
Reliable Base Proposal for Header Compression
Máté Tömösközi1,3, Daniel Lucani2, Frank H. P. Fitzek1, Péter Ekler3
1Communication Networks Group, Technische Universität Dresden, Germany

2Department of Engineering, Communications Systems, Aarhus University, Denmark
3Department of Automation and Applied Informatics, Budapest University of Technology and Economics, Hungary
Email: mate.tomoskozi@tu-dresden.de, daniel.lucani@eng.au.dk, frank.fitzek@tu-dresden.de, ekler.peter@aut.bme.hu

Abstract—The upcoming wireless network generation has put
a large emphasis on the fulfilment of high reliability constraints.
Nonetheless, the trade-off between these and other network
aspects, mainly delay and bandwidth, is a constant optimisational
question and a tough challenge. The various employed protocols
add certain encapsulation overheads, which albeit necessary,
however could potentially be excessive, such as in the case of
various IoT, and similar applications with small payloads.

Header compression aims to reduce these headers, but a general
problem still plagues the standards since their introduction to
loss-prone wireless networks, which is the issue of lost context
(re)initialisation packets that can make the compression upstart
and the transmission of major changes unreliable, slow and
costly. In this paper we propose a solution that circumvents some
concerns of traditional header compression context initialisation
by the employment of network coding, which we call the reliable
base proposal technique. This provides a finely tunable method for
balancing reliability and delay of decompression with bandwidth
gain. Our results show that both compression gain and reliability
can be increased over the previous standards.

Keywords: Robust Header Compression, Compression Con-
text, Network Coding, RoHCv2, Latency, Reliability

I. INTRODUCTION

Header compression has been an ever present technology
since the early times of wireless networks. Initial concepts,
like the one from Van Jacobson [1] have only considered
wired networks as their primary target. Later development has
expanded the core concepts [2] and added solutions for han-
dling losses during a compressed traffic. Header compression
approaches reduce the protocol encapsulation between two
endpoints of a link, where the reduction in protocol overheads
relies on the redundancies found in the different headers of
individual packets and between consecutive packets belonging
to the same IP-flow. However, one of the basic issue for the
adoption of header compression in the wireless has not been
satisfiability resolved as of yet.

A common design theme all over the various compression
standards is that the compressor, based on the progression
characteristics of the consecutive packet’s fields, chooses the
smallest packet type from a given compressed packet pool
which it deems sufficient for the successful transmission of the
header fields. The packets of these pools can be roughly clas-
sified into two groups: non-sequential and sequential packet
types. The main difference between the two is that while the
former ones transmit data that can be considered persistent in
the decompressor context, the latter do not, instead they are
derived from the context in various ways.

If we take the compressed packet types of Robust Header
Compression version 2 (RoHCv2) from RFC 5225 as an
example, the two corresponding groups are – in RoHCv2
terminology – the initialisation and refresh (IR) and the

compressed header formats. The first group, in this case, only
contains the ir packet (hence the naming), which is used for the
context (re)establishment. Our definition, however, separates
two classes, the ones that carry persistent context information
without which any consecutive packet would not be accurately
decompressible from the ones that do not, i.e., the former being
of the non-sequential and the latter of the sequential ones.1
Therefore non-sequential packets would be the ir, co repair
and co common, while the sequential ones are pt 0*, pt 1*,
pt 2*, etc.

One of the issues that affects header compression algo-
rithms in environments where losses can occur is the reliable
establishment of decompressor contexts or bases. Since part
of the compression gain is achieved through the storage and
maintenance of header fields that are constant or seldom
changing (such as IP destination and source addresses), a
lack of these values on the receiver side would result in an
unrecoverable packet. Moreover, a large part of compression
algorithms (e.g., delta compression, LSB compression, table-
based compression, etc.) rely on the assumption, that an up-to-
date reference value exists on the decompressor side. In case
this value is not present or too old, the decompression would
either be impossible or could produce an incorrect value.

