
Multi-Source Coded Downloads
Patrik J. Braun∗†, Derya Malak∗, Muriel Médard∗

∗Research Laboratory of Electronics (RLE)
Massachusetts Institute of Technology

Cambridge, MA 02139 USA
{pbraun, deryam, medard}@mit.edu

Péter Ekler†
†Department of Automation and Applied Informatics
Budapest University of Technology and Economics

Budapest, 1111 Hungary
{patrik.braun, peter.ekler}@aut.bme.hu

Abstract—In this paper, we propose a selective-repeat (SR)
automatic repeat-request (ARQ) model for multi-source down-
load scenarios and analyze their useful throughput that we refer
to as goodput. The multi-source scenario comprises a set of
transmitters that send packets to a receiver. We characterize
the forward channels from the transmitters to the receiver via
a general hidden Markov model (HMM) and assume that the
reverse channels from the receiver to the transmitter are lossless.
To find the average goodput of the network, we exploit the
probability-generation function. We consider different packet
transmission schemes, including uncoded random, network coded
and sliding window-based network coded packets, and contrast
their performance. Our calculations show that using network
coding in a multi-source scenario can increase the average
goodput, while sliding window-based coding may also archive
the theoretical maximum goodput. We show that our multi-source
approach avoids the straggler problem, therefore adding more
transmitters to the network increases its throughout and the
system does not get limited by the weakest transmitter. We also
verify our analytic results with extensive simulations.

Index Terms—Network coding, selective-repeat (SR), Auto-
matic Repeat-reQuest (ARQ), Hidden Markov model (HMM),
Multi-source network, Throughput.

I. INTRODUCTION

Automatic Repeat reQuest (ARQ) is a widely used er-
ror control method for data transmissions. It uses timeouts
and acknowledgments (ACKs) to achieve reliable transmis-
sion over an unreliable channel and has several well known
types including Stop-and-wait ARQ, Go-Back-N ARQ, and
selective-repeat (SR) ARQ. In case of SR ARQ, the transmitter
sends packets without waiting for their ACK and only the
lost packets are selectively retransmitted. ARQ has been
applied in modern networks to boost their throughput and
reliability [1],[2] and there are detailed analytical models to
calculate its throughput: it has been shown that if the average
packet-error rate is ε , the throughput of SR ARQ with reliable
feedback is 1 − ε [3]. Y. J. Cho and C. K. UN analyzed
different ARQ models with forward and backward channels
memory [4] and showed that error bursts have a significant
impact on throughput. In [5], Ausavapattanakun and Nosratinia
suggested a more versatile, hidden Markov model (HMM)
based approach for analyzing SR ARQ with a discrete channel
model.

We have recently extended the work of Ausavapattanakun
and showed that using erasure coding, e.g.: random linear net-
work coding (RLNC) on ARQ channels models may increase

the throughput by up to 40% [6]. M. Tömösközi et al. showed
their coded sliding window approach outperforms the Reed-
Solomon and other RLNC approaches in per-packet delay [7].
J. K. Sundararajan et al. introduced a network coded (NC)
approach to transmission control protocol (TCP) and showed
that their scheme achieves a much higher throughput compared
to TCP over a lossy link [8].

Most of the ARQ approaches work on a point-to-point basis
that can be used in single-receiver single-transmitter networks,
but they do not support multi-source scenarios. Multi-source
download has a huge potential in future 5G networks, where
users are using mobile networks to access bandwidth and delay
intensive services, like video streaming. It has been shown
through measurements that multi-source video streaming may
help to meet this bandwidth and delay constraints, since it
increases download throughput and reliability, and thereby
the quality of service [9]. Furthermore, using network coded
shared file system for multi-source download with four com-
mercial cloud solutions may achieve up to five-fold increase
in download speed compared to single-source download [10].
M. Sipos showed a six-fold increase in download speed by
using four commercial clouds and a custom network coded
protocol [11]. While these works show huge potential of multi-
source download, they mainly do it through measurement
results and lack a rigorous analytical model.

