
Computer Science and Information Systems 14(2):283 –308 DOI: 10.2298/CSIS151101006T

Performance Evaluation and Implementation of IP and
Robust Header Compression Schemes for TCP and UDP

Traffic in Static and Dynamic Wireless Contexts

Máté Tömösközi1,2,3,4, Patrick Seeling5, Péter Ekler3, and Frank H.P. Fitzek4

1 acticom GmbH, Am Borsigturm 42, 13507 Berlin, Germany
2 Department of Electronic Systems, Aalborg University;

Fredrik Bajers Vej 7B, DK 9220 Aalborg, Denmark
3 Department of Automation and Applied Informatics, Budapest University of Technology

and Economics, Hungary; Q. Building, Magyar tudósok krt. 2., HU 1117 Budapest,
4 Communication Networks Group, Technische Universität Dresden;

Würzburger Straße 35, 01087 Dresden, Germany
5 Department of Computer Science, Central Michigan University;

Mount Pleasant, MI 48859, USA
mate.tomoskozi@[acticom.de, aut.bme.hu, tu-dresden.de]

pseeling@ieee.org
ekler.peter@aut.bme.hu

frank.fitzek@tu-dresden.de

Abstract. Modern cellular networks utilising the long–term evolution (LTE) set of
standards face an ever–increasing demand for mobile data from connected devices.
Header compression is commonly employed to minimise the overhead for IP–based
cellular network traffic. In this paper, we evaluate the three header compression im-
plementations used by these networks with respect to their potential throughput
increase and complexity for different mobile service scenarios over wireless IP net-
works. Specifically, we consider header compression as defined by (i) IP Header
Compression (RFC 2507), (ii) Robust Header Compression version 1 (RFC 3095),
and (iii) the recently updated Robust Header Compression version 2 (RFC 5225)
with TCP/IP profile (RFC 6846). The contribution of this article is the performance
evaluation of IP Header Compression (IPHC) for UDP and TCP, as well as its evalu-
ation in contrast to the Robust Header Compression (RoHC) methods in a compara-
tive overview for real–world mobile scenarios. Our results show that all implemen-
tations have great potential for saving bandwidth in IP–based wireless networks,
even under varying channel conditions. While both RoHC versions generally pro-
vide more reliable results than IPHC, we find that on a unidirectional channel IPHC
could perform better. However, if a TCP connection is prone to packet reorder-
ing (e.g., by retransmissions), IPHC’s performance drops drastically, while RoHC’s
does not exhibit any significant performance reduction.

Keywords: Robust Header Compression; Mobile multimedia; Cellular networks;
Bandwidth savings; Linear regression; Machine Learning

1. Introduction

Mobile data is increasingly transported over the Internet Protocol (IP) in both versions
(IPv4, as well as IPv6), especially with the implementations of third generation (3G) and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/228401592?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

284 Máté Tömösközi, Patrick Seeling, Péter Ekler, and Frank H.P. Fitzek

long–term evolution (LTE) networks of the fourth generation (4G). The increased data
rates achievable in these newer networks allow for further media convergence on mobile
devices, such as video conferencing or video streaming. Wireless systems in general, but
especially cellular networks, in turn face increasing data consumption demands from mo-
bile consumers – a trend that will likely continue in the foreseeable future, as indicated by,
e.g., [36]. In addition to media consumption, there is a huge demand for data and voice
transmissions (e.g., VoLTE, Voice over IP) for mobile devices. Similarly, the prolifera-
tion of social networks and similar applications are requiring many signalling messages
for mobile scenarios. Because of the widespread adoption of LTE in cellular networks
worldwide next to the IP–based nature of services employed within these networks, a
large disparity exists between the common packet payloads and the headers required for
transmissions. Header compression methods can be applied to reduce the encapsulation
overheads and, in turn, these compression methods can save significant amounts of band-
width.

As a result of a slower pace of capacity building through the expansion of the infras-
tructure, which is partially driven by the high costs of associated investments, the capacity
increase due to the optimisation of mobile communications in cellular networks has at-
tracted a great deal of research and practical implementations in the past. The motivation
behind this paper is to compare both Robust Header Compression versions and IP Header
Compression commonly encountered in today’s cellular networks. Additionally, our eval-
uation provides a comparative analysis by employing working implementations of these
schemes for the first time.

All IP packets carry the typical protocol encapsulation overheads of one or more pro-
tocols from the IP protocol stack, independent from actual payload sizes. For mobile
multimedia settings, a common protocol combination is RTP/UDP/IP; these protocols
specifically account for an encapsulation overhead of 40 bytes with IPv4 and 60 bytes
with IPv6 for each individual packet carried over the network. A large portion of IP and
UDP packets (such as source and destination addresses or port numbers, etc.) could be
omitted for most of the packet traffic as they stay constant throughout the transmission.
Other fields such as the IP Identification field or TCP Sequence Numbers can be derived
from a single Master Sequence Number.

One major approach to the reduction of data that is sent over wireless networks is
header compression, which reduces the protocol encapsulation overhead between, e.g.,
wireless base stations and mobile clients. In the past, research and implementation efforts
targeted a reduction of these protocol overheads, as the effect of reduced transmission
sizes of individual network packets quickly multiplies. The overall approach for com-
pression of the protocol headers is based on a compressor/decompressor concept, whereby
both are located between the data link layer and the network layer on a sender/receiver
pair’s protocol stack implementations. The reduction in protocol overheads, typically
comprised of RTP/UDP/IP protocol headers in, e.g., a Voice over IP (VoIP) scenario,
exploits the redundancy commonly encountered (i) among the different headers of indi-
vidual packets and (ii) between consecutive packets belonging to the same IP flow.

Several header compression approaches were proposed over the years, with IP Header
Compression (IPHC) and Robust Header Compression (RoHC) in its original version
(RoHCv1) and its recent update (RoHCv2) representing popular implementation choices
today. While these different design alternatives are available from network and device

Performance evaluation of RoHC and IPHC with TCP and UDP 285

provider points of view, little comparative evaluation has been performed to assess the
advantages for each scheme under realistic mobile service conditions. In this article, we
perform and show this comparison – in the context of UDP and TCP traffic – in order to
fill the gap in the existing research. We refer to [42] for our evaluation of RTP compression
efficiency comparison between RoHCv1 and RoHCv2.

The rest of this paper is structured as follows. In the succeeding section, we briefly
note previous research that has been performed in this area. We perform a review of the
underlying general compression mechanisms in Section 3. We continue in Section 4 with a
description of the overall experimental configuration and the performance metrics utilised
to evaluate compression performance and complexity. In Section 5 we determine the ef-
ficiency of RoHCv1, RoHCv2 and IPHC for UDP–based audio streams in an error–free
channel setup. Subsequently, we measure the performance differences between RoHC
and IPHC for TCP scenarios in Section 6. In Sections 7 and 8 we provide our evaluation
of UDP and TCP over error–prone channels, respectively. Section 9 concludes the article
and proposes further research directions.

2. Related Work

In this section we provide a brief historic introduction to header compression before we re-
view current related works. The first IP header compression scheme was the Compressed
Transport Control Protocol (CTCP or VJHC). It was proposed by Van Jacobson [18] and
only considers the TCP protocol. CTCP combines TCP and IP headers together for bet-
ter results and lower complexity. The compression algorithm itself employs delta coding,
which refers to differences between two packets. The advantage of this approach is the
high compression ratio. Unfortunately, this method is also very susceptible to bit errors,
which results in the dropping of numerous packets following an erroneous one by the
receiver. CTCP also relies on the lower and higher level protocols’ protection schemes as
there is no built–in error detection of its own.