The issue shows itself during the transmission of non-
sequential packets on a lossy channel. If a given non-
sequential packet is lost or damaged, the transmitted persistent
data is consequently also lost, which results in the immediate
loss of synchronism between the specific compressor and de-
compressor pair. In order to remedy this, header compression
solutions have opted to retransmit the bases multiple times
and [3] has proposed a method which adapts this to the error
rate on the channel. In some cases signalling is used to notify
the compressor of an out-of-date context, for example [4]
defines a method called adaptive base proposal which utilises
the feedback on a bi-directional TCP connection.

These and similar methods have since become standard
solutions in the header compression literature and the various
standards. There is, however, a common drawback, as they
potentially reduce the achievable compression gain via the
repetition of these – generally quite large – packet types.

We instead utilise Random Linear Network Coding (RLNC,
or simply network coding) to isolate and transmit each of
the persistent bases or non-sequential packets. RLNC [5] is
a coding technique that has been used in many applications
including distributed storage, bandwidth optimisation, encryp-

1Not to be confused with the terminology in RFC 5225, Section 6.8.2.1.
The two definitions share similarities, but the RFC only considers compressed
header formats.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/228401836?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


tion, etc. It is a unique rateless code which provides recoding,
making it applicable for delay sensitive multi-hop networks,
such as the mesh. It also supports online and systematic codes
which avoid buffering and unnecessary coding, both of them
being critical for the fulfilment of latency requirements [6].
Moreover, the authors devised a seed-based network coding
method in [7] that minimises the coding overhead to 1 byte
only, which is a key requirement for the employment of
network coding together with header compression.

Consequently, every non-sequential packet is partitioned
into a number of coded symbols, each of which are prepended
onto the following packets. In case there are losses on the
channel, additional redundant symbols are generated for some
of the latter messages. Once the decompressor receives enough
of these coded symbols, it can decode them and initialise its
context. After that, each of the previously received sequen-
tial packets are fed into the decompressor and are decom-
pressed as normal. This in turn reduces the cost of context
(re)establishment and gives a greater flexibility for balancing
bandwidth and delay. In case the packet loss probability of the
given channel can be derived accurately, one can completely
omit any decompressor feedback as well, which enables the
compression to function in a completely unidirectional way.

The remainder of this paper is structured as follows. In
the next section we introduce our evaluation setup. In Sec-
tion III we define the employed metrics and in Section IV the
achievable savings are compared with the already established
methods. Finally we look at some of the additional features
of reliable base proposal before we conclude in Section V.

II. EVALUATION ENVIRONMENT

In order to evaluate the proposed method, throughout this
contribution we look at four distinct compression strategies,
which we define as follows:

• Uncompressed: We assume an arbitrary RTP/UDP/IPv4
stream with a total header length of 40 bytes.

• Headerless: This represents the theoretical maximum
gain, as no protocol encapsulation is used, resulting in
headers of 0 lengths, which is quite rare in most cases.

• Optimal: This configuration favours the maximisation of
the gain over robustness. The compression does not con-
sider any losses on the channel and keeping compressor-
decompressor synchronisation is of no concern.

• Robust: This mode always sets the repetition count to a
value that guaranties a successful context establishment
and corresponds to the optimistic approach of RoHCv2.

• Reliable: Our proposed method, which utilises network
coding for the establishment of new decompressor con-
texts and the transmission of non-sequential packets.

Figure 1 shows the above four scenarios for 20 consecutive
packets which simulate the compression of the uncompressed
headers. In this case the optimal scenario would assume
a successful context establishment with the first and tenth
packets and would transition to a higher state of compression
right after. The robust method is, however, more pessimistic
and will repeat the context establishment two more times each,
which results in more bandwidth usage but a higher tolerance
to lost packets. Our reliable technique spreads the initial

context establishing packet from the optimal method over
several consecutive packets, which results in similarly high
error tolerance as with the robust approach, but significantly
less transmitted bytes (120 bytes vs. 77 bytes, assuming 1 byte
of network coding overhead).

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
Packet Index

10

20

30

40

H
ea

d
er

S
iz

e

Uncompressed Headerless Robust Reliable

Fig. 1. IPv4 and compressed header sizes for the optimal, robust and reliable
scenarios based on RoHCv2.