In this paper, we propose an SR ARQ model to analyze the
multi-source networks, inspired by the point-to-point model
in [5] and [6]. The analysis focuses on goodput, the useful
throughput of the network. Our model contains N transmitters
(with N orthogonal channels) and one receiver. Our forward
link is modeled by a hidden Markov model (HMM). We con-
sider not only the conventional uncoded transmission schemes
but also the rateless coded and sliding window-based coding
methods. We show that the sliding window-based coding may
reach optimal goodput. The uncoded scheme also converges
to the optimal goodput with the increase of the window size
on the transmitter. Our results also show that applying rateless
codes on the transmitted data may further increase goodput.
Furthermore, the straggler problem is a huge challenge in
distributed systems [12]. Results also show that our approach
avoids the straggler problem, thus increasing the number of
transmitters, increases goodput without getting limited by
the weakest transmitter. We also compare our analysis with
simulation results. To the best of our knowledge, this paper

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of the Academy's Library

https://core.ac.uk/display/228401574?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

is the first to consider an HMM-based channel model, which
also incorporates RLNC in a multi-source network scenario.

II. SYSTEM MODEL

We focus on multi-source networks, where there are N
transmitters and only one receiver. Each transmitter has its
own channel, but all transmitters have the same source data,
i.e. the set of original packets: L = {p1, . . . , pL}, where L is
the total number of packets. The receiver aims to collect the
set L. We consider that the receiver has an infinite receive-side
window. While each transmitter has access to all L packets, it
also maintains a w-sized window, where w < L. An overview
about the proposed multi-source system is shown in Fig. 1.

...
L1

source data window 1

Receiver

1 w

...

..
.

reverse link
forward link

Ɛ

Ɛ

Ɛ

Ɛ erasure rate
1

2

N

i

...
L1

source data window 2

1 w

...

...
L1

source data window N

1 w

...

T
X

 1
T

X
 2

T
X

 N

TX i transmitter i

Fig. 1. Multi-source system overview.

A. Channel model
Each transmitter has an unreliable forward link (the channel

from the transmitter to the receiver) and a lossless reverse link
(the channel from the receiver to the transmitter) that does not
interfere with other links. All links are delayed: we assume the
round trip time (RTT) is fixed and is equal for each transmitter
and given by κc = κct→r + κcr→t, where κct→r is the latency
between the transmitter and the receiver, while κcr→t is the
latency between the receiver and the transmitter.

We model the erasures on the forward link with a hidden
Markov model to make our solution applicable to different
types of channels, similarly to the work of Ausavapattanakun
and Nosratinia [5]. At every time slot, a transmitter sends
a packet that may be delivered or lost due to an erasure.
The outcome of a transmission through channel i, denoted
by X (i)t , is a Bernoulli random variable, taking values from
X(i) = {0,1}, where 0 and 1 correspond to an erroneous and
an error-free transmission, respectively. The channel condition
is model by a multistate Markov chain S(i)t , in which the states
are S(i) = {1, . . . ,K (i)}, and its probability transition matrix is
P(i). Each state S(i)t = j, j ∈ S(i) has a different error probability
ε
(i)
j . We denote the set of these channel error probabilities

by ε (i) = {ε
(i)
1 , . . . , ε

(i)

K (i)
}. The process X (i)t , which is driven

by the Markov process S(i)t is a hidden Markov process
and can be characterized by {S(i),X(i),P(i), ε (i)}. Furthermore
PL,(i) = P(i) · diag{ε (i)} and PR,(i) = P(i) · diag{1 − ε (i)} are
the probabilities of losing and receiving a packet, respectively.
Note that PL,(i) + PR,(i) = P(i).

Furthermore, our model does not use an explicit channel
coding, but it can be applied on the top of a network that
uses channel coding. We assume that the underlying layers
use some channel coding that can indicate if a packet was
lost.

B. Protocol Description

In our model, the source of a packet is not important as
long as the receiver receives that packet. Thus to avoid the
race condition in a parallel multi-source system and make
the analysis simpler, we assume for our analysis that the
transmitters are scheduled in a round-robin fashion. In every
time slot, only one transmitter sends a packet. The RTT for this
round-robin model will be: k = Nκc and also kr→t = Nκcr→t
and kt→r = Nκct→r. As a result of round-robin scheduling of
the transmitters in ascending order, a packet received at time
slot t is sent by transmitter:

s(t) =

{
N if (t mod N) = 0
(t mod N) otherwise,

(1)

and transmitter s(t) sends:

pkt(t) = packet arrives or gets lost at the receiver at time t .
(2)

The life cycle of a packet is the following:
1) packet scheduling and sending: In every time slot, a

transmitter selects a packet from their w-sized window
and sends it over their channel.