An improvement to this was introduced by Perkins in [31]. The delta coding for the
neighbouring packets is replaced by a reference frame, much like modern video compres-
sions. This results in better tolerance to errors compared to CTCP, albeit produces less
compression gain. An enhanced version of this approach by Calveras ([5] and [6]) em-
ploys a dynamic frame length scheme as a function of the channel state. However, both
of these approaches suffer from desynchronisation when the first (uncompressed) packet
is lost, which results in the corruption of all other packets in the same frame. A proposed
improvement is available by Rossi ([37] and [38]).

As the next step, the compression of RTP was addressed with the development of
Compressed Real Time Protocol (CRTP) [7]. RObust Checksum–based COmpression [40]
is a refinement of CRTP (also called ROCCO), which improves the header compression
performance for highly error–prone links and long round–trip times. Similarly, Enhanced
Compressed RTP (ECRTP) [8] is a refinement of CRTP.

Robust Header Compression has built on these predecessors and version 1 of RoHC
was introduced in [3] and was created around the concept of extensibility with various
profiles that were added later (see, e.g., IP [21], UDP-Lite [28] and TCP profiles [30]).
However, version 2 of Robust Header Compression, defined in [29], chooses simplicity
in design over extensibility.

286 Máté Tömösközi, Patrick Seeling, Péter Ekler, and Frank H.P. Fitzek

We provide an overview of compression profiles defined for RoHC version 1 and
version 2 in Table 1. We note that some of these profiles are optional and extend the core
RTP/UDP/IP compression with further protocols or protocol combinations. The same is
true for IPHC, albeit the RFC (see [18]) does not explicitly define profiles. Instead, it
separates UDP and TCP compression and provides an implementation hook for CRTP
compression.

However, prior evaluations focused only on RTP and mostly considered RoHCv1.
Articles made with the same implementation focused, e.g., on the impact of RoHC on
media performances have found that header compression cuts the required bandwidth
in half for voice transmissions (GSM) and improves the overall voice quality (see [35]
and [14]). Later, the authors additionally discovered that video quality can be enhanced
as well (see [39], [14]).

Furthermore, RoHCv1 and RoHCv2 performances were evaluated for RTP in [42]
and it was shown that both versions perform equally well for Voice over IP transmissions,
albeit RoHCv2’s gain is slightly better by 5–10 %. [42] also shows that while RoHCv2
uses more complexity on the compressor side, it is much faster during decompression
when compared to RoHCv1.

Table 1. RoHC compression profiles with relevant RFCs and years of effect.

Profile identifier Compressed protocols v1 RFC (date) v2 RFC (date)

0x0000 uncompressed 3095 (2001)

0x0001 or 0x0101 RTP/UDP/IP 3095 (2001) 5525 (2008)

0x0002 or 0x0102 UDP/IP 3095 (2001) 5525 (2008)

0x0003 or 0x0103 ESP/IP 3095 (2001) 5525 (2008)

0x0004 or 0x0104 IP 3843 (2004) 5525 (2008)

0x0006 TCP/IP 4996 (2007)

0x0007 or 0x0107 RTP/UDP–Lite/IP 4019 (2005) 5525 (2008)

0x0008 or 0x0108 UDP–Lite/IP 4019 (2005) 5525 (2008)

Research into the application of header compression schemes to multi–hop (ad–hoc)
networks have shown that RoHC and IPHC perform reasonably well in such scenarios
(see [12], [11], [1]). In [20] it was shown that an end–to–end compression scheme could
reduce the delay in time–critical systems, which is a downside of using point–to–point
compression techniques like IPHC and RoHC.

An evaluation of IPHC with 6LoWPAN can be found in [24]. For the evaluation of
RoHCv1 in WiMAX networks, we refer to, e.g., [46], which points out that the compres-
sion performance is better in optimistic mode. In [25] the authors investigate the reliable
and optimistic modes and determine that there is no significant gain in voice quality with
tighter compressor/decompressor coupling, while in [15], the authors report that around
23 % gain is attained in unidirectional mode only for medium or better voice quality. Sim-

Performance evaluation of RoHC and IPHC with TCP and UDP 287

ilarly, [17] focuses on the behaviour of RoHCv1 in unidirectional mode on lossy links. It
was described in [19] and [13] that the RoHCv1 compression savings heavily depend on
the compressor’s mode state. The non–stateless nature of the compression also poses a po-
tential security risk, which, however, could be mitigated by encryption and authentication
techniques as highlighted in [10].

Both [16] and [45] successfully apply RoHCv1 to Aeronautical Networking and [2]
to IP tunnel compression, while [27], [23], [33] and [22] propose aggregation in order to
improve header compression in mesh networks among other uses. [34] employs header
compression to optimise P2P–TV transmission by up to 35 %.

Furthermore, our initial evaluation of Robust Header Compression version 2’s energy
consumption can be found in [44]. We show that the potential power drain on modern
mobile devices is not likely to increase when employing header compression, and there
are also indications of possible energy savings via diminished network interface activity.
RoHC would therefore benefit the next generation networks of 5G for, e.g., Massive Ma-
chine Type Communications (MMTC), since it would require very large number of small
and power–constrained devices that need very little outside (human) interventions. For the
sake of ensuring long–lasting deployment, energy saving becomes a key element during
the design of IoT services and devices.

Similarly, in order to avoid the large number of connections for the MMTC and
Vehicle–to–vehicle communications (V2V) for the dissemination of various data (e.g.,
signalling, status, safety, sensory information) broadcasting could provide a cost and en-
ergy efficient alternative. We show in [43] that RoHC can also function in an 1:n setup
with the enforcement of certain constraints on various header field behaviours.

Our present research efforts also try to address the issues in highly dynamic networks
– such as the above mentioned – by enabling current compressor implementations to con-
figure themselves online, thereby making the compression adaptable to changing channel
conditions and various network stream characteristics. For an overview of this topic, we
refer to [41].

In the following section we review the main compression approaches inherent to
RoHC, and refer to [26] and [9] for a more general overview of RoHC compression.

3. Compression Mechanism

Header compression schemes use states and contexts to maintain knowledge of com-
pressed streams and compressed packet types that can be sent over a link (compressor) or
interpreted by the receiver (decompressor). The states can be thought of as a finite state
machine structure that is present in both versions (although the actual implementation
details are left to the implementer). In this section we describe the different states and
interplays in an overview.

3.1. Compression States

The 3 states of the RoHC compressor, illustrated in Figure 1, correspond to: (i) Initiali-
sation and Refresh state (IR), where the compressor establishes a new or reinitialises an
already existing context; (ii) First Order state (FO), in which the compressor synchro-
nises the dynamically changing fields; and (iii) Second Order state (SO), where optimal
compression is achieved and only the most relevant data is sent.

288 Máté Tömösközi, Patrick Seeling, Péter Ekler, and Frank H.P. Fitzek

IR FO SO

Fig. 1. Compressor finite machine structure with Initialisation and Refresh (IR), First
Order (FO), and Second Order (SO) states.

The ROHC decompressor uses a similar approach, which we illustrate in Figure 2.
Here the states are: (i) the No Context state (NC) representing a decompressor which
does not have an established or valid context for the session; (ii) the Repair Context state
(RC), in which the context is (partially) corrupted and smaller packet types have to be
discarded; and (iii) the Full Context state (FC), where all packet types can be interpreted.

NC RC FC

Static and dynamic data

No static and

dynamic data

No dynamic data Any data

Dynamic

context

corruption

Static

context

corruption

Dynamic data

Fig. 2. Decompressor finite machine structure with No Context (NC), Repair Context
(RC), and Full Context (FC) states.

