be

achieved even for systems of smaller than 100 atoms. The conservative cutoff parameters

and the reduced-scaling algorithm enable us to perform accurate, reduced-scaling ADC(2)

calculations for excitation energies and transition properties using triple-ζ basis sets with

diffuse functions for systems of up to 400 atoms in a matter of days using a moderate, 8-core

processor.

Supporting Information

The structure of the molecules studied and the Cartesian coordinates for the CT system.

This information is available free of charge via the Internet at http://pubs.acs.org

Acknowledgments

The authors are grateful for the financial support from the National Research, Development,

and Innovation Office (NKFIH, Grant No. KKP126451). This work was also supported

by the BME-Nanotechnology FIKP grant of EMMI (BME FIKP-NANO). The computing

time granted on the Hungarian HPC Infrastructure at NIIF Institute, Hungary, is gratefully

acknowledged.

34



References

(1) Casida, M. E. In Computational Chemistry: Reviews of Current Trends ; Chong, D. P.,

Ed.; World Scientific: Singapore, 1999; Vol. 1.

(2) Casida, M. E.; Huix-Rotllant, M. Progress in Time-Dependent Density-Functional

Theory. Annu. Rev. Phys. Chem. 2012, 63, 287.

(3) Ridley, J.; Zerner, M. An intermediate neglect of differential overlap technique for

spectroscopy: Pyrrole and the azines. Theor. Chim. Acta 1973, 32, 111.

(4) Zerner, M. C.; Loew, G. H.; Kirchner, R. F.; Mueller-Westerhof, U. T. An Interme-

diate Neglect of Differential Overlap Technique for Spectroscopy of Transition-Metal

Complexes. Ferrocene. J. Am. Chem. Soc. 1980, 102, 589.

(5) Weber, W.; Thiel, W. Orthogonalization corrections for semiempirical methods. Theor.

Chem. Acc. 2000, 103, 495.

(6) Koslowski, A.; Beck, M. E.; Thiel, W. Implementation of a general multireference

configuration interaction procedure with analytic gradients in a semiempirical context

using the graphical unitary group approach. J. Comput. Chem. 2003, 24, 714.

(7) Stanton, J. F.; Bartlett, R. J. The equation of motion coupled-cluster method. A

systematic biorthogonal approach to molecular excitation energies, transition proba-

bilities, and excited state properties. J. Chem. Phys. 1993, 98, 7029.

(8) Watts, J. D.; Bartlett, R. J. The inclusion of connected triple excitations in the

equation-of-motion coupled-cluster method. J. Chem. Phys. 1994, 101, 3073.

(9) Koch, H.; Jørgensen, P. Coupled cluster response functions. J. Chem. Phys. 1990, 93,

3333.

35



(10) Koch, H.; Jensen, H. J. A.; Jørgensen, P.; Helgaker, T. Excitation energies from the

coupled cluster singles and doubles linear response function (CCSDLR). Applications

to Be, CH+, CO, and H2O. J. Chem. Phys. 1990, 93, 3345.

(11) Rico, R. J.; Head-Gordon, M. Single-reference theories of molecular excited states with

single and double substitutions. Chem. Phys. Lett. 1993, 213, 224.

(12) Čížek, J. On the Correlation Problem in Atomic and Molecular Systems. Calcula-

tion of Wavefunction Components in Ursell-Type Expansion Using Quantum-Field

Theoretical Methods. J. Chem. Phys. 1966, 45, 4256.

(13) Oddershede, J. Polarization Propagator Calculations. Adv. Quantum Chem. 1978, 11,

275.

(14) Oddershede, J. Propagator methods. Adv. Chem. Phys. 1987, 69, 201.

(15) Roos, B. O.; Taylor, P. R.; Siegbahn, P. E. M. A complete active space SCF method

(CASSCF) using a density matrix formulated super-CI approach. Chem. Phys. 1980,

48, 157.

