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Abstract
The temporal coordination of viral gene expression is imperative for the regulation of the herpesvirus replication cycle. 
While the main factors of this transcriptional coordination are known, the subtler control mechanisms of gene expression 
remain elusive. Recent long read sequencing-based approached have revealed an intricate meshwork of overlaps between 
the herpesvirus transcripts and the overlap of the replication origins with noncoding RNAs. It has been shown that the tran-
scriptional apparatuses can physically interfere with one another while transcribing overlapping regions. We hypothesize 
that transcriptional interference regulates the global gene expression across the herpesvirus genome. Additionally, an overall 
decrease in transcriptional activity in individual viral genes has been observed following the onset of DNA replication. An 
overlap of the replication origins with specific transcripts has also been described in several herpesviruses. The genome-wide 
interactions between the transcriptional apparatuses and between the replication and transcriptional machineries suggest the 
existence of novel layers of genetic regulation.
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Background

The herpesviruses are a large group of viruses that infect a 
wide-range of vertebrate organisms [1], and they are respon-
sible for several human and veterinary diseases. Following 
the circularization of the herpes genome upon entering the 
nucleus, DNA synthesis is thought to proceed in two con-
secutive stages: an initial phase of θ-type replication is fol-
lowed by σ-type replication. During the θ-type mechanism, 
the replication fork proceeds in two directions, whereas in 
the σ-type replication the progression of DNA replication 
machinery is unidirectional and includes a rolling-circle 
mechanism that generates concatemers. These multigenomic 
molecules are cleaved into unit genomes, which is followed 
by being packaged into the preformed empty capsids [2]. 
The viral life cycle is primarily regulated by the control of 
transcription. The viral genes are classified into three differ-
ent kinetic groups: immediate-early, early, and late genes, 
which are defined by their peak rates of mRNA synthe-
sis, and by how they behave in the presence of protein or 
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DNA synthesis inhibitors. In all herpesvirus subfamilies, 
the transcription is regulated by a multitude of cis- and 
trans-acting elements [3, 4]. However, there are differences 
between the expression patterns of genes that belong to the 
same kinetic group [5–7], which are not explained by the 
function of known cis- and trans-acting elements. Modern 
molecular biology offers several tools for the examination 
of transcriptional interactions. Not only can one examine 
specific transcripts using Northern blot or their expres-
sion rates using RT-qPCR, but RNA sequencing allows for 
the investigation of the whole transcriptome without prior 
knowledge about the sequence. Auxiliary methods such as 
global run-on sequencing can give a more direct insight into 
the regulation of transcription [8, 9]. Short-read sequencing 
(SRS) technologies have limited capability in identifying 
multi-spliced transcripts, to distinguish between overlapping 
transcripts, and to detect multigenic transcripts [10]. The 
emerging long-read sequencing (LRS) can overcome these 
problems through its greater efficiency in identification of 
transcript isoforms, as well as polycistronic and overlapping 
transcripts.

Genome‑wide transcriptional overlaps

The recent LRS-based investigations of herpesvirus tran-
scriptomes have revealed an intricate meshwork of tran-
scriptional overlaps in each subfamily of herpesvirus. In 
some cases, the transcriptional apparatus fails to recognize 
the polyadenylation signal, and as a result, the transcription 
continues beyond the original transcription termination site. 
It is a general phenomenon in cellular organisms that the 
RNA polymerase (RNAP) continues transcription for some 
distance beyond the poly(A) site before it is released from 
the DNA [11]. This may cause otherwise non-overlapping 
convergent genes to overlap (tail-to-tail overlap). Divergent 
herpesvirus genes in most cases overlap each other (head-
to head overlap) at their promoters or more frequently at 
their transcribed regions. Most of the herpesvirus genes are 
organized into polycistronic transcription units, the mem-
bers of which share common poly(A) signals (tail-to-head 
overlap). Long-read RNA sequencing techniques were able 
to identify long complex transcripts with genes in opposite 
orientations [12–14]. We propose that the transcriptional 
overlaps came into existence in order to create a genetic 
regulatory mechanism that controls gene expression through 
the interference between the transcriptional apparatuses of 
adjacent and distal genes. Transcriptional extension of the 
convergent genes or the overlapping of divergent genes can 
affect both the initiation and the elongation of transcription 
of two or more partners through transcriptional interference 
(TI) [15, 16]. Transcription initiation can be blocked by 
promoter competition when occupation of one promoter by 