Ideally, after the initial context is established, the compressor and decompressor al-
ways remain in the third states (i.e., SO or FC). If a desynchronisation occurs, the machine
state must transit to a lower one (e.g., FO or RC). If the state is reduced further to the first
one, the whole context must be updated before compression can recommence. However,
this can be quite undesirable, as the compressor has to transmit larger packets, which are
close to or even longer than the original ones. Therefore, this scheme provides a “middle”
state (FO, RC), which is able to resume compression with only a partial context refresh.

In IPHC, on the other hand, no explicit compression or decompression states have
been defined. However, the decompressor can send a CONTEXT STATE packet to notify
its compressor counterpart when one or more of its contexts have been invalidated and
force a refresh.

3.2. Contexts

To achieve better compression ratio, the compressor organises the incoming packets into
different contexts according to their characteristics. These characteristics are defined by

Performance evaluation of RoHC and IPHC with TCP and UDP 289

the static (RoHC) or DEF fields (IPHC) that never or rarely change during the transmis-
sion’s lifetime. A good example for one of such fields is the IP source and destination
addresses present in the IP header.

By separating the packets according to these fields, the compressor has to send only
the “dynamic” data found in the headers. This “dynamic data” – also referred to as dy-
namic and irregular fields in RoHC or DELTA and RANDOM fields in IPHC – usually
changes from packet to packet but in a well defined manner. For example, the IPv4 Iden-
tification number increments by 1 for every packet that follows. This behaviour can be
exploited by transmitting an initial value and storing it in the decompressor context. Later,
this initial value can be updated according to the difference (delta) between the stored and
the new value.

These contexts are bound tightly to the compressor (decompressor) states described
in the previous subsection. If a context becomes corrupted or loses synchronisation with
the compressor, only that specific context needs to be repaired or reinitialized. Exactly for
this reason do the feedback packets contain the context identifier as well.

3.3. RoHCv1 Modes

A unique feature in RoHCv1 is the presence of certain operational modes. These modes
govern how the compressor handles context corruption using feedback and pre–emptive
context refreshes. In contrast to version 1, the new version of RoHC and IPHC do not
explicitly specify these modes. However, similar behaviours can be achieved with the
right configuration of the entities (although transitions during run–time are not explicitly
supported according to the RoHCv2 RFC).

In unidirectional mode there are no feedback packets sent back to the compressor.
By supporting this mode, RoHC can be run on links without uplink channels. However,
in the absence of feedback there is no way for the compressor to ascertain whether a
compressed packet was successfully decompressed on the receiver side. To account for
this, the compressor can use the optimistic approach, which periodically repeats context
initialisation and sends a changed reference value multiple times.

The bidirectional optimistic mode uses feedback packets, that are sent from the de-
compressor to the compressor, in order to accelerate state transitions at the compressor
and to avoid the periodic fallbacks to the first and second states. Due to the mostly weak
CRC protection, this mode is still relatively prone to context damage and therefore utilises
the optimistic approach as well. Lastly, the bidirectional reliable mode uses a more pow-
erful CRC protection and a very tight coupling between the two endpoints by relying
heavily on feedback received from the decompressor.

3.4. Compressed Packet Types

All compressed packets contain a context identifier (CId). The context identifier can either
be 0, 1 or 2 bytes long for RoHC and 1 or 2 bytes for IPHC. In RoHC’s small–CId mode,
a 01 or 1 byte long CId field is at the start of a packet, which is followed – in most

1 A CId of 0 does not need to be transmitted in the compressed packet when using Small-CIds.

290 Máté Tömösközi, Patrick Seeling, Péter Ekler, and Frank H.P. Fitzek

compressed packets – by the first octet of the compressed packet type. With large CIds,
after the aforementioned first octet is the 1 or 2 bytes long CId information2.

Following the CId information of the first octet is the compressed packet–type depen-
dent field. In RoHC, after these informational bytes, the last bytes of the packet follow.
These contain the various compressed chains (if any). In case of an IR packet, this means
the static and dynamic chains, for an IR–Dyn or co repair packet type, only the dynamic
chain is contained, whereas for the remaining packet types the irregular chain is included.

 0

 10

 20

 30

 40

 50

 0 20 40 60 80 100 120

H
ea
de
r
Si

ze
 [b

yt
e]

Packet Index

Packet sizes during compression

rtp

ir

uor_2

r_1

uor_2

ir

co_common

pt_0_crc3 pt_1_rnd

Uncompressed
RoHCv1
RoHCv2

Fig. 3. Header sizes during the compression of an RTP stream with RoHCv1 and Ro-
HCv2. The annotations show the various compressed packet types and the corresponding
original headers (RTP/UDP/IPv4). The larger compressed packets (e.g., IR, co common,
uor 2) indicate the transmission of state persistent data, which is crucial for the successful
decompression of later packets.

RoHCv1’s packets do not contain any chains except for the two IRs. Aside from these
two, the compressed packets are defined by mode–type–property combinations. The mode
identifies the mode in which the compression is currently working. The type basically
states how much information is contained in a packet and the optional property extends
the basic packet with some additional data (for example CRC, Timestamp or IP Id). For
RoHCv1, there are only static and dynamic chains defined. These are used to transmit the
(initial) values of constant (e.g., non–changing fields like IP addresses, next header num-
bers, etc.) and non–constant (e.g., Timestamp, IP Id, etc.) functions. The non–IR packet
types do not contain any chains, instead they append the extension related data, encapsu-
lation data and also the UDP checksum value at the end.

The packet types of RoHC version 2 can be separated into two groups. The first group
contains packets that are only sent during initialisation (IR) and during context repair
(IR and co repair). For ideal compression these packets are sent very rarely. The second
group contains smaller packets that are most commonly used to update the decompressor

2 With small CIds, the compression only has an id pool of 16 different numbers, whereas using
large CIds, we have up to 16384 possible choices.

Performance evaluation of RoHC and IPHC with TCP and UDP 291

contexts. Their sizes range from 2 bytes (pt 0 crc3) to a maximum of about 12 bytes
(co common). As an example, Figure 3 contains some of the packet types employed and
their respective sizes during the compression of a test stream.

The compressed packet choices for IPHC depend on whether the uncompressed stream
contains TCP or UDP. For TCP, the compressor either uses COMPRESSED TCP packets,
which transmit delta values or COMPRESSED TCP NODELTAs, which contain most of
the fields uncompressed and can be used to transmit changes that cannot be represented by
delta encoding. For non–TCP headers only one packet type is defined, which can contain
either an 8–bit CId or a 16–bit CId.

4. Methods and Metrics

Before evaluating the performance of RoHCv1, RoHCv2 and IPHC reference implemen-
tations provided by acticom GmbH3, we introduce the main configuration and perfor-
mance metrics employed in this paper. Without loss of generality, we focus our presenta-
tion on bandwidth savings and complexity in different scenarios utilising IPv4.

For the measurement testbed, we used two separate and different setups. For all UDP
stream evaluations, we captured and stored the outgoing packets on the link layer. This
approach enables consecutive evaluations with the same underlying data stream. We then
applied artificial packet losses (if any) before decompression. Unlike the connection–
based TCP, UDP does not define any feedback of its own, which facilitates this straight–
forward configuration.

TCP, however, required a different approach. We employed two Raspberry Pi single–
board computers that were equipped with WiFi modules. The devices were connected to
each other via an ad–hoc connection and the Unix/Linux platform’s TUN/TAP interfaces
were utilised to create a tunnel to which we directed a normal TCP data stream from the
Internet Layer. The benefit of this specific setup is that it enables a regular application
to drive the compressed transmission. This way, any losses that were artificially induced
would be handled directly by the Linux kernel after the redirection of the decompressed
stream into the operating system’s protocol stack. The Raspberry Pi platform was chosen
due to broad availability, for its suitability as a platform for simulating nodes and because
the platform had already shown the potential to support operations at high speeds. Specif-
ically, this particular platform can be regarded as a general baseline for current mobile
device capabilities.