(16) Christiansen, O.; Koch, H.; Jørgensen, P. The second-order approximate coupled clus-

ter singles and doubles model CC2. Chem. Phys. Lett. 1995, 243, 409.

(17) Christiansen, O.; Koch, H.; Jørgensen, P.; Helgaker, T. Integral direct calculation of

CC2 excitation energies: singlet excited states of benzene. Chem. Phys. Lett. 1996,

263, 530.

(18) Hald, K.; Hättig, C.; Yeager, D. L.; Jørgensen, P. Linear response CC2 triplet excita-

tion energies. Chem. Phys. Lett. 2000, 328, 291.

(19) Hättig, C.; Weigend, F. CC2 excitation energy calculations on large molecules using

the resolution of the identity approximation. J. Chem. Phys. 2000, 113, 5154.

36



(20) Hättig, C. Geometry optimizations with the coupled-cluster model CC2 using the

resolution-of-the-identity approximation. J. Chem. Phys. 2003, 118, 7751.

(21) Köhn, A.; Hättig, C. Analytic gradients for excited states in the coupled-cluster model

CC2 employing the resolution-of-the-identity approximation. J. Chem. Phys. 2003,

119, 5021.

(22) Oddershede, J.; Jørgensen, P. An order analysis of the particle-hole propagator. J.

Chem. Phys. 1977, 66, 1541.

(23) Nielsen, E. S.; Jørgensen, P. Transition moments and dynamic polarizabilities in a

second order polarization propagator approach. J. Chem. Phys. 1980, 73, 6238.

(24) Oddershede, J.; Jørgensen, P.; Yeager, D. L. Polarization propagator methods in

atomic and molecular calculations. Comp. Phys. Rep. 1984, 2, 33.

(25) Schirmer, J. Beyond the random-phase approximation: A new approximation scheme

for the polarization propagator. Phys. Rev. A 1982, 26, 2395.

(26) Trofimov, A. B.; Stelter, G.; Schirmer, J. A consistent third-order propagator method

for electronic excitation. J. Chem. Phys. 1999, 111, 9982.

(27) Trofimov, A. B.; Stelter, G.; Schirmer, J. Electron excitation energies using a consistent

third-order propagator approach: Comparison with full configuration interaction and

coupled cluster results. J. Chem. Phys. 2002, 117, 6402.

(28) Helgaker, T.; Jørgensen, P.; Olsen, J. Molecular Electronic Structure Theory ; Wiley:

Chichester, 2000.

(29) Buenker, R. J.; Peyerimhoff, S. D. Individualized configuration selection in CI calcu-

lations with subsequent energy extrapolation. Theor. Chim. Acta 1974, 35, 33.

37



(30) Grimme, S.; Parac, M. Substantial Errors from Time-Dependent Density Functional

Theory for the Calculation of Excited States of Large Π Systems. ChemPhysChem

2003, 4, 292.

(31) Dreuw, A.; Weisman, J. L.; Head-Gordon, M. Long-range charge-transfer excited

states in time-dependent density functional theory require non-local exchange. J.

Chem. Phys. 2003, 119, 2943.

(32) Mertins, F.; Schirmer, J. Algebraic propagator approaches and intermediate-state rep-

resentations. I. The biorthogonal and unitary coupled-cluster methods. Phys. Rev. A

1996, 53, 2140.

(33) Starcke, J. H.; Wormit, M.; Dreuw, A. Unrestricted algebraic diagrammatic construc-

tion scheme of second order for the calculation of excited states of medium-sized and

large molecules. J. Chem. Phys. 2009, 130, 024104.

(34) Harbach, P. H. P.; Wormit, M.; Dreuw, A. The third-order algebraic diagrammatic con-

struction method (ADC(3)) for the polarization propagator for closed-shell molecules:

Efficient implementation and benchmarking. J. Chem. Phys. 2014, 141, 064113.