2) packet arrives or gets lost: Receiver sends a feedback
κct→r time slots after the transmitter sent the packet,
independent of whether the packet got lost or arrived
at the receiver.

3) receiving the feedback: κcr→t later the feedback arrives at
the transmitter, which updates its window content based
on the feedback.

Since a transmitter sends a packet in every time slot and
the reverse link is perfect, transmitters receive an ACK or
NACK in every slot as well. A transmitter selects a packet to
send based on a pre-determined scheduling method that is the
same for every transmitter. We detail the different scheduling
methods in Section IV.

We do not consider conventional SR ARQ protocol in our
analysis since not all lost packets need to be retransmitted
automatically: We use cumulative feedback that contains all
previously received packets at the receiver (from all trans-
mitters). If a subset of the channels wants to transmit packet
pl ∈ L and it gets lost on some of the channels, but received
through at least one of the channels, all transmitters will
receive an ACK corresponding to packet pl . Therefore, it is not
necessary and also redundant to retransmit packet pl on any
of the channels. Fig. 2 gives an example of our round-robin
transmission model.

12

1 2 21 21transmitter #

time slot 1 2 3 4

21 21 1 2
5 6 7 8 9 10 11 time slots

transmitter 1

sends packet p

receiver sends

feedback to packet p

receiving

the feedback

k = 8
kr→t = 4 kt→r = 4

Fig. 2. Timeline example for serialized model with N = 2, k = 8.

In our analysis, we assume that the transmitters cannot com-
municate with each other, which makes the packet scheduling

challenging. We measure the receiver status with its Degrees
of Freedom (DoF). DoF at the receiver increases if it receives
a new, useful packet that contains new information. Due to
the lack of cooperation, several transmitters may schedule the
same packet for transmission, and the receiver may receive
duplicate packets that do not increase its DoF.

Data download in our system has a push fashion instead
of a centralized, receiver-driven pull fashion, because of the
cumulative feedback and the lack of cooperation. Due to
this push fashion, a transmitter can schedule any not yet
acknowledged packet without depending on other transmitters.
Therefore the system is not limited by the weakest transmitter
and avoids the straggler problem.

We focus on estimating the goodput of a multi-source
system in our analysis. We define goodput as the number of
DoF increases at the receiver per sent packet. We distinguish
goodput η(i) ∈ [0,1] for channel i and goodput η ∈ [0,N] for
the whole system.

III. ANALYSIS

In this section we describe a method for analyzing the
overall and per channel average goodput of a system with N
transmitters. First, we detail the possible outcomes of packet
transmission.

In the forward channel, during transmission, a packet can
get:

1) EL,(i) (lost): the event that a packet is lost with PL,(i)
probability on channel i,

2) ER,(i) (received): the event that a packet is received with
PR,(i) probability on channel i.

During scheduling time, a transmitter might schedule a packet
that is:

1) EpU,(i) (potentially useful): the event that given ER,(i),
the packet will increase the DoF at the receiver,

2) EpD,(i) (potentially duplicate): the event that given ER,(i),
the packet will not increase the DoF at the receiver.

If the packet is received, it might be
3) EU,(i) (useful): the event that a packet is successfully

received on channel i and increases the DoF at the
receiver,

4) ED,(i) (duplicate): the event that a packet is successfully
received on channel i, but does not increase the DoF at
the receiver.

Event EL,(i) and ED,(i) are equivalent, since in both cases
receiver does not receive new DoFs in that time slot. Therefore,
these two events can be combined into a single event:

5) EF,(i) (fail): packet was lost, or it was received on
channel i, but does not increase the DoF at the receiver.

Using these events, we define the following two main
probabilities:

PU,(i) = P(EU,(i))

PF,(i) = P(EF,(i))
(3)

Based on (3), we construct a signal-flow graph [13] to model
the goodput of individual channels. We use matrix branch

gains in the graph, since each link has multiple states because
we use HMM to model them. A signal-flow graph is a diagram
of directed branches between nodes to visually represent a
system of equations. Nodes are variables of the equations,
while the branches are the relationships between the variables.
Basic equivalences, like parallel, series, self-loop can be used
to simplify a flow graph [14]. A signal-flow graph with matrix
branch transmissions and vector node values is a matrix signal-
flow graph (MSFG).