Shifting our view to the performance evaluation metrics, an idealistic upper bound
on the possible network bandwidth savings can be calculated by assuming that the com-
pressed header size is zero. In this specific case, for each generated packet i the savings
Si are given by

Si = 1− Pi

UH + Pi
=

UH

UH + Pi
, (1)

where Pi denotes the payload data size of the ith packet and UH denotes the size of the
uncompressed protocol headers, i.e., the protocol encapsulation overhead. The average

3 See http://www.acticom.de

292 Máté Tömösközi, Patrick Seeling, Péter Ekler, and Frank H.P. Fitzek

savings for a sequence or session of N packets are in turn calculated as

S =
1

N

N∑
i=1

Si, (2)

describing the portion of the bandwidth that can be saved from a network provider’s point
of view. To illustrate this using an example, we consider the AMR codec with the smallest
payload of 12 bytes. In an ideal scenario, one could assume that the compression of the
protocol headers will result in zero bytes. Furthermore, assuming a full RTP/UDP/IPv4 or
RTP/UDP/IPv6 encapsulation, the upper bound savings as given beforehand equal 77 %
and 83 %, respectively.

For a more realistic scenario, we need to note that the compressed header size of
an individual packet CHi is greater than zero, i.e., CHi > 0. In turn, we derive actual
performance measurements similar to [39] as (i) the actual savings (or alternatively the
gain) of the encapsulation overhead (headers) as

SH(i) =
UH − CHi

UH
, (3)

(ii) the actual savings for individual packets as

SP (i) =
UH − CHi

UH + Pi
, (4)

and (iii) the respective average savings according to Equation 2. In addition to the band-
width savings, we evaluate the compression performance by means of the complexity of
the compression/decompression methods employed in both RoHC versions and IPHC. We
measure the complexity through CPU time–stamping, i.e., the time required to compress
(or decompress) the ith packet in the stream, as ti and compare it to the previous time
stamp obtained at time ti−1. This complexity or utilised time could readily be mapped
to mobile device power consumptions, see, e.g., [4], which, however, is out of the scope
of this contribution. For our initial evaluation of RoHCv2’s power consumption we refer
to [44].

5. Compression of UDP Audio Streams

In this section, we first consider a channel without errors to illustrate the basic concepts
for UDP transmissions. We additionally note that while in our evaluation we focus mostly
on results regarding IPv4, the savings for IPv6 would be significantly higher.

5.1. Compression Savings for UDP Streams

We initially present results for real–world measurements using the two RoHC versions
and IPHC over a wireless channel presumed to be error–free. To enable measurements un-
der common real–world scenarios, we utilised the Asterisk VoIP server4, which connected

4 See https://www.asterisk.org for details.

Performance evaluation of RoHC and IPHC with TCP and UDP 293

a fixed desktop client and an Android smartphone, both using the ZoIPer VoIP client soft-
ware5. This configuration employed the GSM 06.10 codec, which is the full–rate audio
codec version that results in 33 bytes payload. We illustrate the resulting packet–indexed
savings Si in Figure 4.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Sa
vi

ng
s

Packet index

RoHCv1
RoHCv2

IPHC

Fig. 4. Header savings SH(i) attained with the RoHCv1, RoHCv2 UDP profiles and the
IPHC reference implementations for a VoIP call with GSM full rate codec using IPv4 over
WLAN.

We observe that the compressed header savings typically range from 50 % to about
60 % for both RoHC versions. For IPHC, which exhibits occasional drops in savings due
to sending uncompressed refreshes, we see around 85 % savings. We note that in this
evaluation the best possible setup for each compression method was employed, i.e., while
RoHC can rely on feedback to signal invalid contexts, IPHC lacks such functionality when
compressing UDP. Therefore, IPHC must rely on periodic refreshes using an exponential
function to tackle invalid contexts. Such mechanism is also defined for RoHC (employing
the optimistic approach), which would also exhibit similar characteristics to IPHC. We
also observe that RoHCv2 has a slightly better compression ratio than RoHCv1 (with
about 5 % difference).

We attribute the seemingly worse performance of the RoHC versions when compared
to IPHC (which is the earlier compression method) to the design of RoHC. IPHC only
has to transmit the Context Id (1 byte), the Generation Number (1 byte) and the UDP
Checksum (2 bytes) for the smaller packets, while in RoHC the compressor always has to
send the Master Sequence Number (MSN, 2 bytes), various irregular IP fields (2–3 bytes),
CRC (1 byte) and UDP Checksum, among other fields. Subsequently, and without loss

5 See http://www.zoiper.com for details.

294 Máté Tömösközi, Patrick Seeling, Péter Ekler, and Frank H.P. Fitzek

of generality, the smallest RoHC packet will be about at least 5 bytes larger than the
corresponding IPHC packet.

We illustrate the header compression and total savings in Figure 5 for a similar audio–
only scenario, but with IPv6 headers. We immediately observe that the compressed header
savings for both RoHC versions are about 70 %, while IPHC shows 90 % header savings
with the same periodical refreshes as before. We provide a numerical comparison between

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Sa
vi

ng
s

Packet index

RoHCv1
RoHCv2

IPHC

Fig. 5. Header savings SH(i) attained with the RoHCv1, RoHCv2 UDP profiles and the
IPHC reference implementations for a VoIP call with GSM full rate codec using IPv6 over
WLAN.

the two RoHC versions and IPHC, as well as the two IP versions in Table 2. We note
that the average compressed header sizes attained with RoHCv1 and RoHCv2 are almost
exactly the same for both IP versions. However, the average header size of IPHC is about
9 bytes smaller than than the ones observed for RoHC’s compressed packets. Taking into
account that IPHC relies on the link layer to signal packet types, it still outperforms RoHC
by approximately 8 bytes. Comparing the packet savings in general, we note that IPHC
with IPv6 is about 2 bytes better, because it can completely omit the transmission of the
IP Identification field.

Overall, we conclude that both RoHC versions perform at about the same level. How-
ever, IPHC outperforms them easily by at least 25 % (not taking into account the manda-
tory periodic refreshes).

5.2. Compression Complexity for UDP Streams

Next, we evaluate the compression and decompression complexity by means of CPU–
level timestamps, which can be mapped directly to CPU cycles utilised for (de)compression

Performance evaluation of RoHC and IPHC with TCP and UDP 295

Table 2. Average savings with the RoHCv1, RoHCv2 UDP profiles and IPHC for an audio
streaming scenario over a reliable channel with IPv4 and IPv6.

Uncompressed Average

IP version Compression Header Comp. Header SP S

[byte] [byte]

RoHCv1 15.03 13.23% 46.30%

v4 RoHCv2 28 15.02 13.24% 46.33%

IPHC 6.29 33.00% 77.51%

RoHCv1 15.05 14.54% 68.64%

v6 RoHCv2 48 15.03 14.56% 68.68%

IPHC 4.48 51.17% 90.65%

and energy consumption in turn. We illustrate the compression timestamps for the VoIP
call in Figure 6.

Comparing the different compression levels, we observe that RoHCv1 and IPHC ex-
hibit excellent performance, as indicated by almost negligible times required for compres-
sion. On the other hand, we note that the compression of RoHCv2 is more CPU intense.
We attribute this contrast to the more elaborate design of RoHCv2, which uses more com-
plexity to attain better performance and robustness.

