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Abstract

Small molecule, dietary antioxidants exert a remarkably

broad range of bioactivities, and many of these can be

explained by the influence of antioxidants on the redox

homeostasis. Such compounds help to modulate the levels of

harmful reactive oxygen/nitrogen species, and therefore

participate in the regulation of various redox signaling

pathways. However, upon ingestion, antioxidants usually

undergo extensive metabolism that can generate a wide

range of bioactive metabolites. This makes it difficult, but

otherwise a need, to identify the ones responsible for the

different activities of antioxidants. By better understanding

their ways of action, the use of antioxidants in therapy can

be improved.

This review provides a summary on the role of the in vivo

metabolic changes and the oxidized metabolites on the

mechanisms behind the bioactivity of antioxidants. A special

attention is given to metabolites described as products of

biomimetic oxidative chemical reactions, which can be

considered as models of free radical scavenging. During

such reactions a wide variety of metabolites are formed, and

they can exert completely different specific bioactivities as

compared to their parent antioxidants. This implies that
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exploring the free radical scavenging‐related metabolite

fingerprint of each antioxidant molecule, collectively defined

here as the scavengome, will lead to a deeper understanding

of the bioactivity of these compounds.

Furthermore, this paper aims to be a working tool for

systematic studies on oxidized metabolic fingerprints of

antioxidants, which will certainly reveal an often‐neglected
segment of chemical space that is a treasury of bioactive

compounds.
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1 | INTRODUCTION

The field of antioxidants undoubtedly lives its renaissance, largely due to the fact that oxidative stress is closely

connected to the development of many chronic diseases, including diabetes, cancer, various aging related and

central nerve system (CNS) disorders, etc.1 Oxidative stress, a term coined by Helmut Sies,2 has recently been

redefined as “a disruption of redox signaling and control”,3 emphasizing the importance of a dynamic but fine‐tuned
redox balance in the maintenance of cellular homeostasis.4-7 Moreover, an intensive reconceptualization of the

chemical, biological and pharmacological aspects of oxidative stress and antioxidant defense is ongoing in the field;

such perspectives were recently reviewed 8-10 and will not be covered in detail here.

Small‐molecule antioxidants have long been considered as compounds able to decrease or, under certain

circumstances, contribute to oxidative stress. While their chemical structure makes them able to directly scavenge

reactive oxygen and nitrogen species (ROS and RNS, respectively; collectively referred to as RONS),11 the in vivo

antioxidant action of these compounds seems to be linked to their potential to interact with various redox signaling

pathways by modulation of the activity of redox enzymes.9,10 Moreover, many dietary antioxidants undergo

extensive metabolism; those that are not absorbed in the small intestines can also suffer fragmentation into smaller

compounds by gut microbiota. This certainly leads to a situation where the activity observed in vivo is necessarily a

superposition of the effects of these metabolites on several possible targets.12,13

This paper provides a brief summary on the various mechanisms influenced by the activity of small‐molecule

antioxidants. A set of dietary phenolic compounds including curcuminoids, a stilbene, hydroxycinnamic acid

derivatives, a lignan, and a flavonoid are discussed in detail. These are: curcumin (1), demetoxycurcumin (2),

bisdemetoxycurcumin (3), resveratrol (4), methyl‐p‐coumarate (5), methyl‐caffeate (6), methyl‐ferulate (7),

secoisolariciresinol (8) and luteolin (9). Selection of these compounds took into consideration their chemical

diversity, as well as the fact that they represent classes of natural products whose antioxidant activity attracts

particularly high scientific and popular interest. The mechanisms to be discussed include free radical scavenging,

modulation of antioxidant/pro‐oxidant enzymes and/or transcription factors, and the formation of bioactive

metabolites. Mechanisms extensively reviewed elsewhere are touched upon lightly. It is the primary aim of this

paper to shed light on the potential biomedical importance of a largely neglected part of the metabolism of

antioxidants, the formation of new, bioactive chemical entities upon scavenging ROS or RNS. With this idea in mind,

RONS scavenging‐related formation of bioactive species from ascorbic acid and estrone are also briefly discussed.

Literature search was conducted using online databases including SciFinder, PubMed, ScienceDirect and Google

Scholar. Whenever possible, publications not older than 10 years were favored. However, survey on RONS
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scavenging‐related oxidative transformation by antioxidants was not limited to a specific time frame. This part of

the search focused on biomimetic oxidative transformations of compounds 1‐9, and references were included only

if a direct comparison between the bioactivity of the antioxidant and its oxidized analog(s) was available in the

same pharmacological model.

2 | FREE RADICAL SCAVENGING AND REDOX MODULATION OF
ENZYMES AND TRANSCRIPTION FACTORS

Decrease of RONS levels as a result of their scavenging by small‐molecule antioxidants had been used as a

simplified description of the bioactivity of these molecules, but this point of view has long been outdated. There are

many easy‐to‐perform in vitro techniques available for assessing the free radical scavenging capacity of a dietary

antioxidant,11,14-16 and thanks to the simplicity of such bioassays, an abundance of related reports has been

published over the last several decades. A large number of studies reported the free radical scavenging activity of

the compounds selected for discussion here, and these include curcuminoids,17 resveratrol,18-21 cinnamic

acids,11,22,23 lignans,24 and flavonoids.11,25,26 Despite the popularity of such antioxidant assays, these have little if

any in vivo relevance in terms of decreasing RONS levels. Due to the reactivity and short half‐life of damaging

RONS, it is now generally accepted that dietary antioxidants cannot overcome kinetic limitations in free radical

scavenging to make a relevant difference in RONS levels in vivo.9 A possible sole exception is the case of vitamin E

that is present in large enough amounts in biological membranes to act efficiently against peroxyl radicals.27

Nevertheless, it must be noted that, regardless of of the low efficiency of this mechanism in preventing cellular

damage, RONS scavenging by dietary antioxidants (and/or their metabolites) should take place in vivo, and this

might still deserve attention from another important perspective, namely the formation of additional metabolites,

not as yet studied in detail (see Section 4).

Major ROS with large physiological/pathophysiological importance include hydrogen peroxide (H2O2),
28

superoxide anion radical (O2
•–),29 hypochlorous acid (HOCl),30 singlet oxygen (1O2),

31 hydroxyl radical (•OH),

alkoxyl radical (RO•), and peroxyl radical (ROO•).32 Major RNS are nitric oxide (•NO), nitrogen dioxide (•NO2), and

peroxynitrite (ONOO–).11 Primary RONS, ie H2O2, O2
•–, and •NO, have relatively low damaging potential, and their

levels are under specific enzymatic control.32,33 Structural damage of macromolecules, associated with oxidative

stress and related pathologies, is connected to the more reactive and less regulated, toxic secondary species, mainly
•OH radical, ONOO– and HOCl.33

It is generally well accepted that i) the production of RONS is in principle due to enzymatic processes; and ii) the

primary counterbalance of the resulting oxidative stress is in fact the pool of antioxidant enzymes and not small‐
molecule free radical scavengers.34 Accordingly, in vivo relevant antioxidant activity, ie a decrease of oxidative

stress by dietary compounds, is a result of the enzymatic modulation of redox equilibrium. ROS are produced

primarily by mitochondria (ETC complexes I and II), NADPH oxidases, lipoxygenases (LOXs), cyclooxygenases

(COXs), xanthine oxidoreductase (XOR) and cytochrome P (CYP) monooxygenases.32 Among RNS, the nitrogen‐
centered radical nitric oxide is produced by nitric oxide synthases (NOSs), and its reaction with O2