We construct the MSFG in such a way that branch gains
appear as pzx , where x is the random variable of interest and
p is a probability. Thereby the graph represents an equation
system that is polynomial in z with coefficients that are the
probabilities of a given value of x. This system of equations
is the E [zn], the probability generation function (PGF) for x.

Fig. 3 shows the matrix flow graph of our transmission
model. In the figure, state I(i) represents the transmission of a
new packet, while at state O(i), the feedback of event EU,(i) is
received at the transmitter i and the transmitter can update its
window accordingly.

Transmitter 1

..
.

Transmitter N

zPF,(1)

zPF,(N)

(1)I

I(N)

zPU,(1)

zPU,(N)

(1)O

O(N)

Fig. 3. Matrix signal-flow graph for goodput analysis of our serialized model.

Next, we calculate the transmission time τ that we define
as the number of transmitted packets per DoF increase at the
receiver. τ can be calculated by using the matrix-generating
function Φτ(z). We get Φτ,(i)(z) by applying basic node
reduction on the MSFG, similarly to [5]:

Φτ,(i)(z) = (I − zPF,(i))
−1zPU,(i), (4)

where I is the identity matrix.
To calculate the PGF, we need to express πI (i), the proba-

bility vector of event EU,(i). In this case, it is πI (i) = π(i)PU,(i),
where π(i) is the stationary vector of P(i) and can be found by
solving:

π(i)P(i) = π(i)
π(i)1 = 1,

(5)

where 1 is the column vector of ones. Furthermore, let εF,(i) be
the packet-failure rate: εF,(i) = π(i)PF,(i)1. Then PGF of φτ(z)
can be calculated by pre- and post-multiplying Φτ(z) with a
row and a column vector, respectively:

φτ(i)(z) =
πI (i)Φτ,(i)(z)1

πI (i)1
=

1
1 − εF,(i)

π(i)PU,(i)Φτ,(i)(z)1.
(6)

The average transmission time of transmitter i, τ(i) can be
obtained by evaluating the first derivative of PGF φτ(i)(z) at
z = 1. The goodput, η(i) of channel i is the reciprocal is the
average transmission time, i.e., η(i) = 1/τ(i).

A. Calculating the probability of sending a useful packet PU,(i)
and a packet failure PF,(i)

Whether a packet pt received at time t is potentially useful
depends only on the last k time slots: Packet pt is sent at time
ts = t − kt→r, since the transmitter-receiver latency is kt→r.
Transmitter s(ts) has a feedback that contains information from
time ts − kr→t = t − k, since the receiver-transmitter latency
is kr→t (i). Furthermore, transmitters can also keep records of
previously sent packets (ii) . Since the transmitters may not
cooperate, a transmitter may only use information (i) and (ii)
to schedule a packet for transmission.

Using the feedback from time t − k, it is guaranteed that a
transmitter will not send a packet that would be a duplicate of
packets before time t − k, but it has no information about the
packets after that time. Therefore it may schedule duplicates
with them. We assume that a transmitter does not schedule
packets that are duplicates with its previously sent packets1.
Thus, a packet at time t will not be useful only if it has the
same information as any of the useful packets in the last k
time slots. There may be u ∈ [0, k − N

k] useful packets2 sent
by transmitters j, j , s(t) between time slots t − k and t.

We next investigate the number of potentially duplicates
sent by transmitter s(t). If the packet from transmitter s(t) is a
potentially duplicate of a useful packet from any transmitter j,
j , s(t), then the probability is higher that the packet at time
t is useful (since if a duplicate packet was already transmitted
by transmitter s(t) in the last k time, it will not retransmit that
packet. Thus it is more likely to choose a useful packet).

1 2 21 21transmitter #

time slot

21 21 1 time slots

k = 8

event ?UpDFpUUpUpD F

F: failU: useful pU: potentially useful pD: potentially duplicate

--

1 2 3 4 5 6 7 10 1198

kr→t = 4 kt→r = 4

Fig. 4. Example realization to calculate PU,(i) and PF,(i), N = 2, k = 8.