In Figure 7, we illustrate the corresponding decompression complexity. We initially
observe that the timestamp levels are lower (by about 2 orders of magnitude) for all de-
compressions and both versions of RoHC. Comparing the RoHC versions to IPHC, we
identify a significant difference between these approaches, as RoHC needs only an ap-
proximate quarter of the CPU time required by IPHC. However, we note that the scale is
almost an order of magnitude smaller than for the compression. We furthermore note that
the “spikes” in the timestamps of IPHC correspond to the periodic refreshes.

Overall, we additionally observe a fairly narrow range (except for minor outliers) in
the (de)compression times, indicating a generally stable performance.

6. Compression of a TCP Acknowledgement Stream

In this section, we now shift the view to the compression performance achieved by em-
ploying the RoHC TCP profile and IPHC. We note that RoHC has only one defined TCP
profile and the shift from RoHCv1 to RoHCv2 does not introduce differences for this
scenario.

In Figure 8 we illustrate the compression ratios for a TCP acknowledgement stream
of a digital radio station. We note that header compression generally exhibits very limited
gains when the packet payloads are large, which normally is the case for TCP (segments
are commonly full–framed from the link–layer’s point of view). However, acknowledge-

296 Máté Tömösközi, Patrick Seeling, Péter Ekler, and Frank H.P. Fitzek

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 20 40 60 80 100

TS
C

de
lta

Packet index

RoHCv1
RoHCv2

IPHC

Fig. 6. Header compression complexity measured by CPU timestamps (TSC) attained
with the RoHCv1, RoHCv2 UDP profiles and the IPHC reference implementations for a
VoIP call with GSM full rate codec using IPv4 over WLAN.

 0

 50000

 100000

 150000

 200000

 250000

 20 40 60 80 100

TS
C

de
lta

Packet index

RoHCv1
RoHCv2

IPHC

Fig. 7. Header decompression complexity measured by CPU timestamps (TSC) attained
with the RoHCv1, RoHCv2 UDP profiles and the IPHC reference implementations for a
VoIP call with GSM full rate codec using IPv4 over WLAN.

Performance evaluation of RoHC and IPHC with TCP and UDP 297

ment streams are ideally suitable candidates for compression, since they do not contain
any significant amount of payload.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

Sa
vi

ng
s

Packet index

RoHC
IPHC

Fig. 8. Average header savings SH(i) attained with the RoHC TCP profile and the IPHC
reference implementations for the acknowledgement stream of a digital radio transmis-
sion.

As we observe from the values presented in Figure 8, both RoHC and IPHC can result
in savings of around 80 % for the header data. We note, however, that IPHC outperforms
RoHC at its peak efficiency by about 10 % on average. However, IPHC also loses about
5–10 % in its periodical fallbacks to larger packet types. The downward spikes illustrated
in Figure 8 are explained by the constantly changing TCP flags and various TCP option
fields. Upon closer inspection, we note that RoHC is in general more capable at handling
such “erratic” changes of the TCP header fields as it employs a version of table based list
compression to maintain a history of previous option field values. Since IPHC lacks such
functionality, it usually loses 5–20 % when compared to RoHC.

Figure 9 and Figure 10 illustrate the TCP complexity during compression and de-
compression for this scenario, respectively. We initially observe that the results are in the
same magnitude as the previously discussed UDP measurements. However, the overall
compression is faster, while decompression is slower than observed for the UDP stream.
As outlined before for the compression efficiency, the increased number of TCP header
fields and their exhibited variations over time are responsible for the increased time to
compress the headers.

298 Máté Tömösközi, Patrick Seeling, Péter Ekler, and Frank H.P. Fitzek

 0

 1e+07

 2e+07

 3e+07

 4e+07

 5e+07

 6e+07

 7e+07

 8e+07

 9e+07

 1e+08

 20 40 60 80 100

TS
C

de
lta

Packet index

RoHC
IPHC

Fig. 9. Header compression complexity measured by CPU timestamps (TSC) attained
with the RoHC TCP profile and the IPHC reference implementations for the acknowl-
edgement stream of a digital radio transmission.

 0

 50000

 100000

 150000

 200000

 250000

 20 40 60 80 100

TS
C

de
lta

Packet index

RoHC
IPHC

Fig. 10. Header decompression complexity measured by CPU timestamps (TSC) attained
with the RoHC TCP profile and the IPHC reference implementations for the acknowl-
edgement stream of a digital radio transmission.

Performance evaluation of RoHC and IPHC with TCP and UDP 299

7. Error–prone Channel Performance Using UDP

To evaluate the performance of the compression schemes under realistic conditions, in
this section we consider a simulated wireless channel using an uncorrelated error model.
Based on prior research relating to RTP profile measurements [42], we note that correlated
errors only affect the compression savings if the loss rate of the channel is higher than
50 %. To maintain focus on the majority of use–cases, we look at uncorrelated error
scenarios here.

Even though both RoHC versions and IPHC could perform more reliably than any
other header compression schemes, e.g., those proposed by Van Jacobson [18] or Perkins
and Mutka [32], there might be additional losses due to the lost decompressor state. In
order to get a meaningful performance evaluation, burstiness is needed to get the decom-
pressor out of sync. In earlier compression schemes, any error would make the decom-
pressor lose synchronism with the compressor, but RoHC was designed to be more robust
with respect to single failures.

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90 100

Sa
vi

ng
s

Packet loss probability

RoHCv1
RoHCv2

IPHC

Fig. 11. Average header savings SH(i) attained with the RoHCv1, RoHv2 UDP profiles
and the IPHC reference implementations for a UDP stream over an IPv4 link with differ-
ent uncorrelated packet loss probabilities.

We consider the uncorrelated error–prone channel scenario and illustrate the header
compression savings obtained in Figure 11. This approach is similar to the error–free mea-
surements with RoHC and IPHC, illustrated in Figure 4. However, the major difference
between the RoHC compression and IPHC schemes does not show up in the figure. Since
the IPHC UDP profile does not have any feedback capability, the IPHC decompressor will
on multiple occasions lose synchronisation with its compressor counterpart. This directly
results in decompression failures if the next correctly received compressed packet is in a
different generation. Therefore, packet losses may affect correctly received IPHC packets

300 Máté Tömösközi, Patrick Seeling, Péter Ekler, and Frank H.P. Fitzek

later on. In our test stream we did not observe any decompression failures with either
RoHC versions.

We additionally note that the recommended IPHC compressor configurations optimise
the periodic context refreshes very well. For loss–rates in the range of 0 % to 25 % approx-
imately 0.001 % of the correctly received compressed packets are discarded because of
invalid decompressor contexts. We furthermore note that longer streaks of decompression
failures were observed as well, which are the result of out–of–sync decompressors.

8. Compression of Live TCP Streaming Sessions

In this section we shift the evaluation to the TCP compression savings utilising a different
environment which is capable of compressing TCP streams online. Compared to the mea-
surements discussed in the previous sections, we now show the compression efficiency
when the compressed TCP stream is live. We perform this evaluation to demonstrate the
compression of dynamic streams, i.e., a stream that was not previously captured on the
network interface. This live stream, in turn, is also responding to various packet losses via
kernel generated acknowledgements.

For the following tests we also turned on the handling of reordering in IPHC which
forces the compressor to only use COMPRESSED TCP NODELTA packets that are gen-
erally larger than the COMPRESSED TCP packets due to that they contain the whole
uncompressed TCP header (except the port numbers). This is recommended by the cor-
responding RFC and is performed in order to avoid any decompression failures arising
from retransmitted TCP packets by the kernel (in [18]: “11.2. Reordering in TCP packet
streams”).