RNAP precludes another RNAP from binding to occupation 
of the other promoter, thereby inhibiting the assembly of the 
transcription initiation complex for the transcription of the 
other gene. As the genes in herpesviruses are tightly packed, 
promoters are inevitably found adjacent to each other. For 
instance, the promoters of the divergent HSV-1 genes ul37 
(early-late) [17] and ul38 (true late) [18] genes are found 
in a distance of less than 200 base pairs of each other and 
LRS has revealed a longer transcript isoform of ul37 which 
initiates merely 71 nucleotides downstream of the ul38 start 
site [12]. Due to their close proximity, the transcriptional 
apparatus as it is being assembled on one promoter or during 
transcription might prevent RNAP from binding to the other 
promoter (Fig. 1a, b). The initiation of transcription can also 
be obstructed by occlusion of binding sites by the progress-
ing RNAPs [19], or through the ‘sitting-duck’ interference, 
when an elongating RNAP removes the other one that is 
already bound to its own promoter [20] (Fig. 1c). Histone 
coverage may impede transcription [21] (Fig. 1d); however, 
if continued transcription of a nearby locus keeps the DNA 
devoid of histones, it may induce transcription from a dor-
mant promoter. Microarray hybridization has detected large 
transcripts spanning several genes in, e.g. KSHV [22], which 
means that not only directly neighbouring genes, but also 
genes separated by a dozen other genes, can be connected 
by transcripts. The transcription elongation can be inhibited 
by the collision of the progressing RNAPs resulting in a pre-
mature termination of transcription of one or both genes [23] 
(Fig. 1e), or by the ‘roadblock’ (polymerase pausing) mecha-
nism, when one RNAP molecule becomes immobile, and 
therefore inhibits the progression of the transcription elon-
gation complex coming from the other gene [24] (Fig. 1f). 
Such convergent transcription allows cell lines J-Lat 9.2 and 
15.4 to silence the expression of the HIV provirus and keep 
it in latency [25]. It has been postulated that the antisense 
latency transcripts of herpesviruses [26, 27] may also silence 
the sense transactivator genes by transcriptional interference. 
Altogether, in each of the above cases, the transcriptions 
of the interacting partners exert a negative effect on each 
other’s activity; however, positive regulation is also possi-
ble through the inhibition of the inhibitory effects of other 
interactors. Transcription interference has only rarely been 
investigated in vivo; however, its powerful effects have been 
clearly demonstrated on synthetic constructs [28]. Exam-
ining the effects of transcriptional interference on a whole 
transcriptome level poses further challenges due to the large 
number of interactions that are to be considered. The com-
bination of all TI events in a genome may be an emergent 
property, a transcriptional interference network (TIN) that is 
capable of fine-tuning the expression of each gene in a man-
ner that would otherwise only be feasible using a handful of 
cis- and trans-acting elements.
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Interactions between the transcription 
and replication machineries

Herpesvirus replication produces long concatemeric DNA. 
Replication has been thought to proceed in a rolling circle 
mechanism, similarly to the replication of λ phages; how-
ever, some evidence suggests that the replication of herpes-
viruses may be more complex and that concatemers may be 
formed by recombination [29]. Two observations give rise 
to the possibility of the interaction between the processes 
of translation and transcription in herpesviruses. The first 
is that the general expression rate of the transcription of 
individual viral genomes drops following the onset of rep-
lication [30]. The different kinetics of IE, E and L genes 
are explained by the differential effect of the transcription 
factors on the expression of these genes. For example, the 
herpesvirus immediate-early protein can downregulate the 
expression of their own expression [31, 32]. It cannot be 
ruled out that early proteins exert a similar negative feed-
back or that switch to late transcription results in the reduc-
tion of transcription during the initiation of viral replica-
tion. However, it is also possible that the replication itself 

also contributes to the control of gene expression kinetics. 
Another observation is the production of noncoding RNAs 
overlapping the replication origins (Oris) in many her-
pesviruses [12, 33–36]. The CTO-S is the most abundant 
pseudorabies virus (PRV) transcript and is first expressed at 
4 h postinfection (when DNA replication commences); the 
other two co-terminal CTO transcripts are low-abundance 
RNAs. We hypothesize that the transcription of CTO-M and 
CTO-L collides with the DNA replication (at the OriL) pro-
gressing in a θ-type manner, and as a result, it renders the 
replication to being unidirectional (σ-type). The same may 
be the function of the PRV PTO-US1 (colliding with the 
replication fork at the OriS) [34]. In the meantime, CTO-S 
expression may separate the DNA strands, thereby further 
helping the unidirectional progression of the replication. The 
expression of CTO-AT is supposed to reduce the expres-
sion of the convergent ul22 gene, thereby further helping 
the advance of DNA synthesis in a σ-type manner. It has 
been proposed that the CTO transcripts play a role in the 
switch from the θ-type to the σ-type of replication (Fig. 2) 
[33, 36]. Alternatively, this CTO-based mechanism blocks 
the initiation of bidirectional replication. In this scenario, 