To better understand our methodology, let us consider the
following example for N = 2, k = 8, as shown in Fig. 4. In
this example, we are interested in calculating the probability
that the packet received at time t = 11 from transmitter 1 is
useful. We know that the receiver obtained u = 2 packets from
transmitter 2 in the last k = 8 time slots. The packet at time
t = 11 may be a duplicate of any of those 2 useful packets.
The Packet at time t = 9 from transmitter 1 is a potentially
duplicate with any of the packets from transmitter 2 between
time slots [2,8]. If it is a duplicate of the packet at time t = 6,
our investigated packet at time t = 11 may only be a duplicate
(if it is a duplicate at all) with packet at time 10.

Rest of this section uses this methodology to express PU(i)
and PF,(i) as a function of t through several steps. At every
step, we express the probability of a packet being useful or
to fail (is duplicate or lost) based on a given condition and

1Throughout our analysis we do not use forward error correction, therefore
packet p will be only rescheduled for transmission if a NACK for packet p
is received.

2Since k = Nκc, thus (N mod k) = 0

also the probability of that given condition. To obtain PU(i)
and PF,(i), we define the following quantities at time t:

v ∈ {0,1}t, vl =

{
1 if ER,(s(l))

0 otherwise,
(7)

where v represents a possible channel outcome between time
slots [0, t].

By Er(v), we denote the event that v is the channel outcome
between [0, t] time slots. We define the probability of v as the
channel outcome, Pr(v) = P(Er(v)). The packet at time t is
being useful or fail, conditioned on v:

PcU(v) = P(EU,(s(t)) at time t | Er(v))
PcF(v) = P(EF,(s(t)) at time t | Er(v))

(8)

Note that all probabilities with v as parameter, now im-
plicitly depends on the transmitter, since v = [v1 . . . vt] is
the input of the function and only transmitter i = s(t) may
transmit at time t. Therefore, we can also omit the transmitter
from PU(i)(t) and PF,(i)(t) and express them as follows:

PU(t) =
∑

v∈{0,1}t
PcU(v)Pr(v)PR,(s(t))vt

PF(t) =
∑

v∈{0,1}t
PcF(v)Pr(v)PR,(s(t))vt + PL,(s(t)) |1 − vl |

(9)

where Pr(v) is:

Pr(v) =
N∏
i=1

t−1∏
l=i

l=l+N

π(i)P
vl
R,(i)P

|1−vl |
L,(i) 1. (10)

The probabilities PcU(v) and PcF(v) depend on the proba-
bility of a packet being potentially useful or duplicate:

PpU(v) = P(EpU,(s(t)) at time t | Er(v))
PpD(v) = P(EpD,(s(t)) at time t | Er(v))

(11)

and they may be expressed the following way:

PcU(v) = PpU(v)vt + 0 |1−vt |

PcF(v) = PpD(v)vt + 1 |1−vt | .
(12)

As (12) shows, a packet is useful with probability PpU(v) if
it is received and fails with probability PpD(v) if received or
with probability 1 if lost.

To calculate PpU(v) and PpD(v), the following quantities
need to be expressed:

a ∈ {0,1}k, aj =

’x’ if s(t − j) = s(t)
1 else if EU,(s(t−j))

0 otherwise

b ∈ {0,1}k, bi =

’x’ if s(t − i) , s(t)
1 else if EpD,(s(t−i)), and

∃ j,0 < i ≤ k, EU,(s(t−j)),

pkt(t − i) ≡ pkt(t − j)
0 otherwise,

(13)

where x means the value at that position will not be used
during our calculations, but to simplify our formulas, we
assume its value to be 0. pkt(i) ≡ pkt(j) means that two
packets are interchangeable, i.e., they increase the DoF at the
receiver by at most one. Vector a represents the useful packets
received from transmitter j, j , s(t) between time slots [t−k, t],
b represents the potentially duplicates with any useful packet
between [t − k, t] and received from transmitter s(t) between
time slots [t − k, t].

