
Enabling multi-source coded downloads

Patrik J. Braun∗†, Derya Malak∗, Muriel Médard∗
∗Research Laboratory of Electronics (RLE)

Massachusetts Institute of Technology
Cambridge, MA 02139 USA

{pbraun, deryam, medard}@mit.edu

Péter Ekler†
†Department of Automation and Applied Informatics
Budapest University of Technology and Economics

Budapest, 1111 Hungary
{patrik.braun, peter.ekler}@aut.bme.hu

Abstract—In this paper, we introduce two multi-source
download protocols for loosely orchestrated edge cloud scenar-
ios involving mobile devices. We focus on services with high
bandwidth and low delay requirements, like video streaming.
We propose MUlti-source Transmission Protocol (MUTP) for
uncoded multi-source data delivery and extend it with network
coding capabilities to create coded MUTP. We investigate
their throughput using a custom designed testbed. We present
measurement results collected over eight months that include
more than 630 GBs of video download. We show that even
when downloading from only two sources, our protocols can
match the heavily optimized HTTP protocol. Furthermore, by
increasing the number of sources to four or higher, MUTP
protocols can outperform the HTTP approach, reaching an up
to three-fold goodput increase.

Keywords-Network coding, multi-source download, We-
bRTC, JavaScript, video download, edge cloud

I. INTRODUCTION

Mobile data traffic increases continuously. According to
Ericcson [1], in the third quarter of 2018, the grow-rate of
mobile-based Internet traffic reached 79% on a year-on-year
basis. In 2018, 60% of this data was video streaming, a
figure that is expected to reach 75% by 2024.

The majority of services that are used over the mobile
network are mostly based on a traditional client-server
setup, through protocols like HyperText Transfer Protocol
(HTTP) [2]. Furthermore, the servers are usually placed in
the core of the network, far away from the client. When a
user travels with high speed, its mobile network can have
bandwidth fluctuations, because of losses or handovers [3].
When the user watches an online video, these fluctuations
can lead to a reduction in video quality or even to stream
interruptions [4].

A possible solution to this issue is to apply an edge cloud
system [5]. An edge cloud system brings the content closer
to the clients by caching it at the base stations. Furthermore,
if clients can connect to multiple cell towers, they can
download from all neighboring edge clouds simultaneously.
To achieve multi-source download, conventional protocols
like Transmission Control Protocol (TCP) are not sufficient.
Furthermore, since in a mobile scenario the network con-
figuration is continuously changing, it is challenging or not

feasible to synchronize all edge servers so that they do not
send the same packets to the client.

Bruneau et al. have proposed MS-streaming, a multiple-
source streaming solution that splits video into multiple
independent sub-streams and offers methods for bit-rate
adaptation and server-switching [6]. Compared to optimal
Dynamic Adaptive Streaming over HTTP (DASH) systems,
MS-streaming can achieve up to a 74% mean bit-rate gain.

We have shown that Random Linear Network Coding
(RLNC) [7] may also be used to improve the throughput of a
multi-source network [8]. RLNC creates linear combinations
of the original packets using random coefficients. The main
advantage of RLNC is that it is a rateless code with
recoding ability. Sørensen et al. have presented Network
Coded Filesystem Shim (NCFSS), a filesystem-level solution
for multipath, and multi-source download with RLNC [9].
They have provided a proof-of-concept implementation of
their proposed solution and have shown that their solution
improves access and download time by two to five-fold com-
pared to downloading from a single source. RLNC has also
been applied in transportation protocols by Kim at al [10].
They have presented a network coded implementation of
TCP (CTCP) that was be able to improve throughput on a
single lossy link.

In this paper, we propose two protocols for multi-source
download. The first protocol is the MUlti-source Transmis-
sion Protocol (MUTP) that transfers uncoded packets from
several servers to one client. The second protocol is the
Coded MUTP that is based on MUTP and creates RLNC-
encoded packets. Our solution differs from previous works
in three main aspects. 1) We focus on unreliable scenarios
where the servers cannot cooperate. 2) We propose protocols
that can be applied in the transportation layer or over User
Datagram Protocol (UDP) in the application layer. 3) We use
RLNC as part of the protocol. To examine the performance
of our protocols, we have designed a testbed that intercepts
YouTube video downloads. We download the intercepted
video through several servers, using one of our protocols or
a naive parallel HTTP-based approach that starts multiple
HTTP downloads for the same data and chooses the fastest
among them.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/228401577?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

II. PROBLEM DEFINITION

In this paper we focus on a scenario that has M servers
and one client. All M servers contain the same L original
data packets that the client would like to download. The
client connects to N < M nodes and starts to download the
original data. Connections between the client and the servers
are unreliable in both directions.