Note, that in this paper we only assume a RoHCv2-like
compression in order to evaluate our concept’s feasibility for
integration with actual compression implementations.

In order to ascertain the reliability of the compression we
simulate losses on the channel using correlated loss sequences
based on the well known Gilbert-Elliot model [8]. This model
– even if not resembling any specific wireless system – is
well suited for the evaluation of the compression efficiency
under a lossy erasure channel as it can produce finely tunable
bursty loss sequences. Bursts of packet losses are exactly the
condition which could make the compressor lose synchronism
with the decompressor, thereby rendering the decompression
of any consecutive packet impossible until a complete or
partial context refresh arrives.

During the assessment, we focused on simulated loss rates
Pl ∈ [0.0; 1.0), which is derived from the Gilbert-Elliot
model’s overall mean loss probability. These losses are pre-
sumed to cover both missing and corrupted packets. The model
in question is illustrated in Figure 2 and is a two state Markov-
chain, where we simplify the model in such a way that (i) no
errors occur in the good state and (ii) no packet is conveyed
successfully in the bad state.

Good Bad

pg,b

pb,g

pg,g pb,b

Fig. 2. Gilbert-Elliot channel model with two states g(ood) and b(ad).

In our measurement setup we streamlined even more, so
that only two parameters are used, i.e., pg,g := 1.0 − pg,b
and pb;b := 1.0 − pb,g . We initially assume an error-free
channel with pg,b := 0.0, which we continuously increase
with a delta of 0.01. The transition from the bad state to
the good state mirrors this configuration, which ensures that
the loss pattern will generally contain equally long bursts of



packet losses and error-free transmissions. This is sufficient for
our measurements, as we are only interested in ascertaining
how the compression reacts to continuously repeating losses
(bursts) on the channel. To achieve statistical confidence we
evaluate using 10000 distinct loss sequences with 10000
individual packets for each discussed setup.

III. METRICS

In this section we introduce our metrics used for ascertain-
ing the differences between the various scenarios. First, we
define context availability C similarly to the percentage based
([0.0, 1.0)) metric of service (or system) availability. In the
original sense, a very close value to 1 would translate to a very
low downtime for the given service. For example, a 99.9 %
or 0.999 availability refers to about 9 hours of worst case
downtime for a system on a yearly basis. In our case of context
availability a 0.999 value means 1 failed context establishment
per 1 million packets where non-sequential packets occur at
an average rate of once in 100 packets. A common way to
refer to the order of magnitude is to employ the total number
of nines in the percentage. In the previous case, 0.999 would
translate to 3 n or 3 nines. We use this notation interchangeably
throughout the presentation of our contribution.

Given a specific availability score, determining the mini-
mum number of transmissions to achieve this for the robust
method (trobust), one needs to solve the following equation:

1− C = p(ε)trobust , (1)

where C is the desired context availability and p(ε) is the
packet loss probability of the channel. From this the trobust is
obtained fairly straightforward as:

trobust =
ln(1− C)
ln(p(ε))

. (2)

To determine the same for the reliable method (treliable),
we construct a separate Markov-chain based on the underlying
Gilbert-Elliot model. This will consist of G · 2 transient and
one absorbing states, where G is the generation size of the
network coding instance. Figure 3 illustrates a chain for G = 4.

s

g1

b1

g2

b2

g3

b3

g4

b4

pg

pb

pg

pbpg

pb

pg

pbpg

pb

pg

pbpg

pb

1

pg

Fig. 3. A sample Markov-chain generated in order to determine the context
availability of the reliable method with G = 4.

Given an initial state S, the model can transit with appro-
priate probabilities (pg := pg,g and pb := pb,b) to a good or
bad state (gi, bi : i ∈ {1, 2, 3, 4}). Once at least G number of

“good” transitions with pg probability have been achieved the
model ends up in the absorbing state, which is, in this case, g4.
This corresponds to a successful context establishment or the
successful update of the context with a non-sequential packet.

