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Abstract—Deep learning is a very popular gradient based
search technique nowadays. In this field of machine learning
we usually apply neural networks with various structure. The
algorithms of the deep learning techniques and the structure
of the applied networks have several parameters that have a
huge impact on the performance of the search technique. These
parameters are called hyperparameters. The aim of our current
research is to optimize these hyperparameters using evolutionary
and swarm based optimization algorithms.

Index Terms—evolutionary algorithms; swarm optimization;
deep learning; hyperparameters

I. INTRODUCTION

Nowadays, researchers try to trace back a lot of problems
to a maximization or a minimization problem, because there
are many existing techniques to approach these problems.
Besides analytic solutions there is an increasing interest in
applying search space mapping methods such as evolution-
ary algorithms and swarm optimization based techniques.
In this research we investigate several techniques such as
Genetic Algorithm (GA) [1], Bacterial Evolutionary Algo-
rithm (BEA) [2], Differential Evolution (DE) [3], Invasive
Weed Optimization (IWO) [4], Particle Swarm Optimization
(PSO) [5] and Simplified Swarm Optimization (SSO) [6].
In our previous works we had some experiences with many
of these algorithms, thus their adjustments and finding their
parameter settings are not a difficult task.

In recent years the gradient based methods are applied in
several fields of minimization, and they are a part of the
techniques applied in deep learning as well [7]. The huge
nets used by deep learning contain many parameters. These
parameters belong to the structure of the net and to the various
algorithms in it. The most important things for a right solution
is the optimal choice of the parameters of the deep learning
techniques, called hyperparameters. In most of the cases the
adjustment of these hyperparameters is done by human experts
based on mathematical considerations and experiments. One
of the most widely used optimization technique in this field is
the Bayesian optimization [8], which is a probabilistic model
based approach for optimization.

In our work we try to optimize these hyperparameters by
evolutionary and swarm based optimization algorithms. First

we optimize a simple Multilayer Perceptron (MLP) [9] on the
MNIST [10] dataset. Then we increase the difficulty of the task
and we optimize a net with a structure similar to the VGGNets
structure [11]. In this case the task is the classification of the
Fashion-MNIST dataset [12].

The structure of this paper is as follows. In Section II
the related works and applied methodologies are introduced.
The hyperparameter optimization and experimental results are
presented in Section III. In Section IV the proposed method
is compared with Bayesian optimization. In Section V a real
world application is discussed. Section VI draws conclusions
and shows the future directions of this research.

II. RELATED WORKS

In this Section the related works, applied methodologies,
and the investigated problems are presented.

A. Evolutionary Algorithms

There are several optimization methods inspired by pro-
cesses in the nature. The advantage of these algorithms is their
ability to solve and quasi-optimize problems with non-linear,
high-dimensional, multi-modal, and discontinuous character.
It has been shown that evolutionary algorithms are efficient
tools for solving non-linear, multi-objective and constrained
optimizations. These algorithms have the ability to explore
large admissible spaces, without demanding the use of deriva-
tives of the objective functions, such as the gradient-based
training methods. Their principles are based on the search for
a population of solutions, which tuning is done using mech-
anisms similar to biological recombination. In evolutionary
algorithms the individuals are evaluated and ranked using the
fitness function. Genetic algorithm [1] is one of the most
well known evolutionary algorithms. When generating new
individuals it applies the crossover and the mutation operators.
Bacterial evolutionary algorithm [2] on the other hand, applies
the bacterial mutation and the gene transfer operators. Usually,
evolutionary operators can either add new members to the
population (e.g. crossover in GA) or modify existing members
(e.g bacterial mutation in BEA). One or both are the main
components of these algorithms in different implementations.
In Differential Evolution [3] the mutation operator is based on
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the difference of multiple randomly selected individuals of the
population. The invasive weed optimization [4] simulates weed
colonizing behavior. Every seed produces seeds depending on
its fitness and the produced seeds are being randomly dispread
over the search area.

B. Swarm Optimization

In swarm optimization methods we never add new members
to the population, we only modify them. In these methods
the individuals try to find better and better places by ex-
ploring their environment led by their own experiences and
the experiences of the whole community. One of the most
well known swarm optimization methods is the particle swarm
optimization [5]. The particles move in the search space. They
have a velocity vector, and they remember their personal best
point (cognitive component) and the global best point of the
whole swarm (social component) in the search space. A new
velocity vector is composed based on these three components.
In the case of simplified swarm optimization [6] immediately
the new position vector is formed based on the different
components.

C. Multilayer Perceptron

A multilayer perceptron is a class of feedforward artificial
neural network. An MLP consists of at least three layers of
nodes: an input layer, a hidden layer, and an output layer.
Except for the input nodes, each node is a neuron that uses
a nonlinear activation function. MLP utilizes a supervised
learning technique called backpropagation for training. Its
multiple layers and non-linear activation function distinguish
MLP from a Perceptron. It can learn data that is not linearly
separable [9].