8.1. Compression of a World Wide Web Radio Transmission

We initially consider the compression savings obtained for a World Wide Web (WWW)
radio transmission. We employed the VLC media player to re–stream the feed of a live
WWW radio station. The audio payload was in the mp3 format and was remuxed to a 32
kbit/sec bitrate with a sample rate of 8000 Hz.

In Figure 12 we illustrate the compressed stream that is received by the client ap-
plication. We observe that in contrast to the results observed for the static environment
presented in Section 6, the IPHC compression savings here are significantly smaller than
those observed with RoHC. We attribute this change partially to the constraint of trans-
mitting only COMPRESSED TCP NODELTA packets, which are needed for the retrans-
mission of lost packets in order to tackle reordering. In this case, RoHC achieves more
than 80 % savings, while IPHC only achieves about 60 %.

We illustrate the acknowledgement stream sent by the client’s operating system back
to the server in Figure 13. We initially observe the same 20 % difference between the
two general compression approaches. However, the compression savings obtained here
are about 5–10 % smaller than those observed for the server stream. This behaviour is
most likely rooted in the larger TCP options list, which is generally present in TCP ac-
knowledgements (e.g., SACK fields).

We additionally observe the initial ramp–up period at the start of the streaming in
Figure 13. This is the time period where the TCP connection is established between the

Performance evaluation of RoHC and IPHC with TCP and UDP 301

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Sa
vi

ng
s

Packet index

RoHC
IPHC

Fig. 12. Header savings SH(i) attained with the RoHC TCP profile and the IPHC refer-
ence implementations for a radio stream over an IPv4 link containing the audio payload
(downstream).

server and the client; it, in turn, corresponds to the three–way handshake used by the TLS
protocol.

8.2. Error–Prone Channel Performance Using TCP

We now look at the evaluation of the compression savings when artificial packet losses are
introduced. For the simulation of such losses, we employ an uncorrelated randomised al-
gorithm which discards compressed packets before decompression. For this scenario, the
corresponding feedback mechanisms are enabled for both IPHC and RoHC. The server
application that is in charge of maintaining TCP creates a connection and sends prede-
termined data to the client (downstream). The client, in this case, only acknowledges the
received packets (upstream).

For these measurements, we compressed 100 packets 10 times and calculated the
mean savings with 95 % confidence intervals for each measured loss–rate. We illustrate
the resulting savings for the different compression mechanisms in Figure 14. We observe
that the compression savings are inverse proportional to the loss–rate in the case of the
server stream. In the measurement time interval, we additionally observe that at 10 %
loss–rates, the compression savings are approximately 10 % lower than in a scenario
without losses. This observation is applicable for both, RoHC and IPHC. We additionally
observe that the IPHC packets are again about 20 % larger than the packets produced by
RoHC.

In Figure 15 we illustrate the acknowledgement stream as sent by the client (upstream)
to the server. We observe that the decrease in savings are insignificant in the measured
time intervals when compared to the downstream compression.

302 Máté Tömösközi, Patrick Seeling, Péter Ekler, and Frank H.P. Fitzek

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

Sa
vi

ng
s

Packet index

RoHC
IPHC

Fig. 13. Header savings SH(i) attained with the RoHC TCP profile and the IPHC refer-
ence implementations for a radio stream over an IPv4 link containing the TCP acknowl-
edgements (upstream).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

Sa
vi

ng
s

Packet loss probability

RoHC
IPHC

Fig. 14. Average header savings SH(i) attained with the RoHC TCP profile and the IPHC
reference implementations for a radio stream over an IPv4 link containing the audio pay-
load (downstream) with different uncorrelated packet loss probabilities.

Performance evaluation of RoHC and IPHC with TCP and UDP 303

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.02 0.04 0.06 0.08 0.1

Sa
vi

ng
s

Packet loss probability

RoHC
IPHC

Fig. 15. Average header savings SH(i) attained with the RoHC TCP profile and the IPHC
reference implementations for a radio stream over an IPv4 link containing the TCP ac-
knowledgements (upstream) with different uncorrelated packet loss probabilities.

In both cases, we observe that the confidence intervals are very tight, which corre-
sponds to the observation that, on average, the compressed packet sizes are very close to
the mean size. Looking at the raw data, this usually refers to about 1–2 bytes difference
between compressed packets.

9. Conclusion

Throughout this article, we compared and contrasted several real–world performance
measurements for Robust Header Compression (RoHC) version 1, RoHC version 2 and
IP Header Compression (IPHC). Additionally, we presented measurements of a live com-
pression performed over a wireless tunnel. Overall, we conclude that IPHC is capable of
achieving approximately 10 % to 20 % percent higher UDP/IP compression than either
RoHC version. However, IPHC potentially aggravates errors locally due to it lacking an
appropriate feedback mechanism. With the correct compressor configuration these could
be minimised sufficiently. Compressing streams with UDP/IP compression has the addi-
tional benefit of having a stable and persistent compressed header size which is at least
the fourth of the original uncompressed size. Between the two RoHC versions, the second
edition consistently shows better compression gains by 5–10 %.

RoHC and IPHC TCP compressions are quite similar to each other regarding their
compression gain when one is not concerned with reordering. Albeit the IPHC bene-
fits from a simpler compressed packet structure, which results in faster compression, it
does not compress TCP fields when reordering is expected. This subsequently results in
decreased header compression savings, which are roughly half of what Robust Header

304 Máté Tömösközi, Patrick Seeling, Péter Ekler, and Frank H.P. Fitzek

Compression can achieve. In scenarios where reordering is of no concern, IPHC will
commonly perform equally or even slightly better when compared to RoHC. Our results
also indicate that while RoHCv2 uses significantly more complexity during compression
than either IPHC (both for UDP and TCP) or RoHC (in case of UDP), it is somewhat
faster when decompressing.

Since Robust Header Compression is primarily designed for the compression of live
audio transmissions on endpoint devices, it performs best if certain fields, such as the
identification numbers and timestamps, stay constant or change at a predetermined rate.
Moreover, the compressor expects the uncompressed stream to be loss–free as well. Al-
beit RoHC achieves around 80 %–90 % gain overall, neither of the compression designs
were optimised for general use. Our current research efforts focus on finding the optimal
configuration of RoHC based on the channel and uncompressed stream characteristics on-
line. We employ machine learning approaches for the prediction of header compression
utilities in [41], which will enable the compression to dynamically adapt to varying chan-
nel conditions. This will ensure that the compression always performs at best efficiency
throughout the transmission. Furthermore, we are working on various ways to combine
RoHCv2 and network coding to maximise throughput while reducing the potential latency
in real–time mesh networks.

Acknowledgments. The authors thank acticom GmbH, especially Gerrit Schulte, for the support
and software reference implementations of RoHCv1, RoHCv2 and IPHC as well as their help in
conducting the experiments. This work was supported by the János Bolyai Research Fellowship of
the Hungarian Academy of Sciences.