•– leads to the

formation of ONOO–.32,33 Peroxynitrite can then react with CO2 to yield nitrosoperoxycarboxylate (ONOOCOO−)

that further decomposes into •NO2 and carbonate radicals. Alternatively, protonation of peroxynitrite yields its

acid form (ONOOH), which can undergo homolysis to yield •NO2 and
•OH radicals.35 Though this latter reaction is

less efficient than that between peroxynitrite and CO2, it has been shown to occur and have biological significance

if peroxynitrite is formed and may affect proton pumps of the cell membrane.36

Antioxidant enzymes counterbalance the potentially harmful effects of RONS. These can exert their function

directly, such as for example superoxide dismutases (SODs), glutathione peroxidase (GPx) and catalase (CAT), or

indirectly, such as for example glutathione‐S‐transferases (GSTs), UDP‐glucuronosyl transferases, and NADP
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F IGURE 1 (A) Metabolites of curcuminoids (1‐3) identified from in vivo, ex vivo and microbial fermentation studies.
Bioactivity of these metabolites is discussed in Section 3.1. Glu: glucuronidyl. (B) Some oxidized derivatives of

curcuminoids (1‐3) obtained from autoxidation or biomimetic oxidative chemistry that had bioactivity profile different
from that of their parent compounds, see Section 4.1 and Table 1. These compounds may likely form through free radical
scavenging
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quinone oxidoreductase. The role of these enzyme systems in oxidative stress has extensively been reviewed by

others.34,37,38

It is now also well known that certain types of ROS (eg H2O2) and RNS (eg •NO and ONOO–) play a pivotal

signaling role. This might occur through the reversible oxidation of proteins on the SH groups of cysteine and/or

methionine, and in particular, S‐sulfenylation, S‐glutathionylation, S‐nitrosylation, S‐polysulfidation or disulfide

bond formation, and/or nitration of tyrosine and tryptophan residues. MAPK‐mediated pathways including ERK1/2,

p38 and JNK, PI3K/Akt signaling, and several transcription factors such as Nrf2, AP‐1, NF‐κB, HIF‐1α, p53,
Wnt/β‐catenin, that control the expression of a large number of genes, are known to be under redox regulation. For

more details on this subject and most recent developments in the field, see the review by Moldogazieva et al.7

Accordingly, it is not surprising that many dietary antioxidants have been reported to interfere with a variety of

the above‐mentioned pathways/transcription factors, and such interactions appear to play an important role in the

polypharmacology of these compounds.39 Briefly, it seems an important common feature of polyphenol compounds

to induce an adaptive response to oxidative stress through the activation of Nrf2.9 This leads to the upregulation of

antioxidant enzymes including CAT, GPx, GST, paraoxonases (PONs), glutathione reductase (GR), and γ‐glutamyl

cysteine synthetase (γ‐GCS).39 Many plant polyphenols also share an ability to down‐regulate PI3K/Akt,40 activate

AMPK 41-43 and sirtuins,43-46 and suppress NF‐κB signaling.47 These redox‐regulated pathways have also been

implicated as underlying mechanisms for the health‐promoting and lifespan‐increasing effects of dietary

polyphenols.48

3 | METABOLISM OF ANTIOXIDANTS IN VIEW OF THEIR BIOACTIVITY

While there is an abundance of in vitro pharmacological studies on dietary antioxidants, promising results obtained

in such experimental systems are difficult to translate into in vivo applications. A major reason for this is the poor

oral bioavailability of such compounds, which is largely due to their metabolism by gut microbiota and/or the

F IGURE 2 (A) Metabolites of resveratrol (4) identified from in vitro and in vivo studies. Bioactivity of these
metabolites is discussed in Section 3.2. Glu: glucuronidyl. (B) Some oxidized derivatives of resveratrol obtained
from biomimetic oxidative chemistry that had bioactivity profile different from that of their parent compound, see

Section 4.2 and Table 1. These compounds may likely form through free radical scavenging
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intestinal mucosa, and the subsequent extensive metabolism of the absorbed fraction mostly within the liver and

kidneys. The microbial metabolism of ingested polyphenols involves enzymatic hydrolysis of β‐glycosidic bonds

liberating aglycons that are absorbed better than their glycosides. Microbial metabolism frequently leads to a

variety of smaller fragments, including simple phenolic acids, phloroglucinol derivatives, etc. Detailed reviews on

F IGURE 3 (A) Metabolites of methyl hydroxycinnamates (5‐7) identified from in vitro, in vivo and ex vivo studies.

Bioactivity of these metabolites is discussed in Section 3.3. Glu: glucuronidyl. Due to the methylation of 6 by
catechol‐O‐methyltransferase (COMT), overlaps are observed for compounds 6 and 7, i.e. 6b and 7a are
metabolites of 7 and 6, respectively. Metabolites 6h‐6k were obtained through cleavage of chlorogenic acid to 6a
by gut microbiota. (B) Some oxidized derivatives of 5‐7 obtained from biomimetic oxidative chemistry that had
bioactivity profiles different from that of their parent compounds, see Section 4.3 and Table 1. These compounds
may likely form through free radical scavenging
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this subject have recently been published by others.13,49-52 The following sub‐sections attempt to provide an

overview on the known Phase I and Phase II metabolic transformations of curcuminoids (1‐3), resveratrol (4), a set

of methyl‐hydroxycinnamates (5‐7), secoisolariciresinol (8), and luteolin (9), and on related pharmacological

consequences.

To facilitate comparison between metabolites described in Sections 3 and 4, the corresponding Figures 1A‐5A
will present previously identified phase I and II metabolites of compounds 1‐9, and Figures 1B‐5B metabolites

obtained by biomimetic oxidative chemistry discussed in Section 4.

3.1 | Metabolism of curcuminoids

The diarylheptanoid antioxidants from Curcuma species (turmeric: C. longa, wild turmeric: C. aromatica, Javanese

turmeric: C. xanthorrhiza), curcumin (1), demethoxycurcumin (2) and bisdemethoxycurcumin (3) (Figure 1), have

achieved important scientific and clinical interest. At the time of this writing, 57 current clinical studies on curcumin

(1) at various stages are registered at the National Institutes of Health (NIH) database. A wide range of in vitro and

in vivo studies have claimed beneficial bioactivities attributed to curcumin (1), and these bioactivities include

chemo‐preventive, neuroprotective, antitumor and anti‐mutagenic, antimetastatic, Antiangiogenic, immunomodu-

latory, anti‐inflammatory, etc., and are extensively reviewed by others.17,53-57

F IGURE 4 (A) Metabolites of secoisolariciresinol (8) identified from in vitro and in vivo studies. Bioactivity of
these metabolites is discussed in Section 3.4. Glu: glucuronidyl, SDG: diglucoside of 8. In case of asymmetric
conjugates of 8b and 8c, identification was based on mass spectrometry, hence the differently substituted phenolic

rings may be interchangeable.106,107 (B) Some oxidized derivatives of 8 obtained from biomimetic oxidative
chemistry that had bioactivity profiles that differed from that of their parent compound, see Section 4.4 and Table
1. These compounds may likely form through free radical scavenging. Lariciresinol (8g) is also a naturally occurring
lignan that may be metabolized by gut microbiota to 8, and subsequently to 8a‐8c
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It is well understood that curcumin has very low bioavailability and low chemical stability.58 For example, oral

administration of an amount as high as 500mg/kg of curcumin to streptozotocin‐induced diabetic rats results in a

maximum of only 0.06 µg/mL plasma concentration, which represents an oral bioavailability of ca. 0.5%.59

Therefore, metabolites and decomposition products of curcumin and its analogs are thought to play a central role in

their remarkable polypharmacology.56,60,61

Structures of the known metabolites of curcuminoids (1‐3) identified from in vivo (mice, rats, or humans) and ex

vivo (tissue slices) studies, as well as those from fermentation with gut microbiota, are presented in Figure 1A as

compounds 1a‐1r, 2a‐2r, and 3a‐3k. The biotransformation of curcuminoids is known to involve reduction (a major

metabolic step by gut microbiota 62,63 and by the liver 64,65), demethylation and/or further hydroxylation,

cyclization (by gut microbiota 62), and the formation of glucuronide and/or sulfate conjugates primarily at phenolic