In turn, in order to determine treliable, we calculate the
absorption probability and solve the following system:

x = Ptreliable

x ≤ 1− C, (3)

where P is the transition matrix of the model. The absorption
probability after i iterations is obtained as (Pi)G∗2+1,G∗2+1.

For the evaluation of the compression savings or gain one
can simply measure the ratio of the compressed packet size to
the original uncompressed packet. This can be expressed as:

S = 1.0− ‖Tco‖‖Tuc‖
, (4)

where ‖Tco‖ and ‖Tuc‖ are the total transmitted bytes with
compression and without compression.

In case retransmissions occur more often, we prefer to use
the payload delivery efficiency E metric in order to ascertain
the effort it takes to deliver a given payload successfully to
the recipient under losses as:

E = 1.0− ‖L‖+ ‖F‖‖T‖ , (5)

which is the ratio between the total received bytes at the sink
node that can be delivered to the application layer without
errors and the total transmitted bytes including any redundant
transmissions. Specifically, ‖L‖ is the amount of dropped
packets in bytes (excluding redundant packets), ‖F‖ is the
amount of packets which failed decompression in bytes and
‖T‖ the total transmitted bytes of the given scenario.

Moreover, we employ two auxiliary metrics for ascertaining
the ratio of discarded (‖F‖) and delayed messages at the
receiver to the total number of transmitted ones. The latter
ratio refers to packets that cannot be processed at the exact
time of reception but were successfully decompressed later on.

IV. RESULTS

On Figure 4 we show the achievable compression gains.
As expected, the context availability is inversely proportional
to the header savings, as either the context establishment is
repeated more times or more redundant symbols are sent.
However, in all scenarios the reliable approach is better or as
good as the robust mode. Moreover, increasing the availability
is more costlier for the robust approach than for the reliable,
especially for high loss rates.

Note that the gain for the reliable method flattens out after
about 80 % losses. This is due to the rate at which non-
sequential packets are sent (in this case after every IR = 100
packets), which acts as the high bound of the given scenario, as
we do not consider consecutive base establishments. Meaning,
that in case there are not enough sequential packets to success-
fully transmit at least G of them with a specific C availability,
that context is considered not initialised and all information is
discarded. This can be, however, remedied with relative ease.

The trade-off for the increased compression gain is the
added delay until the decompession context is initialised and is



0 20 40 60 80 100
Loss Rate

0.0

0.2

0.4

0.6

0.8

1.0
H

ea
d

er
G

ai
n

Robust 99 %

Reliable 99 %

Robust 99.9 %

Reliable 99.9 %

Robust 99.99 %

Reliable 99.99 %

Fig. 4. Compression gain of the robust and reliable methods for context
availability rates of 2, 3 and 4 nines against the correlated loss probabilities.

ready to decompress sequential packets. As seen in Figure 5,
an increase of 1 n generally adds 1.5 times more delayed
packets and is proportional to the observed loss rate increasing
linearly from about 0.07 to 0.15 for 99 % reliability and more
than 0.22 for 99.99 %. At around 80 % losses the delayed
message ratio falls rapidly toward 0. This occurs at the same
position and for the same reason as in Figure 4, since failed
context initialisations result in discarded packets instead of
delayed ones.

0 20 40 60 80 100
Loss Rate

0.00

0.05

0.10

0.15

0.20

D
el

ay
ed

M
es

sa
ge

R
at

io

Reliable 99 % Reliable 99.9 % Reliable 99.99 %

Fig. 5. Ratio of delayed messages to the total transmitted ones for the robust
and reliable methods with context availability rates of 2, 3 and 4 nines against
the correlated loss probabilities.

Figure 6 illustrates the number of packets discarded by the
decompressor due to contexts being out of date. The plot
indicates that the reliable method successfully recovers packets
that would be otherwise discarded by the robust technique.
With the increase in availability one improves the robust
method drastically, but considering the cost for high loss rates,
one can see the benefit of employing the reliable method.