We define the probability that there is a useful packet with
a given a = [ai, . . . ,ak] for every potentially duplicate packet
in b = [bi, . . . , bk]:

Edp(a,b) = ∀i, bi = 1 : ∃ j, j < i,aj = 1
pkt(t − i) ≡ pkt(t − j)

Pdp(a,b) = P(Edp(a,b)).
(14)

We also define Poutcome(v,a,b) as the probability of a and
b is the outcome between time slots [t − k, t]:

Poutcome(v,a,b) = P(∀aj = 1, EU,(s(t−j)),

∀aj = 0, ED,(s(t−j)),

∀bi = 1, EpD,(s(t−i)) | Edp(a,b),Er(v))
(15)

Furthermore, we define PsU(a,b) and PsD(a,b), the probabili-
ties of a packet at time t being useful or duplicate, respectively,
conditioned on a and b:

PsU(a,b) = P(EU,(t) | Edp(a,b))
PsD(a,b) = P(ED,(t) | Edp(a,b))

(16)

Using eqs. (13) to (16), we can express PpU(v):

PpU(v) =
k− k

N∑
u=0

k
N∑

d=0

∑
∑

a j=u∑
bi=d

Pdp(a,b)PsU(a,b)Poutcome(v,a,b)

(17)
where u is the number of useful packets sent by the transmitter
j, j , s(t). d is the number of packets that are sent by the
transmitter s(t) and are potentially duplicate packets with the
useful packets in the last k time slots. Similarly to PpU(v),
we can also express PpD(v) by using PsD(a,b), instead of
PsU(a,b).
Pdp(a,b) and Poutcome(v,a,b) can be expressed in the fol-

lowing way:

Pdp(a,b) =
k∏
l=1

s(t−l)=s(t)

∑l
j=1 aj −

∑l
i=1 bi

k − k
N

Poutcome(v,a,b) =
k∏
j=1

s(t−j),s(t)

PcU(vt−j)a jPcF(vt−j)|1−a j | ·

k∏
i=1

s(t−i)=s(t)

PpD(vt−i)bi (PpU(vt−i) + PpD(vt−i)) |1−bi |

vt−l = [v1 . . . vt−l].

(18)

The presented equations in this section do not depend on the
method how a transmitter selects a packet for transmission, but
to calculate PsU(a,b) and PsD(a,b), one also has to consider
the applied packet scheduling method. We detail that in the
next section. Furthermore, our matrix-flow graph approach to
calculate the average goodput is only applicable if lim

t→∞
PU(t)

and lim
t→∞
PF(t) exist.

IV. SCHEDULING METHODS

In this section, we enumerate several packet scheduling
strategies. We calculate PsU(a,b) and PsD(a,b), that are re-
quired to calculate the average goodput in (17), corresponding
to a given scheduling method.

As described in Section II, transmitters maintain a w-sized
window. We consider a moving window instead of a sliding
window that we define the following way: If a packet gets
removed from the window, the next available packet will be
picked from the L source data to fill the window. Therefore,
the window constantly contains w packets3. We assume L is
large enough, so that there are always enough packets to fill
the window, which is the case in a streaming scenario.

A. Sufficient genie scheme

We introduce a sufficient genie scheduling strategy to find
the optimal goodput of a system with the given channel
properties. It is not a full genie, since it only focuses on
sending the perfect packet regarding usefulness, but packets
might be lost on the channel. Therefore, PsU(a,b) = 1 and
PsD(a,b) = 0.

Using a genie, the transmitter-channel pairs can be de-
coupled and analyzed independently. The average goodput
of transmitter i only depends on the loss probability PL,(i).
Following the steps in [5], the average goodput of a channel
i is:

η(i) = 1 − ε(i) = 1 − π(i)PL,(i)1. (19)

The overall average goodput of the system for N transmit-
ters is η =

∑N
i=1 η(i).

B. Uncoded random scheme

In this approach, transmitters select a not-in-flight4 packet
uniformly at random from their send window for transmission.
We can express PsU(a,b) and PsD(a,b) in the following way:

PsU(a,b) = 1 − PsD(a,b) =
w − k

N − (
∑k

j=1 aj −
∑k

i=1 bi)

w − k
w

(20)
where k

N is the number of packets in flight from one transmit-
ter, and the summation gives how many useful packets were
sent by transmitter j, j , s(t) in the last k time slot in such
a way that the transmitter s(t) has not sent any potentially
duplicate packet to those packets.

3The packet in our window may not be consecutively chosen and there is
no limit on the maximum time a packet can spend in the window.

4A packet is in flight when it is sent, but feedback has not been received.

C. Rateless RLNC coded schemes

RLNC creates linear combinations of original packets with
randomly chosen coefficients. It may be applied to the trans-
mitted data to reduce the probability of receiving duplicate
packets. RLNC has recoding ability and can work as a rateless
code over a fixed set of packets [11] or as a sliding window
code over a changing set of packets [15].