OH groups (accordingly, 1d is a minor metabolite).64-68 Sulfate conjugation of curcumin (1) was recently also

demonstrated to take place in breast cancer cells, and rapid excretion of its conjugates took place through a yet

unidentified efflux transporter, possibly ABCG2.69 As previously mentioned, free, unchanged curcumin appears to

be scarcely present in the peripheral blood and tissues after oral ingestion.66 When administered intravenously in

mice, it has a half‐life of around 30minutes.70 The main hepatic metabolite of curcumin (1) in humans and rats was

found to be hexahydrocurcumin (1a) that can further be reduced to octahydrocurcumin, also referred to as

curcuminol (1b).64 Moreover, at least in rats, phase I metabolism can involve further reduction and methoxylation

of the heptyl chain (forming 2l and 2n), as evidenced by the isolation of demethoxycurcumin metabolites (2k‐2q)
from rat feces and urine.71

The reduction and/or conjugation certainly influences the bioactivity of curcumin. In terms of affecting COX‐2
expression, these metabolic changes may represent bio‐inactivation.64 The reduced metabolites tetra‐, hexa‐, and

F IGURE 5 (A) Metabolites of luteolin (9) and its glycosides identified from in vitro and in vivo studies. Bioactivity
of these metabolites is discussed in Section 3.5. COMT: catechol‐O‐methyltransferase, Glu: glucuronidyl,

UDP‐GluT: UDP‐glucuronosyltransferase. The formation of phloroglucinol (9o) has been suggested based on the
presence of dihydrocaffeic acid (9p). (B) Specific oxidized derivatives of 9 that were identified from biomimetic
oxidative chemistry and are well‐known to form through free radical scavenging. Glutathione‐S‐transferase
inhibitory activity 9q and 9r in comparison with that of 9 is discussed in Section 4.5 and summarized in Table1
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octahydrocurcumin (1m, 1a, and 1b, respectively) are also less active than curcumin as inhibitors of

lipopolysaccharide (LPS)‐induced expression of inducible nitric oxide synthase (iNOS) and NF‐κB activation in

RAW 264.7 macrophages.72 However, Lee et al found that hexahydrocurcumin (1a) exerts potent anti‐
inflammatory activity by inhibiting LPS‐induced, COX‐2 derived prostaglandin E2 production in RAW264.7 cells

with an IC50 value of 0.7 µM.73 Although in this study curcumin (1) was unfortunately not used as a control, Mohd

Aluwi et al found it to act with an IC50 value of ca. 16 µM.74 Therefore, it seems that hexahydrocurcumin (1a) is

more potent in this regard than its parent compound, although no direct comparison was made in this case. A broad

range of further bioactivities of hexahydrocurcumin (1a) shows that this compound is a potent bioactive metabolite

of curcumin (1) and this has been recently reviewed by Huang et al.75 A number of studies demonstrated that the in

vitro antioxidant activity of 1a is at least comparable to that of curcumin as scavenger of DPPH, •NO, and •OH

radicals, and as inhibitor of AAPH‐induced linoleic oxidation and hemolysis.76-78 Hexahydrocurcumin (1a) was also

reported as a potent antioxidant in vivo such that a single intraperitoneal injection of 10 to 40mg/kg dose

significantly decreased the MDA and •NO levels and the expression of NF‐κB and COX‐2 in a rat stroke model. This

same study found 1a to protect the rats' brain from ischaemia/reperfusion injury, and to reduce inflammatory

response.79 Curcumin was also studied and found effective in a similar rat model, however at a much larger dose

(300mg/kg).80 Unfortunately, this makes it difficult to draw any comparison between the efficacies of the two

compounds. Nevertheless, there is no doubt of the importance of the activity of metabolite 1a in vivo. Most

recently, this compound was also found to efficiently inhibit corneal neovascularization, an important reason for

corneal blindness, induced by the p‐bFGF‐SAINT‐18 & p‐VEGF‐SAINT‐18 complex in an in vivo rat model, and it

exerted ca. 50% inhibition after 6 days at a dose of 1 µg.81

3.2 | Metabolism of resveratrol

Resveratrol (4; Figure 2) is probably the most popular dietary antioxidant. This stilbene is best known as the

“magic” constituent of blue grape skin and red wine, and it occurs in lower amounts in several foods including a

variety of berries (eg cranberry, mulberry), tomato skin, peanuts, pistachios, cocoa, etc.82 Resveratrol (4) offers a

broad spectrum of health benefits including its widely accepted cardiovascular protective effect and its ability to

reduce cancer risk, even though the related literature is very diverse and not fully conclusive as to its real value.83

The pharmacokinetics and metabolism of resveratrol (4) has most recently been reviewed by Wang & Sang.84

Despite its rapid absorption, the extensive and fast metabolism makes the bioavailability of resveratrol extremely

low. Oral ingestion of as high as 5 g of resveratrol by humans was found to lead to peak plasma concentrations of

ca. 2.4 µM, while resveratrol‐3‐O‐sulfate (4c; Figure 2A) could reach 8 times higher concentration and over 20

times higher AUC value.85 Major metabolic transformations of resveratrol involve phase II and include glucuronide

and/or sulfate conjugation, leading to metabolites 4a to 4i, and reduction by gut microbiota to form compounds 4j

to 4l.84 Conjugation takes place in the intestinal mucosa and liver, and the sulfate conjugate 4c was also identified

to form in adipocytes.86 Relative importance of the different conjugation routes shows dose‐dependency.
Administration of smaller, 5 to 50mg doses of resveratrol (4) led to the appearance of glucuronides as main

metabolites in the plasma of human volunteers. In contrast, when larger, ≥ 250mg doses were administered, the

sulfate conjugate 4c was observed as the major metabolite.84

Conjugation significantly alters the bioactivity profile of resveratrol in a way that some activities decrease or

disappear, while others are at least partially retained.87,88 The Na+ salts of compounds 4i and 4h are much weaker

inhibitors of NF‐κB, COX‐1, and COX‐2, as well as of the •NO production of LPS‐stimulated RAW 264.7

macrophages as compared to resveratrol. However, the Na+ salt of compound 4c and the K+ salt of compound 4d

showed COX‐1 inhibition (IC50 = 3.60 and 7.53 µM, respectively) comparable to that of their parent compound

(IC50 = 6.65 µM). Both of these metabolites exerted a similarly strong inhibition of COX‐2, i.e. they lost the

selectivity of resveratrol towards COX‐2 that is about 10 times (IC50 = 0.75 µM).88 As an interesting change in

bioactivity due to metabolism, compound 4c was found to exert a selective antiestrogen effect on estrogen
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receptor α in a transformed yeast model and also in MCF‐7 cells. Resveratrol acted as a partial agonist in this

study.89 Resveratrol 3‐glucuronide (4b) and 3‐sulfate (4c) conjugates also play an important role in tissue

accumulation. Following a 6 weeks‐long intraperitoneal daily treatment of streptozoticin‐induced diabetic rats with