(35) Wormit, M.; Rehn, D. R.; Harbach, P. H. P.; Wenzel, J.; Krauter, C. M.; Epi-

fanovsky, E.; Dreuw, A. Investigating Excited Electronic States using the Algebraic

Diagrammatic Construction (ADC) Approach of the Polarisation Propagator. Mol.

Phys. 2014, 112, 774.

(36) Wormit, M.; Dreuw, A. The algebraic diagrammatic construction scheme for the po-

larization propagator for the calculation of excited states. WIREs Comput. Mol. Sci.

2015, 5, 82.

(37) Krauter, C. M.; Pernpointner, M.; Dreuw, A. Application of the scaled-opposite-spin

approximation to algebraic diagrammatic construction schemes of second order. J.

Chem. Phys. 2013, 138, 044107.

38



(38) Goerigk, L.; Grimme, S. Assessment of TD-DFT methods and of various spin scaled

CIS(D) and CC2 versions for the treatment of low-lying valence excitations of large

organic dyes. J. Chem. Phys. 2010, 132, 184103.

(39) Winter, N. O. C.; Graf, N. K.; Leutwyler, S.; Hättig, C. Benchmarks for 0-0 transitions

of aromatic organic molecules: DFT/B3LYP, ADC(2), CC2, SOS-CC2 and SCS-CC2

compared to high-resolution gas-phase data. Phys. Chem. Chem. Phys. 2013, 15,

6623.

(40) Jacquemin, D.; Duchemin, I.; Blase, X. 0-0 Energies Using Hybrid Schemes: Bench-

marks of TD-DFT, CIS(D), ADC(2), CC2, and BSE/GW formalisms for 80 Real-Life

Compounds. J. Chem. Theory Comput. 2015, 11, 5340.

(41) Boys, S. F.; Cook, G. B.; Reeves, C. M.; Shavitt, I. Automatic Fundamental Calcula-

tions of Molecular Structure. Nature 1956, 178, 1207.

(42) Whitten, J. L. Coulombic potential energy integrals and approximations. J. Chem.

Phys. 1973, 58, 4496.

(43) Dunlap, B. I.; Connolly, J. W. D.; Sabin, J. R. On some approximations in applications

of Xα theory. J. Chem. Phys. 1979, 71, 3396.

(44) Hohenstein, E. G.; Parrish, R. M.; Martínez, T. J. Tensor hypercontraction density

fitting. I. Quartic scaling second- and third-order Møller–Plesset perturbation theory.

J. Chem. Phys. 2012, 137, 044103.

(45) Parrish, R. M.; Hohenstein, E. G.; Martínez, T. J.; Sherrill, C. D. Tensor hypercon-

traction. II. Least-squares renormalization. J. Chem. Phys. 2012, 137, 224106.

(46) Hohenstein, E. G.; Parrish, R. M.; Sherrill, C. D.; Martínez, T. J. Communication:

Tensor hypercontraction. III. Least-squares tensor hypercontraction for the determi-

nation of correlated wavefunctions. J. Chem. Phys. 2012, 137, 221101.

39



(47) Kállay, M. A systematic way for the cost reduction of density fitting methods. J.

Chem. Phys. 2014, 141, 244113.

(48) Hohenstein, E. G.; Kokkila, S. I. L.; Parrish, R. M.; Martínez, T. J. Tensor Hypercon-

traction Equation-of-Motion Second-Order Approximate Coupled Cluster: Electronic

Excitation Energies in O(N4) Time. J. Phys. Chem. B 2013, 117, 12972.

(49) Mester, D.; Nagy, P. R.; Kállay, M. Reduced-cost linear-response CC2 method based

on natural orbitals and natural auxiliary functions. J. Chem. Phys. 2017, 146, 194102.

(50) Mester, D.; Nagy, P. R.; Kállay, M. Reduced-cost second-order algebraic-diagrammatic

construction method for excitation energies and transition moments. J. Chem. Phys.