Fig. 1   Models of transcriptional 
interference. Promoter occlu-
sion may occur if two promoters 
are in the nigh vicinity of each 
other and the assembly of a 
transcriptional apparatus at one 
promoter blocks the assembly at 
the other one (a). Assembly can 
also be suppressed if progress-
ing RNAPs block transcrip-
tion factor binding sites (b). 
The sitting duck phenomenon 
describes the dislocation of an 
assembling transcription appa-
ratus by a progressing RNAP 
(c). Chromatin modifications 
can also inhibit transcriptional 
initiation (d). Collision of the 
transcriptional apparatuses can 
occur in overlapping transcripts 
and is thought to result in the 
dislocation of both RNAPs (e). 
If an RNA polymerase is tightly 
bound to a genomic sequence, 
it can also create a roadblock, 
preventing any transcription 
from passing through (f)
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no θ-type replication occurs. It is also possible that the 
Ori-overlapping transcripts direct the replication by form-
ing R-loops (as reviewed by Lombraña et al. [37]). In the 

herpes simplex virus (HSV), two 5′-coterminal transcripts 
are expressed in the OriS region. OrisRNA1 is expressed 
with early kinetics, while OrisRNA2 is a late transcript [33]. 
Contrary to alphaherpesviruses, the human cytomegalovirus 
(HCMV) OriLyt region does not express abundant polyade-
nylated transcripts [13, 38]; however, a short non-polyade-
nylated RNA [35] is expressed from 2 h p.i. The Kaposi’s 
sarcoma-associated herpesvirus (KSHV) T1.5 (K4.7 or 
OriLyt transcript) is an early [39], polyadenylated tran-
script, which is indispensable for DNA replication [40]. A 
similar dependence of Epstein–Barr virus (EBV) replication 
on Zta-induced transcription has also been described [41]. 
The differences between the sizes and expression patterns 
of the different Ori-overlapping transcripts and their post-
transcriptional modifications suggest that they might influ-
ence viral replication through different mechanisms. The 
phenomenon of the replication/transcription collision has 
been described in other systems [42]. The interplay between 
the DNA and RNA synthesis apparatuses is assumed to form 
a transcription and replication interference network (TRIN) 
that governs the global gene expression and the replication 
in a mutually interdependent manner.

Conclusions

Recent transcriptomic studies have revealed a much greater 
functional diversity of the viral genome than it had been 
thought before. These studies have uncovered an extensive 
overlapping pattern of transcriptions in herpesviruses. The 
question can be raised as to whether the highly compact 
nature of viral genomes favours the evolution of this phe-
nomenon, or if the function of transcriptional overlaps is to 
regulate gene expression through giving rise to transcrip-
tional interference (TI). TI mainly act through the collision 
of or competition between the transcriptional apparatuses 
of adjacent or distal genes. The existence of polycistronic 
and complex transcripts suggests that transcriptional read-
throughs are highly likely to have a function other than the 
translation of the downstream genes. The diversity of over-
laps between the viral genes suggests that the TIs are organ-
ized into a system forming network, which may coordinate 
the viral life cycle in a spatiotemporal manner through the 
physical interaction of the transcriptional apparatuses. TI 
might have co-evolved with the factor-dependent regulation 
of gene expression [43, 44]. We consider TI as a system level 
property since practically each viral transcript overlap with 
other transcripts; therefore, changing the transcription of a 
gene can affect the expression of genes even at distal posi-
tions of the genome. It is hypothesized that these interac-
tions may result in a well-controlled progression of the ON/
OFF states of genes throughout the entire genome thereby 
generating a network of interactions, termed transcription 
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Fig. 2   Putative regulatory role of CTO transcripts in PRV replica-
tion. a A schematic representation of the genomic segment surround-
ing the OriL (marked by a grey bar) of PRV. Transcripts are depicted 
by arrows. At first the genome is replicated through theta replication 
(b), however as the CTO transcripts become transcriptionally active, 
the replication fork and the transcriptional apparatus collide (c). The 
continued expression from the CTO transcripts represses DNA repli-
cation in one direction and facilitates it in the other, by opening the 
DNA strands (d)
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interference network (TIN). The TIN is supposed to co-reg-
ulate the expression of genes through synchronization of the 
transcriptions. TIN forms a self-regulatory network, whose 
operation leads to a definite temporal pattern of genome-
wide gene expressions. TIN is supposed to act to suppress 
the transcriptional noise, produced by the expression from 
genes whose gene products are unneeded at a given stage 
of the viral life cycle. DNA replication and transcription 
are also supposed to interact with one another at both the 
initiation and elongation phases of DNA replication. The 
transcription and replication interference network (TRIN) 
is also supposed to act on a system level because the onset 
of replication results to a global drop of gene expression in 
each gene on an individual DNA molecule, and because the 
progress of the replication fork is confronted with the tran-
scription machineries along the entire viral genome.
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