We measure the client progress with Degrees of Freedom
(DoF). DoF increases by one if the client receives a new,
useful packet. The client sends cumulative feedback that
contains information about all of its received packets.

The server nodes do not have information about each
other, i.e. they do not know how many nodes the client is
connected to, and the bandwidth of the nodes is also not
available for packet scheduling. For packet scheduling, a
server must rely on two information: 1) the previously sent
packets, 2) the information from the feedback. Note that the
feedback from the client to the server delayed. Thus, the
servers never have full information about the system.

Servers maintain a window of size w ≤ L to limit
the memory needed for transmission. In this multi-source
scenario, we cannot use the conventional sliding window,
since in that case, all servers would send the same packet.
Therefore, in this paper we consider a strict moving window
setup. A server may schedule any packets from its window.
A packet can be removed from the window if the client
successfully received and acknowledged its reception. To
have a constraint on the packet delay, we define W(t), the
set of packets in the window at time t the following way:

W(t) = {i ∈ L |wmin ≤ i < wmin + w}
L = {0, . . . , L}

Lacked(t) = {i ∈ L | pkt. i was acknowledged by time t}
wmin = min(L − Lacked(t)),

(1)
where L is the set of original packets, Lacked(t) is the set of
all received and acknowledged packets by time t and wmin
is the not-yet-acknowledged packet with the lowest index.

In this paper, we focus on finding the achievable maxi-
mum goodput (useful throughput) of a system that fulfills
the model that is presented in this section.

III. SYSTEM DESCRIPTION

We propose MUlti-source Transmission Protocol (MUTP)
for uncoded data transfer from multiple sources. Based on
MUTP, we propose Coded MUTP with network coding for
encoded multi-source data transfer.

Figure 1 shows our system setup, consisting of an Origo
server and several proxy servers and clients. The responsi-
bility of the Origo server is to manage the proxy servers and
serve as the entry point to the system.

We have designed a browser extension that intercepts
YouTube video requests and downloads them over N prox-
ies. It can download the content in three different ways:

HTTP

websocket

Origo Proxy 1

Client

Proxy 2 Proxy M
websocket

...

connected to

 N proxies

HTTPHTTPHTTP

Coded MUTP

Uncoded MUTP

Parellel HTTP

Figure 1. System overview

over a naive Parallel HTTP, or using Uncoded MUTP or
Coded MUTP protocols. Parallel HTTP sends the same
HTTP request over TCP to all connected proxies and uses
the fastest response as the result of the download. Uncoded
MUTP and Coded MUTP create an unreliable data-channel
over Web Real-Time Communication (WebRTC) to connect
to the proxies.

A. MUlti-source Transmission Protocol (MUTP)

Uncoded MUTP proxies maintains two lists: in-window
packets, and in-transit packets. In-transit packets are those
that have been sent, but no feedback has yet been received.

The client maintains a list of received packets that in-
creased its DoF (DoF increases at the client if it receives a
packet that was not present in its received list). The client
sends cumulative feedback based on its received list.

Based on the obtained received list from the client and the
in-transit list, each server creates a sendable list of packets.
The servers use this to choose a packet for transmission.
Since the proxies cannot communicate with each other,
optimal scheduling is not possible. Therefore we implement
a random scheduler, that chooses a packet uniformly at
random from the sendable list without replacement.

B. Coded MUTP

Coded MUTP uses a similar approach as Uncoded MUTP
to transmit packets. Instead of working on a packet level,
Coded MUTP first organizes the original L packets into g
sized groups, called generations. With the Coded MUTP
protocol the in-window, in-transit, received and sendable
lists contain generations instead of packets.

Coded MUTP uses a rarest generation first approach for
packet scheduling. It sends a packet from a generation that
has the least received DoF and in transiting packets. We
chose this method of scheduling a generation for sending
because it has already shown potential to improve through-
put in RLNC enhanced distributed systems [8].

����

���(�����
����(����

���(�����
����(�
����

���(

����

���(�����
����(�
����

���(

���

���(�����
����(�
	���

���(

��$�,!�) �%��) ���%$$��)���(�'+�'(��(�'+�'��%*$)��(�'+�'���$�,!�) �

���

��	

���

$%
'#

�"
!-
��
��
%%
�&

*)

��'�""�"�����
�$�%��������
�%��������

Figure 2. Grouped boxplot representation of downloading 1-2MB data from N ∈ {1, 2, 4, 6} servers with 896 KB/s and 1,792 KB/s upload bandwidth
with window size w = 240 and generation size g = 24.