5mg/kg of resveratrol (4), conjugates 4b and 4c were found to accumulate in the heart but not in the pancreas

tissue. Importantly, concentrations of 4c (reaching a maximum of 20 nM) positively correlated with the

improvement of cardiac function and haemodynamic performance.90 It is worth noting that since deconjugation

can also take place, the circulating conjugates can as well be considered as a pool of resveratrol to release in certain

tissues.83,84

3.3 | Metabolism of hydroxycinnamates

Hydroxycinnamic acids are among the most abundant dietary antioxidants, present in many vegetables, fruits,

cereals and beverages.91 These compounds can occur in plants either in free form, or as conjugates (eg as esters in

chlorogenic acids, rosmarinic acid, etc.), and they are also well known as structural elements in the biosynthesis of

many plant phenolic compounds such as lignans or flavonoids.23,91-93

After oral ingestion, enteral metabolism of methyl esters of p‐coumaric, caffeic and ferulic acids (compounds 5,

6, and 7, respectively; Figure 3) involves de‐esterification 94 and primarily sulfate or, to a lesser extent, glucuronide

conjugation, leading to the formation of compounds 5a‐5d, 6a‐6g, and 7a‐7c, respectively (Figure 3A).95 In case of

the catechol methyl caffeate (6) and its metabolite caffeic acid (6a), methylation by catechol‐O‐methyltransferase

(COMT) also takes place, with subsequent formation of the sulfate conjugates of ferulic acid (6b) and isoferulic acid

(6d) as main products.94-96 Following absorption, glucuronidation, methylation and/or sulfation takes place in the

liver and the formed metabolites participate in enterohepatic circulation. Methylation by COMT was also observed

in the kidneys.92 Extrapolating from results obtained for chlorogenic acid (5‐O‐caffeoylquinic acid), it is also clear

that bacterial metabolism of caffeic acid involves side‐chain saturation as a major step (forming 6h), and that it can

also be dehydroxylated and undergo gradual side‐chain shortening all the way down to benzoic acid (forming 6g

and 6i‐6k).97,98 Similar metabolic transformations are expected for compounds 5 and 7, as well.

Unsurprisingly, the bioactivity profiles of methylated, glucuronidated and sulphated metabolites of

hydroxycinnamic acids show significant differences as compared with those of their parent compounds.92 The in

vitro antioxidant activities such as ferric reducing activity and 2,2′‐azinobis‐(3‐ethylbenzothiazoline‐6‐sulfonic acid)
(ABTS) radical scavenging, as well as the antibacterial activity of the methylated and/or conjugated metabolites

typically decrease as compared to their corresponding parent compounds. However, some activities are at least

partially retained. Heleno et al found that the acyl glucuronidated derivatives of compound 5a and those of its

expectable metabolite p‐hydroxybenzoic acid exert stronger cytotoxicity on some human cancer cell lines than

their parent antioxidant.99 It should be noted that these compounds were of synthetic origin and the metabolism‐
related formation of acyl glucuronides has not been reported for compounds 5‐7 nor for their demethylated forms.

3.4 | Metabolism of secoisolariciresinol

Secoisolariciresinol (8; Figure 4) is a lignan present in largest amounts in its diglycoside (SDG) form in flax

(Linum usitatissimum L.) seed, and it is widely acknowledged for its health benefits in preventing many lifestyle‐
associated problems, including cardiovascular disease and metabolic syndrome, and it also appears to have chemo‐
preventive activity against cancer, particularly colorectal cancer.100-102

Secoisolariciresinol (8) is a classic example for a compound where transformation by gut microbiota is crucial

for the formation of major bioactive metabolites, so called mammalian lignans or enterolignans, particularly

enterodiol (8b) and enterolactone (8c); for chemical structures, see Figure 4A. These compounds are efficiently

absorbed in humans 103 and seem to play a significant role in the health‐preserving effect attributed to flax seed

consumption.104 In healthy postmenopausal women, 86 or 172mg single oral dose of an extract containing 43%
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SDG (ie 37 or 74mg SDG) resulted in peak plasma concentrations of ca. 250 or 540 ng/mL (8), 35 or 75 (8b) and 40

or 50 ng/mL (8c).103 Subsequent to bacterial deglycosilation, demethylation, and dehydroxylation of SDG (and

lactone ring formation in case of 8c),105 8b and 8c undergo phase II metabolism during absorption by colon

epithelial cells to form sulfate and glucuronide conjugates (8ba‐8be and 8cg‐8ck).106,107 The free, nonconjugated

fractions of both 4b and 4c undergo microsomal oxidative metabolism in the liver, leading to hydroxylated products

at the aromatic rings (8bf‐8bh and 8ca‐8cf) or in the aliphatic region.108,109 Structures of the latter metabolites,

however, have not been unequivocally identified, hence they are not presented here.

The enterolignans 8b and 8c are well‐known for their bioactivity.110 Briefly, they are antioxidants themselves,

and act as phytoestrogens both at the receptor level and through competing with endogenous steroid hormones for

plasma protein binding. In addition, 8c also inhibits key enzymes of the human steroid metabolism including

aromatase,111 5α‐reductase,112 cholesterol‐7α‐hydroxylase 110 and 17β‐hydroxysteroid dehydrogenase.113

Epidemiological evidence suggests the preventive role of 8b and 8c in breast and prostate cancer,110 and several

recent in vitro and in vivo studies imply their positive effect in a variety of cancers including ovarian,114

colorectal,115 and lung cancer.116 However, while 8b and 8c have extensively been studied, little is known on the

bioactivity of their further metabolites.

3.5 | Metabolism of luteolin

Luteolin (9; Figure 5) is a catechol‐type B‐ring containing flavone, present in many fruits, vegetables and medicinal

plants, and valued for a wide range of health benefits including anti‐inflammatory, neuro‐protective and chemo‐
preventive effects as detailed in the reviews by Kwon 117 and Aziz et al,118 and the recent book by Dwight.119

In healthy human subjects, a single‐dose oral intake of 20mg/kg of luteolin resulted in a peak plasma

concentration of ca. 330 ng/mL at 1 hour after administration,120 suggesting that bioactivities observed in vitro at

around 0.1‐1 µM concentrations might have in vivo relevance. As to its metabolic fate, several recent studies

addressed the metabolism of luteolin (9) in cell cultures and/or after oral ingestion in rodents.121-123 Luteolin (9) is

absorbed faster in the small than in the large intestine, and undergoes a significant intestinal first‐pass metabolism

through conjugation to mono‐ and diglucuronides (9a‐9d, 9k‐9m) by UDP‐glucuronosyltransferases,121 and, in

parallel to this, O‐methylation by COMT forms chrysoeriol (9e) and diosmetin (9 f) that are then glucuronidated as

is the parent compound 123 (chemical structures are presented in Figure 5A). Administering a single 20 µM/kg oral

dose in rats, tissue distribution of luteolin (9) and its metabolites 9b‐9g, 9i and 9j was found to be rapid into the

organs, with the exception of 9e and 9j whose presence was not detectable in the brain at any time probably due to

the blood‐brain barrier. In most tissues, the 3′‐glucuronide conjugate (9c) was the predominant metabolite reaching

peak concentrations of ca. 2.5 nM/g in the small intestine, ca. 0.7 nM/g in the lungs, and ca. 0.5 nM/g in the stomach,

liver and kidney, and the peak plasma concentration was ca. 1.5 nM/mL. In contrast, luteolin (9) itself reached only a

F IGURE 6 Cyclic antioxidant mechanism for estrone and estradiol, involving a chemically stable, p‐quinol
intermediate formed through •OH radical scavenging. DHED was successfully applied in vivo as a brain‐targeted
neuroprotective pro‐drug of estradiol147-149
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0.6 nM/mL peak plasma concentration in that study, and its concentration in the organs was also typically below

that of 9c.124 Unlike luteolin, its glycosides reach the large intestine where the sugar moieties can efficiently be

cleaved by gut bacteria. Subsequent bacterial metabolism of luteolin involves the reduction of the 2,3‐double bond

to form the flavanone eriodictyol (9n) whose cleavage to phloroglucinol (9o) and 3‐(3,4‐dihydroxyphenyl)propionic
acid (9p) can also take place.125