2018, 148, 094111.

(51) Koch, H.; Sánchez de Merás, A. M. Size-intensive decomposition of orbital energy

denominators. J. Chem. Phys. 2000, 113, 508.

(52) Koch, H.; Sánchez de Merás, A.; Pedersen, T. B. Reduced scaling in electronic struc-

ture calculations using Cholesky decompositions. J. Chem. Phys. 2003, 118, 9481.

(53) Pedersen, T. B.; Sánchez de Merás, A. M.; Koch, H. Polarizability and optical rota-

tion calculated from the approximate coupled cluster singles and doubles CC2 linear

response theory using Cholesky decompositions. J. Chem. Phys. 2004, 120, 8887.

(54) Baudin, P.; Sánchez de Marín, J.; García Cuesta, I.; Sánchez de Merás, A. M. Cal-

culation of excitation energies from the CC2 linear response theory using Cholesky

decomposition. J. Chem. Phys. 2014, 140, 104111.

(55) Nascimento, D. R.; DePrince III, A. E. Linear Absorption Spectra from Explicitly

Time-Dependent Equation-of-Motion Coupled-Cluster Theory. J. Chem. Theory Com-

put. 2016, 12, 5834.

40



(56) Send, R.; Kaila, V. R. I.; Sundholm, D. Reduction of the virtual space for coupled-

cluster excitation energies of large molecules and embedded systems. J. Chem. Phys.

2011, 134, 214114.

(57) Send, R.; Suomivuori, C.-M.; Kaila, V. R. I.; Sundholm, D. Coupled-Cluster Studies

of Extensive Green Fluorescent Protein Models Using the Reduced Virtual Space

Approach. J. Phys. Chem. B 2015, 119, 2933.

(58) Gamiz-Hernandez, A. P.; Angelova, I. N.; Send, R.; Sundholm, D.; Kaila, V. R. I.

Protein-Induced Color Shift of Carotenoids in β-Crustacyanin. Angew. Chem. Int.

Ed. 2015, 54, 11564.

(59) Suomivuori, C.-M.; Winter, N. O. C.; Hättig, C.; Sundholm, D.; Kaila, V. R. I. Ex-

ploring the Light-Capturing Properties of Photosynthetic Chlorophyll Clusters Using

Large-Scale Correlated Calculations. J. Chem. Theory Comput. 2016, 12, 2644.

(60) Yang, C.; Dreuw, A. Evaluation of the Restricted Virtual Space Approximation in

the Algebraic-Diagrammatic Construction Scheme for the Polarization Propagator to

Speed-up Excited-State Calculations. J. Comput. Chem. 2017, 38, 1528.

(61) Meyer, W. PNO–CI Studies of electron correlation effects. I. Configuration expansion

by means of nonorthogonal orbitals, and application to the ground state and ionized

states of methane. J. Chem. Phys. 1973, 58, 1017.

(62) Hay, P. J. On the calculation of natural orbitals by perturbation theory. J. Chem.

Phys. 1973, 59, 2468.

(63) Ahlrichs, R.; Lischka, H.; Staemmler, V.; Kutzelnigg, W. PNO–CI (pair natural orbital

configuration interaction) and CEPA–PNO (coupled electron pair approximation with

pair natural orbitals) calculations of molecular systems. I. Outline of the method for

closed-shell states. J. Chem. Phys. 1975, 62, 1225.

41



(64) Taube, A. G.; Bartlett, R. J. Fozen Natural Orbital Coupled-Cluster Theory: Forces

and Application to Decomposition of Nitroethane. J. Chem. Phys. 2008, 128, 164101.

(65) DePrince, A. E.; Sherrill, C. D. Accurate Noncovalent Interaction Energies Using

Truncated Basis Sets Based on Frozen Natural Orbitals. J. Chem. Theory Comput.

2013, 9, 293.