The number of network coded symbols is limited by the
context refresh rate (denoted by IR, an IR = 5 means that
every fifth packet is enforced to be a non-sequential or in
RoHCv2 terms, an ir packet) and the number of redundant
packets the compressor has to send in order to overcome
the losses. Of course, more frequent refreshes mean that one
receives more benefit from the reliable context establishment
– which is precisely the opposite of what one observes when
utilising the robust technique – but this is limited by the

0 20 40 60 80 100
Loss Rate

10−6

10−5

10−4

10−3

10−2

D
is

ca
rd

ed
M

es
sa

ge
R

at
io

Robust 99 %

Reliable 99 %

Robust 99.9 %

Reliable 99.9 %

Robust 99.99 %

Reliable 99.99 %

Fig. 6. Ratio of successfully received but discarded compressed packets of
the robust and reliable methods for context availability rates of 2, 3 and 4
nines against the correlated loss probabilities.

number of packets sent between refreshes, as before. Given a
generation size of 8 symbols, a context availability of 2 nines
and a refresh interval of IR = 50 packets, it is not hard to
see that, at precisely 71 % loss rate, the compressor would
need to send 51 symbols, which is one more than the rate
of refreshes (see Figure 7). This means, that at 71 % losses
and higher, one cannot guarantee the two nines of availability
with this configuration. Consequently, finding the right balance
between availability, generation size and context refreshes
is important. Note, that since in this scenario there are no
major retransmissions, a small increase of efficiency can be
considered significant in contrast to some of the authors’ other
works, such as [7].

0 20 40 60 80 100
Loss Rate

−0.06

−0.04

−0.02

0.00

0.02

0.04

E
ffi

ci
en

cy
G

ai
n

IR=25 IR=50 IR=100

Fig. 7. Payload efficiency gain of the robust and reliable methods for context
availability rates 2 nines against the correlated loss probabilities, 40 bytes of
payload and varying repetition intervals with generation size 8.

Based on our observations so far, we endeavour the con-
struction of an arbitrary scenario where we balance the costs
and gains of the various configurations in order to find the most
efficient one. To achieve this we define a penalty function –
where negative values are considered rewards – for each of
the following aspects:

• Reliability penalty: Exponentially decreases by pr = (1−
C)2 ·2−1, meaning that reliability values close to 1 get a
bonus, while values under ∼0.7 get an increasing penalty.

• Compression gain penalty: Exponentially decreases sim-
ilarly to the above with a higher rate by pg = 1 − S3,



but without bonuses (pg ∈ [1, 0]), which increase quite
rapidly as the gain diminishes. The motivation behind this
is that one should always strive to achieve the highest
gain possible, which is usually around 0.9.

• Delay penalty: Exponentially increases by pd = D4 ·2−1,
where the shortest delays yield a bonus and ones longer
than 80 packets get penalties. Since we assume that IR =
100, the delays which get close to 100 have to be avoided,
otherwise failed context initialisations become common.

Based on the penalties we execute a brute force lookup
on a pre-generated table, which finds an optimally balanced
solution from two directions given a specific loss rate that
achieves the highest availability: min(D) gets the shortest
delay, while max(R) results in the highest availability.

Figure 8 presents the best settings chosen by the algorithm
with the above defined penalty functions. We see that minimis-
ing for max(R) results in a generally small generation size,
which is a bit worse than the corresponding robust solution by
about 25 packets. However, the reliable method increases both
the gain and the reliability by a few points. When we limit
min(D) to at least 2 nines (R ≤ 0.99) we achieve results that
are on average 1 nine better.

1

50

100

C
on

te
xt

D
el

ay

0.8

0.9

1.0

G
ai

n

0

25

50

G
en

er
at

io
n

S
z.

0 20 40 60 80 100
Loss Rate

4n
3n
2n
1n
0n

R
el

ia
b

ili
ty

Robust min(D)

Robust max(R)

Robust min(D), R ≥ 0.99

Reliable min(D)

Reliable max(R)

Reliable min(D), R ≥ 0.99

Fig. 8. Optimal settings for the reliable base proposal and the robust methods
employing the penalty functions.

In turn, finding the maximum availability while keeping
the shortest delay results in a gradually increasing delay and
higher compression gains for the reliable technique, while the
availability is locked in at about 0.7 for both (this is where
the penalty transitions from positive to negative values).