Concerning the bioactivity of luteolin metabolites, the anti‐inflammatory activity of three major mono‐
glucuronide conjugates (9b‐9d) was recently studied in comparison with that of their parent compound in LPS‐
treated RAW264.7 cells. At 25 µM, luteolin (9) could completely prevent the LPS‐induced increase in the mRNA

expression of IL‐6, IL‐1β, NF‐κB1, Ccl2, Ccl3 and Ccl5. While the main metabolite 9c was inactive at the same

concentration, 9a and particularly 9b were found to partially retain the activity of their parent compound, with 9b

acting ca. half as strong as luteolin (9).126 Considering the concentrations that can be achieved in vivo, compounds

acting weak at 25 µM concentration might seem to have low chance to exert a relevant in vivo activity. However,

evidence suggests that a microenvironment‐dependent deconjugation can also take place: an unspecified mono‐
glucuronide of 9, most likely 9c, was found to be hydrolyzed to free luteolin by human β‐glucuronidase released by

neutrophils.127 This can largely influence the bioactivity of circulating luteolin conjugates during inflammation

processes.128

4 | BIOLOGICAL SIGNIFICANCE OF RONS SCAVENGING‐RELATED
ANTIOXIDANT METABOLITES

The structure and function of antioxidants changes upon RONS scavenging. It needs to be stressed that the

sensitive chemical structures of these compounds make them subjects not only to reversible redox circles, but their

oxidation can clearly result in chemically stable metabolites as well. Moreover, this can take place not only due to

well‐controlled enzymatic oxidation for example through the CYP450 system, but it is also possible through RONS

scavenging. For example, the relatively stable RNS peroxynitrite (ONOO‐; first half‐life at pH = 7.2 is ca. 2.2 seconds
129) can not only oxidize but also hydroxylate and nitrate phenolic rings 130,131 leading to stable products that

cannot be changed back into their parent compounds through a simple reduction. While the scavenging itself has

little chance to significantly decrease RONS levels, the forming oxidized species need to be considered as part of

the locally‐forming metabolite‐fingerprint in the biological compartment where this takes place.

Studies reviewed in this Section suggest that due to their altered 3D chemical structure as compared to that of

the parent antioxidant, it is reasonable that any such metabolites have the potential to interfere with other

signaling pathways, enzymes, receptors or cell machinery, i.e. their ROS/RNS‐dependent formation will have an

impact on the observed bioactivity. Moreover, the ensuing bioactivity must not be limited to redox processes and

related signaling pathways, but any druggable target has the chance of being involved. It is also worth noting that

since the commonly observed polypharmacology of antioxidants is a result of a superposition of a wide variety of

mechanisms including those affected by the bioactive metabolites, any stable, individual metabolite should likely

act in a more specific way than its parent compound. The below‐discussed vitamin C and estrone provide good

examples to demonstrate the biological relevance of this phenomenon.

It is of particular interest that the oxidized form of vitamin C, dehydroascorbic acid (DHA) was identified as a

specific inhibitor of IκBα Kinase β (IKKβ) and IKKα, regulators of the transcription factor NF‐κB.132 NF‐κB plays an

important and complex role in stress, immune response, cell death and survival, and ROS have an activating effect

on IKKβ.133 As such, vitamin C plays a dual role in modulating these pathways, both pointing in the same direction.

On the one hand, ascorbic acid acts as an antioxidant decreasing ROS levels (hence decreasing their potential to

activate IKKβ), while DHA, formed through ROS scavenging, specifically inhibits the above‐mentioned kinase.132

The activation pathways of NF‐κB, including the IKK kinases, are considered as emerging antitumor targets,134 but

the very high number of pro‐ or antiapoptotic genes 135 controlled by NF‐κB makes the overall picture complex.
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For example, vitamin C was found to exert an antagonistic effect on the cytotoxic activity of several antineoplastic

drugs, and the antagonism was much stronger than that expected from the weak decrease in ROS levels.136 On the

other hand, large doses of vitamin C were recently found to selectively kill KRAS or BRAF mutant colorectal cancer

cells, and this activity was rather connected to DHA, not ascorbic acid.137-139 This is an important finding since

KRAS and BRAF are major oncoproteins in the gastrointestinal tract, and their mutation is closely connected with

the progression and therapy resistance of colon cancer.140 Whether or not, and if yes, to what extent IKK inhibition

by DHA plays a role in the above, remains unknown. Another interesting example to the possible pharmacological

importance of DHA is the antiviral activity of vitamin C. DHA was reported to have a much stronger antiviral

activity as compared to that of ascorbic acid against Herpes simplex virus 1 (HSV‐1).141 Based on the weaker

cytotoxicity observed with DHA than with ascorbic acid, Furuya et al concluded that the antiviral effect of DHA is

unlikely to arise due to an effect on the host cells.141 However, HSV‐1 replication is highly NF‐κB dependent and

IKK inhibition can greatly reduce virus yield through inhibition at the transcription level,142,143 exactly as found in

the above‐mentioned study.141 As an important consequence of this possible mechanism of action for the antiviral

activity of DHA, one could conclude that IKK inhibition by DHA matters enough to make relevant the

pharmacological differences between the two forms of vitamin C. In other words, it would mean that oxidative

stress directly modulates the specific bioactivity of this antioxidant through its metabolite.

Another good example for the biological relevance of a compound emerging from RONS scavenging by an

antioxidant is the Prokai cycle of estrone and estradiol that explains their neuroprotective activity. Prokai et al

found that •OH radical scavenging by estrone yields a p‐quinol A‐ring‐containing intermediate that subsequently

undergoes a NADP‐dependent enzymatic reduction back to estrone, without contributing to oxidative stress on its

own but becoming able to scavenge further radicals.144-146 In vivo administration of the analogous p‐quinol
derivative of estradiol (DHED) demonstrated no estrogenic activity, and it was rapidly taken up into the brain

where it initiated the above‐mentioned redox cycle; therefore it acted as a targeted neuroprotective agent without

any apparent systemic side‐effects.147-150 On one hand, this provides an attractive strategy to deliver estrogens to

the brain through their pro‐drugs. On the other hand, it also represents a good example for a phenolic antioxidant

(estradiol or estrone) to be transformed to a metabolite (eg DHED) on a free radical scavenging‐related manner.

Certainly, such a nonaromatic metabolite will have a significantly different bioactivity profile than its parent

compound (ie no estrogenic effect in this case; other specific bioactivities were not studied). The reaction

mechanism for the above‐mentioned redox cycle is shown in Figure 6.

Concerning possible chemical approaches to explore the RONS scavenging‐related metabolic fingerprint of

antioxidants, biomimetic oxidative chemistry offers a readily available toolkit. Development and application of

biomimetic or bio‐inspired chemical reactions represent a rapidly emerging approach in today's chemistry. Such

reactions use transition metals as catalysts either in free forms or in their complexes, for example as metallo‐
porphyrins,151 to perform various oxidative transformations similar to those observed in biological systems. A

common feature of these types of reactions is that the oxidizing agent is an activated (ie reactive) oxygen or

nitrogen species formed by electron transfer from the transition metal, aiming to mimic the way oxidase enzymes

work.152,153

Accordingly, it is unsurprising that biomimetic approaches are extensively used in the total synthesis of natural

products,154 including various functionalization or cross‐coupling reactions of phenolic/polyphenolic com-

pounds.155-157

Nevertheless, more than providing a remarkable toolkit for solving synthetic chemical challenges, biomimetic

oxidative chemistry also offers a platform to study the oxidative metabolism of drugs.158 Such approaches require

the best possible models of selected metabolizing oxidase enzymes. From a different perspective, however,

biomimetic oxidative reactions can also be considered as reasonable chemical models for studying the potential

impact of RONS on compounds including for example dietary antioxidants. Apparently, no related systematic

studies have been performed so far, but sporadic reports can be found where one or more bioactivities of an
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antioxidant were directly compared in the same pharmacological model to those of its oxidized metabolites

obtained by biomimetic oxidative chemistry.