IV. RESULTS AND DISCUSSION

For our measurements, we used Amazon Web Services
(AWS)1 to host one Origo server and 18 proxy servers in the
USA and Europe. We run our measurements for 8 months
and collected 820,000 log records from more than 630 GBs
of YouTube video watch. To better represent a multi-source
scenario, where the bottleneck is the server, we limited 14
of our proxies to 896 KB/s and four proxies to 1,792 KB/s.

In this section we compare the normalized goodput of
different setups. We define normalized goodput as the quo-
tient of goodput (useful throughput) and throughout. We use
this to compare amount of received packets that increase the
DoF at the client to all received packets. We also compared
our measurement results to our previous work [8], where
we construct a model to analyze multi-source networks. Our
analysis and our measurements show similar trends.

Figure 2 shows combined results of downloading 1-2MB
sized chunks with different upload bandwidth. Results show
that in case of a single connection, all three approaches per-
form the same way, while increasing the number of sources,
our MUTP protocols have better performance compared to
the HTTP approach. Uncoded MUTP has an up to two-fold
performance increase compared to Parallel HTTP. Further-
more, Coded MUTP has an up to three-fold performance
increase compared to Parallel HTTP and a 25% performance
increase compared to Uncoded MUTP.

V. CONCLUSION

In this paper, we have proposed two multi-source down-
load protocols for loosely orchestrated edge cloud scenarios:
Uncoded MUTP and Coded MUTP. To test their perfor-
mance, we created a testbed and carried out an extensive
measurement campaign. Throughout our measurements, we
achieved two- and three-fold normalized goodput increase
with Uncoded MUTP and Coded MUTP, respectively, com-
pared to the naive Parallel HTTP approach.

As future work, we plan to investigate different packet
scheduling methods for both Uncoded and Coded MUTP
protocols and further optimize our system.

1Amazon Web Services: https://aws.amazon.com/

REFERENCES

[1] (2018, Nov.) Ericsson mobility report.
Ericsson. [Online]. Available: https://www.
ericsson.com/assets/local/mobility-report/documents/2018/
ericsson-mobility-report-november-2018.pdf

[2] (2018) Global Internet Phenomena. Sandive. [On-
line]. Available: https://www.sandvine.com/hubfs/downloads/
phenomena/2018-phenomena-report.pdf

[3] R. Ahmad, E. A. Sundararajan, N. E. Othman, and M. Is-
mail, “Handover in LTE-advanced wireless networks: state
of art and survey of decision algorithm,” Telecommunication
Systems, vol. 66, no. 3, pp. 533–558, Nov 2017.

[4] N. Wehner, S. Wassermann, P. Casas, M. Seufert, and
F. Wamser, “Beauty is in the eye of the smartphone holder a
data driven analysis of youtube mobile qoe,” in 2018 14th In-
ternational Conference on Network and Service Management
(CNSM), Nov 2018, pp. 343–347.

[5] H. Chang, A. Hari, S. Mukherjee, and T. V. Lakshman,
“Bringing the cloud to the edge,” in 2014 IEEE Conference
on Computer Communications Workshops (INFOCOM WK-
SHPS), April 2014, pp. 346–351.

[6] J. Bruneau-Queyreix, M. Lacaud, D. Négru, J. M. Batalla,
and E. Borcoci, “Adding a new dimension to http adaptive
streaming through multiple-source capabilities,” IEEE Multi-
Media, vol. 25, no. 3, pp. 65–78, July 2018.

[7] R. Ahlswede, N. Cai, S. Y. Li, and R. W. Yeung, “Network
Information Flow,” IEEE Trans. Inf. Theor., vol. 46, no. 4,
pp. 1204–1216, Sep. 2006.

[8] P. J. Braun, D. Malak, M. Médard, and M. Ekler, “Multi-
Source Coded Downloads,” in 2019 IEEE International Con-
ference on Communications (ICC), May 2019, pp. 1–7.

[9] C. W. Sørensen, D. E. Lucani, and M. Médard, “On network
coded filesystem shim: Over-the-top multipath multi-source
made easy,” in 2017 IEEE International Conference on Com-
munications (ICC), May 2017, pp. 1–7.

[10] M. Kim, J. Cloud, A. ParandehGheibi, L. Urbina, K. Fouli,
D. J. Leith, and M. Médard, “Network coded TCP (CTCP),”
CoRR, vol. abs/1212.2291, 2012.