D. VGGNet

VGGNet is invented by VGG (Visual Geometry Group) at
University of Oxford [11]. Though VGGNet is the first runner-
up, not the winner of the ILSVRC (ImageNet Large Scale
Visual Recognition Competition) 2014 in the classification
task. This net is very well structured and separable, therefore
we chose it for optimization.

E. MNIST, Fashion-MNIST

The MNIST database (Modified National Institute of Stan-
dards and Technology database) is a large database of hand-
written digits that is commonly used for training various image
processing systems [10]. The black and white images from
NIST were normalized to fit into a 28x28 pixel bounding
box and anti-aliased, which introduced grayscale levels. The
MNIST database contains 60,000 training images and 10,000
testing images.

The Fashion-MNIST dataset was created by the e-commerce
company Zalando and it contains fashion images instead of
handwritten digits [12]. It shares the same image size and
structure of training and testing splits. The Fashion-MNIST
dataset is illustrated in Figure 1.

Fig. 1: Fashion-MNIST dataset

III. HYPERPARAMETER OPTIMIZATION

We implemented the evolutionary and swarm algorithms in
a framework using Python language. One advantage of the
evolutionary algorithms over Bayesian optimization is that
they can be easily parallelized. We used this feature and
applied four Nvidia GeForce GTX 1080 Ti for parallelly
training the networks during the search processes. The values
of the hyperparameters are in many cases integer numbers,
however, in most of the evolutionary and swarm optimization
algorithms the so-called genes are real numbers. Thus, before
evaluating a candidate solution when creating a phenotype of
the individual rounding down is performed.

A. MLP on MNIST

The first task is to optimize an MLP where the search
algorithm can adjust the following hyperparameters:

• Number of hidden layers (NHL): 0 – 4
• Size of hidden layers (SOL): 5 – 1495
• Dropout (DO): 0 – 0.9
• Learning rate (LR): 0.0001 – 1
The parameters of the applied algorithms:
• DE: F = 0.8, CR = 0.6
• IWO: itermax = 100, σinit = 0.18, σfin = 0.05,
Nmin = 1, Nmax = 6, e = 2

• PSO: ω = 1, φp = 2, φg = 4
• SSO: Cw = 0.2, Cp = 0.4, Cg = 0.8

The population of the IWO algorithm contains 8 chromo-
somes (individuals), the other algorithms have 12 individuals.
The neural network is trained by Adam optimizer [13]. In front
of each layer we put a dropout layer, thus one chromosome
contains 11 genes. Not all the elements of the chromosomes
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were always used. In the case of the learning rate, the power
of base 10 was changed between 0 and −4. Cross-entropy is
used as the loss function. The training data were normalized
between 0 and 1. There were no other preprocessing applied
on the data. The training process was finished when the train
loss did not improve during 14 epochs. The learning rate was
decreased to its one fifth if there was no improvement during
5 epochs. The terminal criterion of the search algorithms is
when the global best individual of the population does not
improve during 10 iterations.

The fitness function is designed in that way that it punishes
those neural networks which have more trainable parameters.
Hence, the fitness function described in Equation (1) has two
parts, the accuracy part and the parameters part.

accuracy part = 100− (validation accuracy ∗ 100)

parameters part = log10(number of parameters)

fitness value = accuracy part+ (parameters part/5)
(1)

The function can balance the two parts. It allows the
addition of approximately one layer with 1% improvement.

The following four algorithms were applied for solving this
task: PSO, SSO, IWO, DE. Table I presents the optimized
parameters. Table II shows the result of the optimization:
validation accuracy (ACC), number of parameters (NOP),
number of evaluations (NOE), and fitness value (FV).

TABLE I: Optimized parameters of MLP

NHL SOL DO LR
DE 2 1297, 894 0.22, 0.38, 0.09 6.7e-4

IWO 1 661 0.31, 0.09 1.2e-3
PSO 1 1210 0.41, 0.03 1.4e-3
SSO 1 554 0.32, 0.02 1.5e-3

TABLE II: Optimization results of MLP

ACC NOP NOE FV
DE 99.01% 2 187 507 264 2.26

IWO 98.91% 525 505 321 2.23
PSO 98.87% 961 960 204 2.33
SSO 98.97% 440 440 492 2.16

These accuracies on test sets are near the results from
the literature using similar networks without preprocessing
data [10]. By using the proposed fitness function the best
network was found by SSO, whose accuracy is a bit worse
than that of the network found by DE, however its size is five
times less. SSO had the biggest number of fitness calls. The
structure of the best MLP is illustrated in Figure 2.