In this scheme, we use RLNC in a rateless coding way:
packets are grouped into generations, creating altogether G ∈
Z+ generations with g ∈ Z+ packets in each. Network coding
is applied to each of the generations. Each transmitter groups
the packets in the same way, but uses a different random
seed to generate the linear combinations. In our analysis, we
assume that the field size used is high enough such that the
probability of two encoded packets being linearly dependent
goes to zero [16]. The receiver feedback contains the rank
of a generation instead of information about an individual
packet, where the rank equals the DoF of a given generation.
The transmitter window contains Gw =

w
g generations5. In

every time slot, a transmitter chooses one generation from its
window to create an encoded packet from and sends it over
the channel. The selection of a generation may be based on
different approaches. In this paper, we investigate a random
and a rarest first generation selection schemes.

In both cases, PsU(a,b) and PsD(a,b) depend on the
probability of transmitter s(t) choosing the generation γ for
transmission and its rank at time slot t. Calculating these prob-
abilities is not part of this paper. We instead show the goodput
of applying network coding in a multi-source environment
through simulations in Section V.

1) Random generation selection scheme: Transmitters
choose a generation for transmission uniformly at random.

2) Rarest first generation selection scheme: Transmitters
approximate the rank of the generations an the receiver and
choose the one that hase the least rank. The approximation
is based on two components: 1) the feedback that represents
the receiver state kr→t time slots ago, 2) the sent packets by
that given transmitter. We call this strategy rarest generation
first strategy, referring to the rarest piece first algorithm in
BitTorrent [17].

One should note two special cases that apply for both
generation selection approaches: 1) if g = 1, the goodput
will be identical with the uncoded random schemes. 2) if
L = w = g, the goodput will be identical with the sufficient
genie scheme, since all received packet will be useful.

D. Coded sliding window scheme

In case of the network coding sliding window [15] scheme,
a transmitter encodes all the packets in its window with
RLNC. The receiver feedback contains information about the
successfully decoded packets. The probability of receiving a
useful packet is the following:

5To keep the analysis simple, we assume L mod g = w mod g = 0.

PsU(a,b) = 1 − PsD(a,b) =

{
1 if (t mod k) < w

0 otherwise
. (21)

Note that if k ≤ w, all received packets will be useful,
therefore the strategy would have the same goodput as the
sufficient genie scheme.

Comparing this solution to the rateless RLNC coded strate-
gies, sliding window achieves optimal performance with cod-
ing less or equal packets together, thereby using less CPU
cycles, since we usually have k << L. On the other hand,
with rateless coding the random seed can be shared between
the transmitter and the receiver, while with sliding window the
coefficient vector needs to travel in the packet payload.

V. NUMERICAL RESULTS

We computed the numerical results for our model by using
a two state Gilbert-Elliot (GE) channel model [18] for the
forward link of the transmitters. The state-transition matrix of
the channel is given by:

P(i) =
[
1 − q(i) q(i)

r(i) 1 − r(i)

]
, (22)

where the first row corresponds to the good (G) state and the
second to the bad (B) state. The channel error probability is
ε (i) = {ε

(i)
G
, ε
(i)
B } = {0,1}. The packet loss rate εF,(i) can be

calculated from ε (i) and the stationary vector of P(i) as shown
in Section III.

We use our simulator testbed to analyze the goodput of
our data scheduling schemes. Each simulation was run 1000
times, and an average is calculated from them. We compare
our simulations and numerical results and they show similar
trends.

ε1���
 ε1���� ε1���

ε2���

ε1����
ε2����

ε1���

ε2���

ε3���

ε1����
ε2����
ε3����

ε1���

ε2���

ε3���

ε4���

ε1����
ε2����
ε3���

ε4���

ε1����
ε2����
ε3����
ε4����

������ ���� #��������� �������� ������������

�

�

	

��
��

�!
 ��
η�

�!����������������# ����
�!���������������!�� ���
!������������������# ����
!�����������������!�� ���

���������������g=3������!�� ���
����� ����� �����������g=12������!�� ���
��������"����"�����������# ����
��������"����"����������!�� ���

Fig. 5. Goodput for transmitters N = [1, 2, 3, 4], RTT κc = 3, window size
w = 24 and burst rate r = 0.3.