(66) Rolik, Z.; Kállay, M. Cost-reduction of high-order coupled-cluster methods via active-

space and orbital transformation techniques. J. Chem. Phys. 2011, 134, 124111.

(67) Rolik, Z.; Szegedy, L.; Ladjánszki, I.; Ladóczki, B.; Kállay, M. An efficient linear-

scaling CCSD(T) method based on local natural orbitals. J. Chem. Phys. 2013, 139,

094105.

(68) Landau, A.; Khistyaev, K.; Dolgikh, S.; Krylov, A. I. Frozen Natural Orbitals for Ion-

ized States Whithin Equation-of-Motion Coupled-Cluster Formalism. J. Chem. Phys.

2010, 132, 014109.

(69) Kumar, A.; Crawford, T. D. Frozen Virtual Natural Orbitals for Coupled Cluster

Linear-Response Theory. J. Phys. Chem. A 2017, 121, 708.

(70) Höfener, S.; Klopper, W. Natural transition orbitals for the calculation of correlation

and excitation energies. Chem. Phys. Lett. 2017, 679, 52.

(71) Baudin, P.; Kristensen, K. Correlated natural transition orbital framework for low-

scaling excitation energy calculations (CorNFLEx). J. Chem. Phys. 2017, 146, 214114.

(72) Pulay, P. Localizability of dynamic electron correlation. Chem. Phys. Lett. 1983, 100,

151.

(73) Pulay, P.; Saebø, S. Orbital-invariant formulation and second-order gradient evaluation

in Møller–Plesset perturbation theory. Theor. Chim. Acta 1986, 69, 357.

42



(74) Korona, T.; Werner, H.-J. Local treatment of electron excitations in the EOM-CCSD

method. J. Chem. Phys. 2003, 118, 3006.

(75) Crawford, T. D.; King, R. A. Locally correlated equation-of-motion coupled cluster

theory for the excited states of large molecules. Chem. Phys. Lett. 2002, 366, 611.

(76) Hampel, C.; Werner, H.-J. Local treatment of electron correlation in coupled cluster

theory. J. Chem. Phys. 1996, 104, 6286.

(77) Kats, D.; Korona, T.; Schütz, M. Local CC2 electronic excitation energies for large

molecules with density fitting. J. Chem. Phys. 2006, 125, 104106.

(78) Kats, D.; Korona, T.; Schütz, M. Transition strengths and first-order properties of

excited states from local coupled cluster CC2 response theory with density fitting. J.

Chem. Phys. 2007, 127, 064107.

(79) Kats, D.; Schütz, M. A multistate local coupled cluster CC2 response method based

on the Laplace transform. J. Chem. Phys. 2009, 131, 124117.

(80) Freundorfer, K.; Kats, D.; Korona, T.; Schütz, M. Local CC2 response method for

triplet states based on Laplace transform: Excitation energies and first-order proper-

ties. J. Chem. Phys. 2010, 133, 244110.

(81) Ledermüller, K.; Kats, D.; Schütz, M. Local CC2 response method based on the

Laplace transform: Orbital-relaxed first-order properties for excited states. J. Chem.

Phys. 2013, 139, 084111.

(82) Ledermüller, K.; Schütz, M. Local CC2 response method based on the Laplace trans-

form: Analytic energy gradients for ground and excited states. J. Chem. Phys. 2014,

140, 164113.

(83) Schütz, M. Oscillator strengths, first-order properties, and nuclear gradients for local

ADC(2). J. Chem. Phys. 2015, 142, 214103.

43



(84) Russ, N. J.; Crawford, T. D. Local correlation in coupled cluster calculations of molec-

ular response properties. Chem. Phys. Lett. 2004, 400, 104.

(85) Russ, N. J.; Crawford, T. D. Local correlation domains for coupled cluster theory:

Optical rotation and magnetic field perturbations. Phys. Chem. Chem. Phys. 2008,

10, 3345.