Fig. 2: Structure of optimized MLP

B. VGG on Fashion-MNIST

Now we investigate the main goal of the paper, the optimiza-
tion of the structure of VGG16-like networks on the Fashion-
MNIST dataset. The terminal conditions are similar as in the
previous section with some changes. Here, the evolutionary
and swarm algorithms global best individual has 5 iterations
time to improve, and the patience during the neural network’s
training was initially 8 epochs followed by a refined search
with 12 epochs.

The search algorithm can adjust the following hyperparam-
eters:

• L1/L2 regularization weight decay (WD): 0.00001 – 0.1
• Dropout (DO): 0 – 1
• Learning rate (LR): 0.0001 – 1
• Number of convolution blocks (NB): 1 – 3
• Number of convolution layers in one block (NC): 1 – 6
• Number of fully connected layers (ND): 1 – 6
• Size of fully connected layer (SD): 1 – 501
• Size of convolution kernel (KS): 1 – 11
• Number of filters (F): 1 – 51
• Activation function (A): relu, sigmoid, tanh (th)
• Optimizer (O): adam, nadam, sgd, rmsprop
The best test results on Fashion-MNIST are around 95-

96% in the literature, however they mostly applied preprocess-
ing [12]. The human (non-expert) accuracy for this dataset is
83.5%. More precisely, the result in the literature of a VGG16
26M network is 93.5%. The only thing we changed on the
data again is to normalizing it between 0 and 1.

The parameters of the applied evolutionary and swarm
algorithms:

• GA: pmut = 0.7
• BEA: Nclones = 2

IWOBI 2019 • IEEE International Work Conference on Bioinspired Intelligence • July 3-5, 2019 • Budapest, Hungary

000029



Fig. 3: Fitness value by SSO

• DE: CR = 0.3
• PSO: ω = 1.5, φp = 2, φg = 3
• SSO: Cw = 0.25, Cp = 0.5, Cg = 0.9
• IWO: itermax = 10, σinit = 32, σfin = 8, Nmin = 1,
Nmax = 6, e = 2

In this task we did not punish the bigger neural networks
(i.e. the network with more trainable parameters) because here
the original network is also big. Hence, the fitness function is
the accuracy of the network calculated on the test set.

In the case of those algorithms where the expected number
of fitness function calls is less, we increased the number of
individuals (chromosomes) in order to achieve better results.
Table III shows the obtained results: validation accuracy
(ACC), number of chromosomes (NOC), number of iterations
(NOI), number of evaluations (NOE).

TABLE III: Optimization results of VGG

ACC NOC NOI NOE
GA 90.76% 4 32 200

BEA 89.27% 4 11 503
DE 19.33% 6 11 78

PSO 62.83% 8 11 104
SSO 88.03% 8 14 128
IWO 90.74% 5 10 130

The above 90% accuracy obtained by GA and IWO are
already acceptable result. Considering these results and the
number of fitness function calls, the swarm based methods
and GA seem promising methods to obtain an accurate result
within reasonable time. For example, the simulation running
by the SSO method is depicted in Figure 3. In the figure better
fitness means that the value is closer to 100. The global best
fitness is represented by orange color. This means the best
solution found so far during the optimization process. On the
other hand, blue color represents the best result of the current
population. In the case of elitist algorithms these two functions
are the same.

The obtained parameters by the best runs are presented in
Tables IV and V.

TABLE IV: Optimized parameters of VGG (I)

WD DO LR NB NC
GA 0.0095 0.656 0.0014 1 4
SSO 0.021 0.43 0.205 1 1
IWO 0.084 0.36 0.0001 3 2

TABLE V: Optimized parameters of VGG (II)

ND SD KS F A O
GA 4 186 9 45 relu nadam
SSO 1 199 2 43 relu rmsprop
IWO 1 175 10 11 th nadam

Many parameter settings can be successful, because the
numbers in the table have a big range.

Five algorithms are further investigated by running addi-
tional simulations. In the case of IWO the maximal number
of seeds (individuals) is increased to 7. The ω parameter of
PSO is decreased to 1, φg is increased to 6, the normalizer
factor remained 5. The parameters of SSO, DE and GA were
not changed. The obtained results are presented in Table VI,
and the corresponding parameters are shown in Tables VII and
VIII.