In the following sub‐sections, chemically oxidized derivatives of compounds 1‐9 will be presented from this

perspective. For each compound, selected examples are discussed, in which the bioactivity of the parent

antioxidant on specific pharmacological models could directly be compared to that of its chemically stable

metabolite(s). An overview on these comparisons is provided in Table 1.

Since the field is extremely rich in reports on antioxidant natural products, it is almost certain that the below

examples do not provide a complete coverage. Still, their chemical and pharmacological diversity might provide an

overview suggesting that oxidative stress‐related metabolites may represent an important piece of the antioxidant

puzzle, which is frequently overlooked.

4.1 | Curcuminoids

In the case of curcumin (1; Figure 1) and its derivatives, oxidative changes have been extensively studied over the years as

a likely explanation for the polypharmacology of these compounds.56,159 Spontaneous aerobic oxidation of curcumin leads

to the formation of a bicyclopentadione derivative (1u) as a major product160; for its chemical structure, see Figure 1B. A

most recent, in‐depth mechanistic study identified several intermediates (eg 1t and 1v) and by‐products (1s, 1w, 1x and

1y) of this metabolite, arising from a course of multiple chemical rearrangements initiated by the phenoxyl radical.161 This

radical is obviously among the primary products when curcumin participates in ROS scavenging. The broad chemical

diversity of the subsequently forming intermediates and end‐products raises many exciting questions concerning their

bioactivities in relation to their parent compound 1. Unfortunately, as of today, little is known about them. Topoisomerase

II poisoning activity of curcumin 162,163 is clearly associated with its transformation: its activity could be observed only in

oxidative conditions.164 Moreover, the same oxidative activation applies for poisoning topoisomerase IIα by

demethoxycurcumin (2) and bisdemethoxycurcumin (3): the activity of both curcuminoids significantly increased when

combined with K3Fe(CN)6, a biomimetic oxidative reagent.165 Transformation route of both 2 and 3 was found to be

related to that of curcumin, and 2 also yielded a bicyclopentadione derivative (2r) as major metabolite. Both 2 and 3were,

however, more stable to resist autoxidation, and 3 even required the addition of K3Fe(CN)6 or H2O2 and horseradish

peroxidase (forming ROS) to transform to a bisdemetoxy‐spiroepoxide (3k), and stop at that phase without converting to a

bicyclopentadione.165 In view of most recent studies, however, it seems that a great deal of the bioactivity of curcuminoids

is connected rather to the intermediates of the autoxidation and not the stable bicyclopentadiones.166,167 Sanidad et al

found that, while curcumin (1) had potent antiproliferative and proapoptotic activity against colon cancer cells, and

exerted anti‐inflammatory activity through inhibition of the NF‐κB signaling, both the mixture of the degradation products

and 1r were weaker or rather inactive in these bioassays.166 However, by using an experimental setup that allowed in situ

formation of the autoxidized products, Edwards et al found that NF‐κB inhibition by curcumin depends on oxidative

activation, and that this is due to the reactive electrophile intermediates covalently binding to signaling proteins, such as

for example IKKβ. Very interestingly, and in line with the perspective discussed here, they could clearly connect this

activity to the oxidative status of the cells, in other words, they demonstrated that oxidative stress modulates curcumin's

bioactivity through the in situ formation of oxidized intermediates.167

Curcumin is also known to rapidly decompose in cell culture medium under aerobic, physiological conditions,

that yield a set of cleaved products, such as trans‐6‐(4′‐hydroxy‐3′‐methoxyphenyl)‐2,4‐dioxo‐5‐hexenal (1z) as
major product, and ferulic acid (1za), ferulic aldehyde (1zb), feruloyl methane (1zc), vanillic acid (1zd), and vanillin

(1ze) as minor metabolites.168,169 These compounds have received attention in numerous studies with curcumin,

leading to an intense discussion on their potential role in some previous controversial findings.159 For example,

they were suggested as potentially responsible for the xanthine oxidase (XO) inhibition by curcumin,170 which was

previously reported both with positive 171 and negative 172 results. Based on in silico predictions validated by

experimental XO inhibitory activities of quercetin and luteolin, the side‐chain cleaved metabolite 1z was suggested

as a strong inhibitor of the enzyme, while curcumin itself was too large to bind to the active center of XO.170 In
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contrast to this, the testing of curcumin and its cleaved metabolites 1z, 1za, 1zb, 1zd, and 1ze against human

recombinant cytochrome P (CYP) enzymes CYP1A2, CYP3A4, CYP2D6, CYP2C9 and CYP2B6 showed that while

curcumin (1) can inhibit all of them, none of the metabolites were significantly active in this regard.169

In a recent debate initiated by comments on the results of Dhillon et al on the potential therapeutic use of large

doses of orally administered curcumin in cancer patients,173 the same degradation products were hypothesized to

be responsible for its beneficial effect.174 In their response, the authors disapproved this theory and presented

evidence for the inactivity of 1za and 1zc for suppressing the activation of NF‐κB, in contrast with the case of

curcumin.175 While the clinical relevance of the above‐mentioned recent findings by Edwards et al167 on this

pathway is unclear, one could hypothesize a similar oxidative stress‐related formation of reactive intermediates.

The theory suggesting high importance of the cleaved metabolites (1z‐1zc) in the bioactivity of curcumin 159 has also

been challenged; based on the fact that under biologically more relevant conditions they form in smaller amounts than

the bicyclopentadione compound 1u.176 However, when encapsulated curcumin was administered to healthy human

subjects through enriched bread, to at least partly protect it from phase I and II metabolism, vanillic and ferulic acids

(1zd and 1za, respectively) were detected as major metabolites.177 While it is unknown how this would correlate to the

amount of 1u, which should possibly form in vivo depending on the oxidative status, these cleaved products may also

play their role in curcumin's bioactivities, particularly concerning the XO and CYP enzyme inhibition.178

Altogether, curcumin (1) represents an excellent example for an antioxidant that can undergo many different

types of oxidative transformations, apparently leading to an oxidative status‐related change in its bioactivity

profile. Considering that much of the related dispute appears to originate from different applied oxidative

conditions, one must assume that the metabolite pattern arising in a biological system will greatly depend on the

local microenvironment, for the types and levels of RONS to be scavenged.

4.2 | Resveratrol

In view of the possible biological role of oxidized metabolites of resveratrol (4; Figure 2), its bioactivity on lipoxygenase

(LOX) enzyme demonstrates an interesting example. Resveratrol was reported as a potent competitive inhibitor

(IC50 = 13 µM) of the dioxygenase but not the hydroperoxidase activity of LOX. At the same time, LOX gradually

oxidized resveratrol to an in situ, non‐characterized derivative that was suggested to be similarly active on the

dioxygenase activity of LOX as resveratrol itself.179 More recently, resveratrol was involved in a study where 30

polyphenols were subjected to an Fe3+ catalyzed biomimetic aerobic oxidation and the resulting mixtures were

screened for specific LOX inhibitory activity through the xylenol orange (FOX) assay that measures the hydroperoxidase

activity.180 As expected, resveratrol itself was inactive at a concentration as high as 100 µM, while its oxidized mixture

exerted 98% inhibition at a concentration equivalent to 50 µM of resveratrol, despite the rather low (33%) conversion.