V. CONCLUSIONS

Fifth generation applications, amongst other things, will rely
on the fulfilment of high reliability constraints. This, however,
sometimes happens at the expense of latency and bandwidth
usage. Header compression has been used extensively and
successfully for the reduction of the packetisation overhead
commonly observed in IP networks. Nonetheless, this is

sometimes achieved by rendering the fulfilment of delay and
reliability needs as secondary concerns. Consequently, when
the right balance between these three aspects has been found,
one can utilise header compression at its utmost benefit.

A serious problem that affects header compression tech-
niques is the issue of lost context (re)initialisation packets
which can make the compression unreliable. In this paper we
propose a solution that circumvents the problems of traditional
header compression context initialisation by the employment
of random linear network coding, which we call the reliable
base proposal technique. This provides a finely tunable method
for balancing reliability of decompression and bandwidth gain
during compression. We show that both compression gain
and context availability can be increased over the previously
establish standard approaches, while keeping the delay costs
acceptable and minimal. It also enables reliable compression
on a unidirectional channel at a never before seen efficiency.

Currently we are working on a more integrated solution
with actual compression implementations and real-life streams
to thoroughly show the benefits of our new concept and with
more intricate integration of network coding.

ACKNOWLEDGMENTS

The authors would like to thank Maroua Taghouti of the
Technische Universität Dresden for her support in some of
the theoretical aspects of this paper. This work was supported
by the BME-Artificial Intelligence FIKP grant of EMMI
(BME FIKP-MI/SC), the János Bolyai Research Fellowship
of the Hungarian Academy of Sciences and the SCALE-
IoT Project (Grant No. 7026-00042B) granted by the Danish
Council for Independent Research, the Aarhus Universitets
Forskningsfond Starting Grant Project AUFF-2017-FLS-7-1,
and Aarhus University’s DIGIT Centre.

REFERENCES

[1] V. Jacobson, “Compressing TCP/IP headers for low-speed serial links,”
Request for Comments 1144, 1990.

[2] M. Degermark, M. Engan, B. Nordgren, and S. Pink, “Lowloss tcp/ip
header compression for wireless networks,” Wireless Networks, vol. 3,
pp. 375–387, Oct 1997.

[3] A. Calveras, M. Arnau, and J. Paradells, “An improvement of tcp/ip
header compression algorithm for wireless links,” Third World Multicon-
ference on Systemics, Cybernetics and Informatics (SCI99) and the Fifth
International Conference on Information Systems Analysis and Synthesis
(ISAS99), IEEE, Orlando, USA, vol. vol. 4, pp. pp. 39–46, July/August
1999.

[4] A. Giovanardi, G. Mazzini, M. Rossi, and M. Zorzi, “Improved header
compression for tcp/ip over wireless links,” Electronics Letters, vol. 36,
pp. 1958–1960, Nov 2000.

[5] T. Ho, M. Medard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A random linear network coding approach to multicast,” IEEE
Transactions on Information Theory, vol. 52, pp. 4413–4430, Oct 2006.

[6] M. Tömösközi, F. H. P. Fitzek, D. E. Lucani, M. V. Pedersen, and
P. Seeling, “On the delay characteristics for point-to-point links using
random linear network coding with on-the-fly coding capabilities,” in
European Wireless 2014; 20th European Wireless Conference, pp. 1–6,
May 2014.

[7] M. Tömösközi, D. E. Lucani, F. H. Fitzek, and P. Ekler, “Unidirectional
robust header compression for reliable low latency mesh networks,” in
2019 IEEE International Conference on Communications (ICC): Mobile
and Wireless Networks Symposium (IEEE ICC’19 - MWN Symposium),
(Shanghai, P.R. China), May 2019.

[8] P. Sadeghi, R. A. Kennedy, P. B. Rapajic, and R. Shams, “Finite-
state markov modeling of fading channels - a survey of principles and
applications,” IEEE Signal Processing Magazine, vol. 25, pp. 57–80, Sep.
2008.