TABLE VI: Refined optimization results of VGG

ACC NOC NOI NOE NOP
IWO 93.31% 6 22 419 490 671
SSO 93.57% 10 32 340 605 480
PSO 83.13% 10 13 150 657 342
GA 91.72% 8 6 94 1 757 546
DE 93.39% 6 19 114 1 791 818

TABLE VII: Refined optimization parameters of VGG (I)

WD DO LR NB NC
IWO 0.0062 0.55 0.0768 3 2
SSO 0.0048 0.28 0.0383 2 3
PSO 0.011 0.46 0.621 2 1
GA 0.0753 0.27 0.0209 2 3
DE 2.41e-5 0.4 9e-4 3 3

PSO could improve, however, its final result is still not
acceptable. The result of GA is obtained in the first generation,
there was no improvement in the next 5 generations, so the
search stopped. The result is not bad, but the corresponding
network is too complex, it contains too many trainable pa-
rameters. The result of IWO looks like the original structure,
with surprisingly few parameters. Its accuracy approaches the
test accuracy of the VGGNet. The 93.57% accuracy of SSO
is better than the test accuracy of the VGGNet, it uses a bit
more parameters than the IWO and DE, however, its number
of fitness function calls is less by almost 80. Besides, SSO
and DE chose another path than IWO. They organized fewer
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TABLE VIII: Refined optimization parameters of VGG (II)

ND SD KS F A O
IWO 1 103 3 39 relu sgd
SSO 4 166 3 49 th sgd
PSO 2 317 8 37 sigmoid sgd
GA 2 466 8 36 th sgd
DE 4 374 3 48 relu adam

Fig. 4: Structure of optimized VGG

blocks with more convolutional layers and they put a much
deeper fully connected network at the end of the structure.
It is interesting that all solutions chose the “weakest” sgd
optimizer, except DE. The structure of the best optimized VGG
is illustrated in Figure 4.

The simulation results of the refined optimizations are
illustrated in Figs. 5–7.

Fig. 5: Fitness value by IWO (refined optimization)

Fig. 6: Fitness value by SSO (refined optimization)

IV. COMPARING WITH BAYESIAN OPTIMIZATION

On the previous two problems Bayesian Optimization with
Gaussian Processes was also executed. This method first eval-
uates initialization points and then it determines the next point
to be evaluated in the search space by a Gaussian process. In
both cases the algorithm was set to create 16 initialization
points and in the usual way it stops when after 16 trials there
is no improvement in the best fitness evaluation.

The optimization results of the best runs are shown in
Table IX, Table X, Table XI, and Table XII.

TABLE IX: Bayesian optimization results

ACC NOE NOP
MLP 98.79% 62 804 550
VGG 93.03% 40 1 030 923

The results are similar to that of the evolutionary algorithms.
This method needed fewer evaluations, however, since it
cannot be parallelized even in the case of more GPUs, thus in
our case the running time was similar or little longer than in
the case of evolutionary algorithms.
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Fig. 7: Fitness value by PSO (refined optimization)

TABLE X: Bayesian optimized parameters of MLP

NHL SOL DO LR
1 1012 0.259 0.005

V. SLEEP STAGE CLASSIFICATION FROM SINGLE
CHANNEL EEG

Based on [14] we created a CNN-CNN model. This model
applies a 1D CNN for the epoch encoding and then another
1D CNN for the sequence labeling. We optimized some
parameters of this network using the best behaving SSO
algorithm. The results of the original network is: F1 = 0.81,
ACCURACY = 0.87. During the simulation the number of
filters of convolution layers and the number of neurons of the
last fully connected layer are changed. The original network
has 250416 trainable parameters. The number of convolution
filters is 16 in the first block, 32 in the second and third block,
and 256 in the fourth block, and the last layer contains 64
neurons. The smallest network found by the simulation which
has similarly good results as the original one has the following
parameters: the number of filters in the blocks is 18, 29, 30,
212, respectively, and the number of fully connected neurons
is 60. The sizes of convolutional filters were not changed.
This network could reach a F1 = 0.805, ACCURACY = 0.855
result and it contains 178379 trainable parameters. This means
that we could reach similar result by a significantly smaller
network thanks to the SSO optimization.

VI. CONCLUSION AND FUTURE WORK

VGGNet can contain depending on its settings even 144 mil-
lion parameters. The obtained network by the SSO algorithm
is closer to the optimal. Based on the result we recommend
the SSO algorithm for hyperparameter optimization since it
achieved the best result and it needs the same number of
evaluations in each iteration as the population size. Similar
number of evaluations was necessary in the case of Bayesian
optimization. SSO can be ideally parallelized by setting the
population size proportionally to the number of available

TABLE XI: Bayesian optimization parameters of VGG (I)

WD DO LR NB NC
8.73e-5 0.475 5.7e-4 1 5

TABLE XII: Bayesian optimization parameters of VGG (II)

ND SD KS F A O
2 359 4 29 th nadam

GPUs, thus it can evaluate more solutions in the same time
increasing the chance of finding better solutions in this way.

We have to note that each algorithm was executed only
once, thus in the future the obtained results may be further
improved. A future work is to execute the algorithms several
times and to test them on even more complex tasks as well in
order to explore their advantages and drawbacks.
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