Isolation of the predominant metabolites led to the identification of two active dihydrobenzofurane dimers, compound

4m and δ‐viniferin (4n); for the relevant structures, see Figure 2B. Further investigations revealed that the metabolite

profile is highly dependent on the reaction conditions: by using excess CuCl2 in ethanol, compound 4m was obtained at

relatively higher yields, while oxidation with DPPH radical made compounds 4n and 4o (the latter inactive as LOX

inhibitor) as preferred metabolites.180 Besides the low conversion of resveratrol (4), it should be highlighted that more

than 20 products were visible on the HPLC fingerprint of the active mixture. This mixture exerted a complete inhibition

of LOX at a concentration equivalent to 50 μM of resveratrol (4), implying that the activities reported for the individual

metabolites 4n and 4m (IC50 values ca. 17 and 62 μM, respectively) cannot explain the activity observed for the mixture

that contained these compounds in a few percent amount only.180 This suggests either the presence of further active

metabolites exerting stronger LOX inhibitory activities than compounds 4m and 4n, or strong synergistic interactions

between the minor compounds of the reaction mixture.

Considering the very low (free) resveratrol concentrations achievable in vivo (see Section 3.2), the biological

relevance for the RONS‐dependent formation of such dimers and/or oligomers might seem to be at least

questionable. Certainly, it seems there can be only a very low chance that the intermediates formed upon RONS
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scavenging would react with each other instead of for example GSH or other, endogenous compounds present in

excess amounts. This is, however, not necessarily the case. NMR studies 181 and high‐level in silico calculations 182

provided evidence for a very strong self‐association of stilbenes stabilized by π‐π interactions in aqueous

environment, which could explain the inconsistencies in the regio‐ and stereoselectivity observed in oxidative

coupling reactions similar to the case above.182 In addition to these implications, this also means that fully

π‐conjugated stilbenes (eg resveratrol) preferably stick together in the aqueous environment provided by a living

organism. As such, there might be a reasonably high chance for the formation of dimer/oligomer metabolites of

such antioxidants through cross‐coupling upon RONS scavenging, and for related modulation of their bioactivity.

4.3 | Hydroxycinnamates

The oxidized metabolites of hydroxycinnamates may provide interesting and valuable insights into the antitumor

activity of their parent compounds.

In a most recent, proof‐of‐concept study of our research group, methyl‐p‐coumarate (5; Figure 3) was studied

for its potential to form bioactive metabolites upon free radical scavenging.183 A hypervalent iodine reagent (PIFA)

was used to obtain oxidized metabolite mixtures of compound 5. PIFA can oxidize phenolic compounds through

single‐electron transfer (SET) whose intermediate can transform into the same phenoxyl radical upon

deprotonation as that forming in a hydrogen‐atom transfer (HAT) reaction. Therefore, it was expected that the

use of this reagent would result in metabolites like those forming through free radical scavenging. Two metabolites

(5e and 5f; see Figure 3B) were identified with antitumor activities much stronger than that of compound 5.

Graviquinone (5e) had over 2 orders of magnitude stronger cytotoxicity on certain resistant cancer cell lines as

compared to compound 5. Ten µM of graviquinone (5e) induced DNA damage in NCI‐H460 and NCI‐H661 lung

carcinoma cells while it exerted DNA protective activity in normal HaCaT cells as determined by the relative

expression of Histone 2A.X. At the same concentration it modulated DNA damage response through the inhibition

of Checkpoint kinase‐1 (Chk1) phosphorylation and the induction of Checkpoint kinase‐2 (Chk2) phosphorylation in

MCF‐7 cells. It was also demonstrated that graviquinone (5e) can be formed as the result of the Fenton reaction of

compound 5. In silico studies suggested that 5e is a kinetic metabolite when methyl‐p‐coumarate (5) scavenges •OH

radicals. The fact that cytotoxic activity of methyl‐p‐coumarate (5) was also potentiated by H2O2 is indirect

evidence for the oxidative stress‐related in situ formation of antitumor metabolites; for example compound 5e.183 It

is also worth noting the structural similarity of compound 5e to the above‐mentioned p‐quinol estrone derivative

DHED (see Figure 6). This suggests that p‐phenols in general can be transformed into their p‐quinol analogs upon
free radical scavenging. Moreover, such p‐quinol derivatives, including DHED itself, might be worthy of further

study for activity on checkpoint kinases Chk1/Chk2, two of the key enzymes involved in response to DNA damage.

These kinases are important in cancer development and, possibly, treatment.184

Concerning other hydroxycinnamates, methyl caffeate (6) was reported as a weak‐moderate antitumor agent

against various cell lines with in vitro antiproliferative IC50 values at the medium‐low micromolar range against MCF‐7
breast cancer cell line (ca. 110 μM).185 Still, there are some studies showing much stronger antitumor effects for this

compound, for example Balachandran et al observed cytotoxic activity of 6 against MCF‐7 cells with an IC50 value as

low as 0.62 μM, and the involvement of several pro‐ and antiapoptotic genes in apoptotic cell death.186

Ag2O catalyzed biomimetic oxidation of a set of cinnamic acid methyl esters including compound 6 yield metabolites

with highly potent antitumor activity, and compound 6m, an oxidized dimer of 6, exerts a particularly strong

antiproliferative activity (IC50 < 10 nM) against breast cancer cell lines MDA‐MB‐435, MDA‐N and BT‐549, and sub‐
micromolar activity against several other cell lines. Moreover, the 2R,3R enantiomer of compound 6l

(but not the inactive 2 S,3 S) was identified as an antitubulin agent as strong (IC50 = 6.0 µM) as combretastatin A‐
4,187 a well‐known natural inhibitor of tubulin polymerization. The same compound, the 2 R,3R enantiomer of 6l, was

also found to exert potent antiangiogenic activity apparently without interfering with fibroblast growth factor‐2 (FGF‐2)
or vascular endothelial growth factor (VEGF).188 Moreover, in a recent, in‐depth pharmacological study using in vivo and
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3D cell culture models, Yin et al found that compound 6l has a significant potential for further development of a

clinically applicable antimetastatic agent.189 Of significant pharmacological interest, compound 6l exerts its activity

mainly on the microenvironment of the tumor through inducing the IL‐25 secretion of tumor‐associated fibroblasts, and

this effect could be achieved in mice at doses as low as 20 to 100 μg kg−1 body weight.189 The activity of compound 6

was not investigated, and it is hard to imagine that its activity would be like that of its oxidized metabolite 6l. As for the

antiangiogenic effect, compound 6 was reported to be inactive in zebrafish.190

In another related study, the racemic mixture of compound 7d, obtained enzymatically from methyl ferulate (7),

exerted a similarly strong in vitro antiangiogenic effect to that of 6l (2 R,3R). A significant decrease in the VEGF

production was found in swine granulosa cells at 1 μM concentration of this compound, and it also retained the

antioxidant activity of its parent compound, methyl ferulate (7).191 Contradictory results have been reported with

ferulic acid and its effects on angiogenesis.192,193 Ferulic acid was found to up‐regulate cyclin D1 and VEGF in

endothelial cells, leading to a proangiogenic effect,192 while in the other study, antiangiogenic effect was found through

downregulation of •NO, which, depending on the cell type, can lead to VEGF downregulation.193 This contradiction may

be connected to the perspective presented here: namely, results that depend on the oxidative status of the studied

system. The effect of ferulic acid would be tuned in either direction through possible variations in its metabolite profile

likely including compounds similar to those obtained from methyl ferulate.