References

1. Arango, J., Pink, S., Ali, S., Hampel, D.: Header compression for ad-hoc networks. In: Military
Communications Conference, 2005. MILCOM 2005. IEEE. pp. 3080–3086 Vol. 5 (Oct 2005)

2. Benhassine, N., Thierry, E., Bonnin, J.M.: Efficient header compression implementation for ip-
based its communications. In: ITS Telecommunications (ITST), 2012 12th International Con-
ference on. pp. 780–784 (Nov 2012)

3. Bormann, C., Burmeister, C., Degermark, M., Fukushima, H., Hannu, H., Jonsson, L.E., Hak-
enberg, R., Koren, T., Le, K., Liu, Z., Martensson, A., Miyazaki, A., Svanbro, K., Wiebke, T.,
Yoshimura, T., Zheng, H.: RObust Header Compression (ROHC): Framework and four profiles:
RTP, UDP, ESP, and uncompressed (July 2001), request for Comments 3095

4. C. Yoon, D. Kim, W.J.C.K., Cha, H.: Appscope: application energy metering framework for
android smartphones using kernel activity monitoring. In: Proceedigs of 2012 USENIX con-
ference on Annual Technical Conference. pp. 36–36. Berkeley, CA, USA (2012)

5. Calveras, A., Arnau, M., Paradells, J.: An improvement of tcp/ip header compression algo-
rithm for wireless links. Third World Multiconference on Systemics, Cybernetics and Infor-
matics (SCI’99) and the Fifth International Conference on Information Systems Analysis and
Synthesis (ISAS’99), IEEE, Orlando, USA vol. 4, pp. 39–46 (July/August 1999)

6. Calveras, A., Paradells, J.: Tcp/ip over wireless links: Performance evaluation. 48th An-nual
Vehicular Technology Conference VTC ’98 IEEE, Ottawa (Ontario), Canada vol. 3, pp. 1755–
1759 (May 1998)

7. Casner, S., Jacobson, V.: Compressing ip/udp/rtp headers for low-speed serial links. Request
for Comments 2508 (1999)

Performance evaluation of RoHC and IPHC with TCP and UDP 305

8. Chen, W.T., Chuang, D.W., H.-C.Hsiao: Enhancing crtp by retransmission for wireless net-
works. Proceedings of the Tenth International Conference on Computer Communications and
Networks pp. pp. 426–431 (2001)

9. Chen, X., Guo, F., Dang, P., Wu, L.: A survey of rohc header compression schemes. In: Com-
puter Science and Network Technology (ICCSNT), 2012 2nd International Conference on. pp.
331–335 (Dec 2012)

10. Cheng, B.N., Moore, S.: Securing robust header compression (rohc). In: Military Communica-
tions Conference, MILCOM 2013 - 2013 IEEE. pp. 1383–1390 (Nov 2013)

11. Cheng, B.N., Wheeler, J., Hung, B.: Internet protocol header compression technology and its
applicability on the tactical edge. Communications Magazine, IEEE 51(10), 58–65 (October
2013)

12. Cheng, B.N., Wheeler, J., Hung, B., Moore, S., Sukumar, P.: A comparison of ip header com-
pression schemes in manets. In: Performance Computing and Communications Conference
(IPCCC), 2013 IEEE 32nd International. pp. 1–9 (Dec 2013)

13. Cheng, B.N., Zuena, J., Wheeler, J., Moore, S., Hung, B.: Manet ip header compression. In:
Military Communications Conference, MILCOM 2013 - 2013 IEEE. pp. 494–503 (Nov 2013)

14. Fitzek, F.H., Rein, S., Seeling, P., Reisslein, M.: Robust header compression (rohc) perfor-
mance for multimedia transmission over 3g/4g wireless networks. Wireless Personal Commu-
nications 32(1), 23–41 (2005)

15. Fortuna, P., Ricardo, M.: Header compressed voip in ieee 802.11. IEEE Wireless Communica-
tions 16(3), 69–75 (June 2009)

16. Hermenier, R., Kissling, C.: Optimization of robust header compression for aeronautical com-
munication. In: Integrated Communications, Navigation and Surveillance Conference (ICNS),
2013. pp. 1–11 (April 2013)

17. Hermenier, R., Rossetto, F., Berioli, M.: On the behavior of robust header compression u-mode
in channels with memory. IEEE Transactions on Wireless Communications 12(8), 3722–3732
(August 2013)

18. Jacobson, V.: Compressing tcp/ip headers for low-speed serial links. Request for Comments
1144 (1990)

19. Jin, H., Hsu, R., Wang, J.: Performance comparison of header compression schemes for
rtp/udp/ip packets. In: Wireless Communications and Networking Conference, 2004. WCNC.
2004 IEEE. vol. 3, pp. 1691–1696 Vol.3 (March 2004)

20. Jivorasetkul, S., Shimamura, M., Iida, K.: Better network latency with end-to-end header
compression in sdn architecture. In: Communications, Computers and Signal Processing
(PACRIM), 2013 IEEE Pacific Rim Conference on. pp. 183–188 (Aug 2013)

21. Jonsson, L.E., Pelletier, G.: RObust Header Compression (ROHC): A Compression Profile for
IP (June 2004), request for Comments 3843

22. Jung, S., Hong, S.: Network/hardware cross-layer evaluation for rohc and packet aggregation
on wireless mesh networks. Wirel. Netw. 15(8), 1086–1101 (Nov 2009), http://dx.doi.
org/10.1007/s11276-008-0104-7

23. Kidston, D.: Ip header compression and packet aggregation in mobile tactical networks. In:
MILCOM 2009 - 2009 IEEE Military Communications Conference. pp. 1–7 (Oct 2009)

24. Ludovici, A., Calveras, A., Catalan, M., Gómez, C., Paradells, J.: Implementation and evalua-
tion of the enhanced header compression (iphc) for 6lowpan. In: Proceedings of the 15th Open
European Summer School and IFIP TC6.6 Workshop on The Internet of the Future. pp. 168–
177. EUNICE ’09, Springer-Verlag, Berlin, Heidelberg (2009), http://dx.doi.org/10.
1007/978-3-642-03700-9_18

25. Maeder, A., Felber, A.: Performance evaluation of rohc reliable and optimistic mode for voice
over lte. In: Vehicular Technology Conference (VTC Spring), 2013 IEEE 77th. pp. 1–5 (June
2013)

306 Máté Tömösközi, Patrick Seeling, Péter Ekler, and Frank H.P. Fitzek

26. Naidu, D., Tapadiya, R.: Implementation of header compression in 3gpp lte. In: Information
Technology: New Generations, 2009. ITNG ’09. Sixth International Conference on. pp. 570–
574 (April 2009)

27. Nascimento, A.G., Mota, E., Queiroz, S., Galvao, L., Nascimento, E.: Towards an efficient
header compression scheme to improve voip over wireless mesh networks. In: Computers and
Communications, 2009. ISCC 2009. IEEE Symposium on. pp. 170–175 (July 2009)

28. Pelletier, G.: RObust Header Compression (ROHC): Profiles for User Datagram Protocol
(UDP) Lite (April 2005), request for Comments 4019

29. Pelletier, G., Sandlund, K.: RObust Header Compression Version 2 (ROHCv2): Profiles for
RTP, UDP, IP, ESP and UDP-Lite (April 2008), request for Comments 5225

30. Pelletier, G., Sandlund, K., Jonsson, L.E., West, M.: RObust Header Compression (ROHC):
Profiles for User Datagram Protocol (UDP) Lite (July 2007), request for Comments 4996

31. Perkins, S.J., Mutka, M.W.: Dependency removal for transport protocol header compression
over noisy channels. International Conference on Communications (ICC), Montreal, Canada
vol. 2, pp. 1025–1029 (June 1977)

32. Perkins, S.J., Mutka, M.W.: Dependency removal for transport protocol header compression
over noisy channels. In: Proceedigs of IEEE International Conference on Communications
(ICC). pp. 1025–1029. Montreal, Canada (1997)

33. Pinola, J., Piri, E., Pentikousis, K.: On the performance gains of voip aggregation and rohc
over a wirelessman-ofdma air interface. In: Global Telecommunications Conference, 2009.
GLOBECOM 2009. IEEE. pp. 1–6 (Nov 2009)

34. Quintana-Ramirez, I., Saldana, J., Ruiz-Mas, J., Sequeira, L., Fernandez-Navajas, J.,
Casadesus, L.: Optimization of p2p-tv traffic by means of header compression and multiplex-
ing. In: Software, Telecommunications and Computer Networks (SoftCOM), 2013 21st Inter-
national Conference on. pp. 1–5 (Sept 2013)

35. Rein, S., Reisslein, M., Fitzek, F.H.P.: Voice quality evaluation for wireless transmission with
rohc. Tech. rep., in International Conference on Internet and Multimedia Systems and Appli-
cations (2003)

36. Ribičre, M., Charlton, P.: Cisco visual networking index: Global mobile
data traffic forecast update. Cisco, Inc. (2014–2019), [Online]. Available:
http://www.cisco.com/c/en/us/solutions/service-provider/visual-networking-index-
vni/index.html (current Feb. 2015.)