(86) Helmich, B.; Hättig, C. Local pair natural orbitals for excited states. J. Chem. Phys.

2011, 135, 214106.

(87) Helmich, B.; Hättig, C. A pair natural orbital implementation of the coupled cluster

model CC2 for excitation energies. J. Chem. Phys. 2012, 139, 084114.

(88) Helmich, B.; Hättig, C. A pair natural orbital based implementation of ADC(2)-x:

Perspectives and challenges for response methods for singly and doubly excited states

in large molecules. Comput. Theoret. Chem. 2014, 1040-1041, 35.

(89) Frank, M. S.; Hättig, C. A pair natural orbital based implementation of CCSD exci-

tation energies within the framework of linear response theory. J. Chem. Phys. 2018,

148, 134102.

(90) Dutta, A. K.; Neese, F.; Izsák, R. Speeding up equation of motion coupled cluster

theory with the chain of spheres approximation. J. Chem. Phys. 2016, 144, 034102.

(91) Dutta, A. K.; Neese, F.; Izsák, R. Towards a pair natural orbital coupled cluster

method for excited states. J. Chem. Phys. 2016, 145, 034102.

(92) Dutta, A. K.; Nooijen, M.; Neese, F.; Izsák, R. Automatic active space selection for the

similarity transformed equations of motion coupled cluster method. J. Chem. Phys.

2017, 146, 074103.

(93) Dutta, A. K.; Nooijen, M.; Neese, F.; Izsák, R. Exploring the accuracy of a low scaling

44



similarity transformed equation of motion method for vertical excitation energies. J.

Chem. Theory Comput. 2018, 14, 72.

(94) Peng, C.; Clement, M. C.; Valeev, E. F. State-Averaged Pair Natural Orbitals for

Excited States: A Route toward Efficient Equation of Motion Coupled-Cluster. J.

Chem. Theory Comput. 2018, 14, 5597.

(95) Baudin, P.; Kristensen, K. LoFEx — A local framework for calculating excitation

energies: Illustrations using RI-CC2 linear response theory. J. Chem. Phys. 2016,

144, 224106.

(96) Baudin, P.; Kjærgaard, T.; Kristensen, K. CC2 oscillator strengths within the local

framework for calculating excitation energies (LoFEx). J. Chem. Phys. 2017, 146,

144107.

(97) Baudin, P.; Bykov, D.; Liakh, D.; Ettenhuber, P.; Kristensen, K. A local framework

for calculating coupled cluster singles and doubles excitation energies (LoFEx-CCSD).

Mol. Phys. 2017, 115, 2135.

(98) Crawford, T. D.; Kumar, A.; Bazanté, A. P.; Remigio, R. D. Reduced-scaling coupled

cluster response theory: Challenges and opportunities. WIREs Comput. Mol. Sci.

2019, e1406.

(99) Mester, D.; Kállay, M. Reduced-Scaling Approach for Configuration Interaction Sin-

gles and Time-Dependent Density Functional Theory Calculations Using Hybrid Func-

tionals. J. Chem. Theory Comput. 2019, 15, 1690.

(100) Boughton, J. W.; Pulay, P. Comparison of the Boys and Pipek–Mezey Localizations

in the Local Correlation Approach and Automatic Virtual Basis Selection. J. Comput.

Chem. 1993, 14, 736.

45



(101) Nagy, P. R.; Samu, G.; Kállay, M. An integral-direct linear-scaling second-order

Møller–Plesset approach. J. Chem. Theory Comput. 2016, 12, 4897.

(102) Nagy, P. R.; Samu, G.; Kállay, M. Optimization of the linear-scaling local natural

orbital CCSD(T) method: Improved algorithm and benchmark applications. J. Chem.

Theory Comput. 2018, 14, 4193.

(103) Nagy, P. R.; Kállay, M. Optimization of the linear-scaling local natural orbital

CCSD(T) method: Redundancy-free triples correction using Laplace transform. J.