4.4 | Secoisolariciresinol

The oxidation of secoisolariciresinol (8; Figure 4) was previously studied by employing 2,2′‐azobis(isobutyronitrile)
(AIBN), a radical oxidant initiator and ethyl linoleate dissolved in acetonitrile producing a lipophilic environment

F IGURE 7 Contextualization of the chemical perspectives discussed in Section 4, in connection with the canonic
view on antioxidant activity. (A) Role of antioxidants in interfering with the redox balance and redox‐modulated
biochemical pathways. The antioxidant may enter a redox cycle and exert its bioactivities through both its reduced

and oxidized form. (B) Potential importance of minor, chemically stable oxidized metabolites that may form due to
free radical scavenging. Depending on the antioxidant's chemical properties, the type of ROS/RNS scavenged,
re‐arrangements of emerging reactive intermediates and/or other secondary reactions, etc., a complex mixture of

oxidized metabolites is expected to be present and interact with various cellular mechanisms involved in the
regulation of many biochemical processes. This localized metabolite pattern may be characteristic to the
microenvironment, implying a crosstalk between redox signaling and a co‐existent “antioxidant‐metabolite
signaling”. Since individual oxidized metabolites tend to show higher chemical complexity than their parent

antioxidant, they are also expectable to act in a more targeted way
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that models biological membranes. Several products were obtained (for structures, see Figure 4B) including a

quinone methide (8f), peroxy‐p‐quinol adducts with either the lipid or a thermally decomposed product of AIBN

(8e and 8d, respectively), and lariciresinol (8g), another natural lignan derivative.194 Among these products,

bioactivity data are only available for 8g. This compound is also a potent antioxidant, although slightly weaker than

its parent compound 8.195 Compounds 8g and 8 were also isolated from the trunk of Berberis koreana, and both of

them studied for their capacity to inhibit •NO stress produced in LPS‐activated BV‐2 microglia cells. While

lariciresinol (8g) was found somewhat more active than secoisolariciresinol (8), with IC50 values of 51.8 and

87.6 µM, respectively, this is a minor difference with little if any relevance in terms of a RONS‐scavenging related

bioactivity change.196 However, much larger differences in the inhibitory activities of 8g and 8 can be observed on

differentiation and fat accumulation of adipocytes (IC50 < 10 nM for 8g vs. IC50 > 100 nM for 8).197 These 1 to 2

orders of magnitude difference in potency means that even small amounts of 8g formed from 8 may significantly

modulate the overall bioactivity, perhaps in an oxidative stress‐related manner. Nevertheless, 8g formed through

the oxidation of 8, can still be metabolized to the same end‐products as its parent compound. If 8g reaches the large

intestines, microbiota can transform it first to 8, and subsequently to the bioactive metabolites enterodiol (8c) and

enterolactone (8d) (Figure 4A and 4B).

4.5 | Luteolin

An obvious structural change of luteolin (9; Figure 5) upon RONS scavenging is the reversible formation of

o‐quinone from the catechol group ‐ a change that is also catalyzed by many oxidase enzymes. This o‐quinone can

than either enter a redox cycle where it can contribute to the formation of certain types of ROS or react as a

Michael acceptor with an appropriate nucleophile, such as glutathione (GSH). Due to their relatively high reactivity,

such quinones are usually considered as toxic intermediates, while they can also have an effect on cellular signaling

targets including the IKK complex, Keap1, and the JNK pathway through the Glutathione S‐Transferase π 1

(GST π1). For more insight into this subject, see the recent perspective by Bolton and Dunlap.198

In connection with the above‐mentioned reaction of luteolin quinone with GSH, an interesting study on its specific

bioactivity was published by Balyan et al, that compared the GST π inhibitory activity of luteolin (9), its

o‐quinone (9q), and its glutathione conjugate (9r) 199 (for the structures, see Figure 5B). Luteolin itself exerted a

weak or rather negligible GST inhibition, while both the quinone (9q) and the glutathione conjugate (9r) were identified

as strong inhibitors. Luteolin (9) was a weak, reversible noncompetitive inhibitor. The quinone (9q) inhibited GST in an

irreversible manner through a mixed mechanism. The glutathione conjugate (9r) acted as a strong, reversible

competitive inhibitor of the GST enzyme.199 Such a mechanism may play an interesting role in the antitumor effects of

other catechol antioxidants as well, particularly in view of the typically elevated ROS levels in cancer cells 200,201 and the

importance of various GST isozymes in detoxification of the cell and, consequently, in chemoresistance.202-204

5 | OUTLOOK

Dietary antioxidants interfere with biological processes through several mechanisms of action, including free radical

scavenging, modulation of redox signaling pathways and transcription factors, and the formation of sometimes very

complex metabolite fingerprints. All these mechanisms are clearly interconnected at multiple levels.

It is of particular interest that the formation of oxidized metabolites may occur through scavenging RONS, and,

accordingly, this may directly depend on the level of oxidative stress. As herein discussed, a wide variety of

pharmacologically active metabolites may form through the interaction of an antioxidant and a reactive oxygen or

nitrogen species. Interestingly and somewhat unsurprisingly, such chemical transformations usually result in more

complex chemical structures as compared to their parent compounds. In contrast, metabolic transformations by gut

microbiota, for example, point towards simplicity, for example reduction, fragmentation – see a comparison between
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Figures 1-5A and Figures 1-5B. Such increases in structural complexity imply a possible increase in target specificity.

Since the oxidized metabolite pattern is dependent on the oxidative status, it must therefore strongly depend on the

microenvironment, and so must be the related bioactivity pattern. In connection with the rapidly emerging “omics”

concepts, this could possibly be translated as an existence of some kind of a “scavengome” for these antioxidants,

defined as the chemical space represented by all their possible RONS scavenging‐related metabolites influencing the

overall bioactivity observed in complex biological systems.

From a biological point of view, specific bioactivity patterns of this “scavengome” would imply an oxidative

stress‐related, “direct” signaling role of locally emerging antioxidant metabolites. This may provide new answers

and possible alternative explanations to much of the controversy still present in the field.

From a pharmacological and drug discovery perspective, the oxidative modulation of antioxidants' bioactivity

suggests that such compounds may at least partly function as oxidative stress‐activated pro‐drugs. Considering that

only marginal attention has been assigned to the RONS scavenging‐related structural changes carried by antioxidants

and to the related pharmacological consequences, these point towards an unexplored segment of chemical space that is

apparently a treasury of bioactive molecules. Higher target specificity of these metabolites as compared to their parent

antioxidants may also make them more attractive as lead compounds for drug discovery. A contextualization of this

concept with the generally accepted mechanisms of function of antioxidants is presented in Figure 7.

From a practical point of view, it should be noted that any research efforts attempting to explore this

“scavengome” would extensively rely on in silico, as well as modern analytical and preparative chromatographic

techniques. A drug discovery initiative aiming to successfully explore the pharmacological potential of such

metabolites should use state‐of‐the‐art metabolomic techniques with oxidized mixtures obtained by various

conditions. Moreover, considering the typically low expectable yield of individual oxidized products identified as

hits on a given target, large‐scale preparations are necessary for further development and these would also require

precise, sophisticated methods. The rapidly developing field of oxidative continuous flow chemistry205 may provide

the required flexibility and timely throughput to overcome challenges for yield optimization.

Finally, it is important to underline that the oxidative stress‐induced alteration of the bioactivity pattern of a

given antioxidant is not necessarily beneficial for the organism affected by it. This may lead to undesirable side‐
effects, such as toxicity, or a loss of its in vitro promising activity to the in vivo and/or clinical phase studies

(see some of the examples in Section 3). Even though few antioxidants have reached the bedside, most of the

initially promising drug candidates yielded disappointing clinical outcomes.206 Considering the environmental‐
related emergence of chronic diseases where oxidative stress plays a central role, there is greater need for

effective and safe antioxidants with therapeutic relevance. Pharmacological aspects of the oxidative status‐related
metabolic fingerprint of an antioxidant may not only provide new candidates to develop on their own right, but also

lead to understanding what chemical design is necessary to prevent certain unwanted modifications whenever that

antioxidant meets its nemesis, a reactive oxygen or nitrogen species.
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