37. Rossi, M., Giovanardi, A., Zorzi, M., , Mazzini, G.: Tcp/ip header compression: Proposal and
performance investigation on a wcdma air interface. 12th IEEE International Symposium on
Personal, Indoor and Mobile Radio Communications, IEEE vol. 1, pp. A–78 – A–82 (Septem-
ber 2001)

38. Rossi, M., Giovanardi, A., Zorzi, M., Mazzini, G.: Improved header compression for tcp/ip
over wireless links. Electronics Letters vol. 36(no. 23), pp. 1958–1960 (November 2000)

39. Seeling, P., Reisslein, M., Fitzek, F., Hendrata, S.: Video quality evaluation for wireless trans-
mission with robust header compression. In: Information, Communications and Signal Pro-
cessing, 2003 and Fourth Pacific Rim Conference on Multimedia. Proceedings of the 2003
Joint Conference of the Fourth International Conference on. vol. 3, pp. 1346–1350 vol.3 (Dec
2003)

40. Svanbro, K., Hannu, H., Jonsson, L.E., Degermark, M.: Wireless real–time ip services enabled
by header compression. Proceedings of the IEEE Vehicular Technology Conference (VTC),
Tokyo, Japan vol. 2, pp. 1150–1154 (2000)

41. Tömösközi, M., Seeling, P., Ekler, P., Fitzek, F.H.P.: Regression model building and efficiency
prediction of rohcv2 compressor implementations for voip. In: 2016 IEEE Global Communi-
cations Conference (GLOBECOM). pp. 1–6 (Dec 2016)

42. Tömösközi, M., Seeling, P., Fitzek, F.H.: Performance evaluation and comparison of robust
header compression (ROHC) rohcv1 and rohcv2 for multimedia delivery. In: Workshops Pro-

Performance evaluation of RoHC and IPHC with TCP and UDP 307

ceedings of the Global Communications Conference, GLOBECOM. pp. 1346–1350. Atlanta,
GA, USA (2013)

43. Tömösközi, M., Seeling, P., Ekler, P., Fitzek, F.H.: Applying robust header compression version
2 for udp and rtp broadcasting with field constraints. In: IEEE 85rd Vehicular Technology
Conference, VTC Spring 2016. Sydney, Australia (Jun 2016)

44. Tömösközi, M., Seeling, P., Ekler, P., Fitzek, F.H.: Robust header compression version 2 power
consumption on android devices via tunnelling. In: ICC2017: WS05-International Workshop
on Application of green techniques to emerging communication and computing paradigms
(GCC)” (ICC2017-WS05). Paris, France (May 2017)

45. Tordjman, T., Lücke, O.: Evaluation of robust header compression for aeronautical operational
data. In: 2012 6th Advanced Satellite Multimedia Systems Conference (ASMS) and 12th Signal
Processing for Space Communications Workshop (SPSC). pp. 308–315 (Sept 2012)

46. Woo, H., Kim, J., Lee, M., Kwon, J.: Performance analysis of robust header compression over
mobile wimax. In: Advanced Communication Technology, 2008. ICACT 2008. 10th Interna-
tional Conference on. vol. 3, pp. 1742–1746 (Feb 2008)

Máté Tömösközi is a Junior Researcher at the Technische Universität Dresden (Dresden,
Germany), as well as co–Ph.D. at the Budapest University of Technology and Economics
(Budapest, Hungary) and the Aalborg University (Aalborg, Denmark). He received his
master’s degree in Computer Engineering from the Budapest University of Technology
and Economics in 2013 and worked as a software engineer for acticom GmbH (Berlin,
Germany) between 2012–2015 where he developed and maintained various header com-
pression implementations. He is currently researching header compression and network
coding in the context of next generation networks (5G) with an emphasis on latency in
real–time mesh networks.

Patrick Seeling is an Associate Professor in the Department of Computer Science at
Central Michigan University (Mount Pleasant, Michigan, USA). He received his Dipl.-
Ing. Degree in Industrial Engineering and Management from the Technical University of
Berlin (Berlin, Germany) in 2002 and his Ph.D. in Electrical Engineering from Arizona
State University (Tempe, Arizona, USA) in 2005. He currently leads the Distributed In-
ternetworked Systems and Content (DISC) lab at Central Michigan University, reflecting
his research interests comprising user experiences in mixed realities, networking (with
a focus on multimedia and energy optimisations), distributed and mobile systems, and
computer–mediated education. Patrick Seeling is a Senior Member of the Association for
Computing Machinery (ACM) and the Institute of Electrical and Electronics Engineers
(IEEE).

Péter Ekler is a Senior Lecturer at the Budapest University of Technology and Eco-
nomics, Department of Automation and Applied Informatics. He received his Ph.D. de-
gree at BME in 2011. He has been working with mobile P2P and social networks for six
years. He is the creator of the first BitTorrent client for mainstream mobile phones based
on the Java ME platform. He is co–author of several mobile related scientific papers and
book chapters. His field of research covers mobile–based social networks, P2P solutions,
data analysis and power law distributions in large networks. He has participated in several
data warehouse and business intelligence related projects. He teaches mobile software
development for several mobile platforms.

308 Máté Tömösközi, Patrick Seeling, Péter Ekler, and Frank H.P. Fitzek

Frank H.P. Fitzek is a Professor and chair of the Deutsche Telekom chair of communica-
tion networks group at Technische Universität Dresden coordinating the 5G Lab Germany.
He received his diploma (Dipl.-Ing.) degree in electrical engineering from the Univer-
sity of Technology - Rheinisch–Westfälische Technische Hochschule (RWTH) - Aachen,
Germany, in 1997 and his Ph.D. (Dr.-Ing.) in Electrical Engineering from the Technical
University Berlin, Germany in 2002 and became Adjunct Professor at the University of
Ferrara, Italy in the same year. In 2003 he joined Aalborg University as Associate Pro-
fessor and later became Professor. He co–founded several start–up companies starting
with acticom GmbH in Berlin in 1999. He has visited various research institutes includ-
ing Massachusetts Institute of Technology (MIT), VTT, and Arizona State University. In
2005 he won the YRP award for the work on MIMO MDC and received the Young Elite
Researcher Award of Denmark. He was selected to receive the NOKIA Champion Award
several times in a row from 2007 to 2011. In 2008 he was awarded the Nokia Achievement
Award for his work on cooperative networks. In 2011 he received the SAPERE AUDE
research grant from the Danish government and in 2012 he received the Vodafone Inno-
vation price. In 2015 he was awarded the honorary degree ”Doctor Honoris Causa” from
Budapest University of Technology and Economics (BUTE). His current research inter-
ests are in the areas of wireless and mobile 5G communication networks, mobile phone
programming, network coding, cross layer as well as energy efficient protocol design and
cooperative networking.

Received: November 1, 2015; Accepted: February 27, 2017.