Chem. Phys. 2017, 146, 214106.

(104) Pipek, J.; Mezey, P. A fast intrinsic localization procedure applicable for ab initio and

semiempirical linear combination of atomic orbital wave functions. J. Chem. Phys.

1989, 90, 4916.

(105) Knizia, G. Intrinsic Atomic Orbitals: An Unbiased Bridge between Quantum Theory

and Chemical Concepts. J. Chem. Theory Comput. 2013, 9, 4834.

(106) Mrcc, a quantum chemical program suite written by M. Kállay, P. R. Nagy, Z. Rolik,

D. Mester, G. Samu, J. Csontos, J. Csóka, B. P. Szabó, L. Gyevi-Nagy, I. Ladjánszki,

L. Szegedy, B. Ladóczki, K. Petrov, M. Farkas, P. D. Mezei, and B. Hégely. See

http://www.mrcc.hu/ (accessed January 13, 2019).

(107) Dunning Jr., T. H. Gaussian basis sets for use in correlated molecular calculations. I.

The atoms boron through neon and hydrogen. J. Chem. Phys. 1989, 90, 1007.

(108) Woon, D. E.; Dunning Jr., T. H. Gaussian basis sets for use in correlated molecular

calculations. III. The atoms aluminum through argon. J. Chem. Phys. 1993, 98, 1358.

(109) Weigend, F.; Köhn, A.; Hättig, C. Efficient use of the correlation consistent basis sets

in resolution of the identity MP2 calculations. J. Chem. Phys. 2002, 116, 3175.

46



(110) Weigend, F.; Häser, M.; Patzelt, H.; Ahlrichs, R. RI-MP2: optimized auxiliary basis

sets and demonstration of efficiency. Chem. Phys. Lett. 1998, 294, 143.

(111) Weigend, F. Hartree–Fock Exchange Fitting Basis Sets for H to Rn. J. Comput. Chem.

2008, 29, 167.

(112) Kendall, R. A.; Dunning Jr., T. H.; Harrison, R. J. Electron affinities of the first-row

atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 1992, 96,

6796.

(113) Goerigk, L.; Moellmann, J.; Grimme, S. Computation of accurate excitation energies

for large organic molecules with double-hybrid density functionals. Phys. Chem. Chem.

Phys. 2009, 11, 4611.

(114) D’Souza, F.; Smith, P. M.; Zandler, M. E.; McCarty, A. L.; Itou, M.; Araki, Y.; Ito, O.

Energy Transfer Followed by Electron Transfer in a Supramolecular Triad Composed

of Boron Dipyrrin, Zinc Porphyrin, and Fullerene: A Model for the Photosynthetic

Antenna-Reaction Center Complex. J. Am. Chem. Soc. 2004, 126, 7898.

(115) Furche, F.; Krull, B. T.; Nguyen, B. D.; Kwon, J. Accelerating molecular property

calculations with nonorthonormal Krylov space methods. J. Chem. Phys. 2016, 144,

174105.

(116) Luo, J.; Xu, M.; Li, R.; Huang, K.-W.; Jiang, C.; Qi, Q.; Zeng, W.; Zhang, J.; Chi, C.;

Wang, P.; Wu, J. N -Annulated Perylene as An Efficient Electron Donor for Porphyrin-

Based Dyes: Enhanced Light-Harvesting Ability and High-Efficiency Co(II/III)-Based

Dye-Sensitized Solar Cells. J. Am. Chem. Soc. 2014, 136, 265.

(117) Hellweg, A.; Rappoport, D. Development of new auxiliary basis functions of the Karl-

sruhe segmented contracted basis sets including diffuse basis functions (def2-SVPD,

def2-TZVPPD, and def2-QVPPD) for RI-MP2 and RI-CC calculations. Phys. Chem.

Chem. Phys. 2015, 17, 1010.

47



Graphical TOC Entry

48