Fig. 7 shows that apart from the sufficient genie and the
coded sliding window scheme, that have the achievable maxi-
mum goodput, window size has a high impact on goodput:
small window size causes a significant goodput decrease,
since the transmitters have a smaller set of packets to choose
from. As the figure also shows, in case rarest first generation
selection scheme, goodput also depends on the combination
of the window size and the generation size.

Higher RTT values have a negative impact on goodput, as
Fig. 6 shows. Rarest first generation selection scheme may
perform better compared to the uncoded random, but the gain
depends on both generation size and RTT. With low RTT,
the bigger generation size, while with high RTT the smaller
generation size performs better.

Increasing the number of transmitters increases overall
average goodput, but increases the chance of sending duplicate
packets for the uncoded random scheme or the rateless RLNC
coded schemes, as Fig. 5 shows, since the difference between
the achievable maximum and the actual throughput increases.

	 � � �� �� �	
�����κc�

���

��

���

��

���

��

��
��

�!
 ��
η� �!����������������# ����

�!���������������!�� ���
!������������������# ����
!�����������������!�� ���
���������������g=3������!�� ���
����� ����� �����������g=3������!�� ���
����� ����� �����������g=12������!�� ���
��������"����"�����������# ����
��������"����"����������!�� ���

Fig. 6. Goodput for transmitters N = 3, packet loss rate εF,(i) = 0.1, window
size w = 24 and burst rate r = 0.3.

�� 	�
� �� �� � ��
#����#� �%���w�

���

���

���

���

���

���

��
��

�"
!��
η� "����������������$!����

 "������������ ��"��!���
"������������������$!����
"�������������� ��"��!���
����������������g=3��� ��"��!���
���� !���� !������������g=3��� ��"��!���
���� !���� !������������g= w

3 ��� ��"��!���
 �������#����#������������$!����
 �������#����#�������� ��"��!���

Fig. 7. Goodput for transmitters N = 3, RTT κc = 4, packet loss rate
εF,(i) = 0.1 and burst rate r = 0.3.

VI. CONCLUSION

In this paper, we proposed an SR ARQ model for multi-
source single-receiver download. The model uses lossy for-
ward links that are modeled with a hidden Markov process.
We used a matrix signal-flow graph approach to calculate the
probability generation function of the goodput, and to analyze
the average goodput of a multi-source download system.

We compared numerical results with simulation results for
several packet scheduling approaches, including the uncoded
and network coded approaches. Our results show that rateless
network coding techniques can boost goodput, while network
coded sliding window may achieve optimal performance.
We also showed that our multi-source approach avoids the
straggler problem, therefore adding new transmitters to the
network increases the goodput.

In this paper, we analyzed a moving window approach does
not set any constraints on the packet delay. As future work, we

plan to investigate a more flexible window approach that has
a constraint on the delay and we would like to also consider
further packet scheduling schemes.

ACKNOWLEDGMENTS

This research was supported by the BME-Artificial Intel-
ligence FIKP grant of EMMI (BME FIKP-MI/SC), by the
János Bolyai Research Fellowship of the Hungarian Academy
of Sciences and by the Fulbright and Rosztoczy programs.

REFERENCES

[1] 3GPP, “Study on new radio access technology Phys-
ical layer aspects,” 3rd Generation Partnership Project
(3GPP), Technical report (TR) 38.802, 09 2017. [On-
line]. Available: https://portal.3gpp.org/desktopmodules/Specifications/
SpecificationDetails.aspx?specificationId=3066

[2] S. R. Khosravirad and H. Viswanathan, “Analysis of Feedback Error in
Automatic Repeat reQuest,” CoRR, vol. abs/1710.00649, 2017.

[3] D.-L. Lu and J.-F. Chang, “Performance of ARQ protocols in noninde-
pendent channel errors,” IEEE Transactions on Comm., vol. 41, no. 5,
pp. 721–730, May 1993.

[4] Y. J. Cho and C. K. Un, “Performance analysis of ARQ error controls
under Markovian block error pattern,” IEEE Transactions on Comm.,
vol. 42, no. 234, pp. 2051–2061, FEBRUARY 1994.

[5] K. Ausavapattanakun and A. Nosratinia, “Analysis of Selective-Repeat
ARQ via Matrix Signal-Flow Graphs,” IEEE Transactions on Comm.,
vol. 55, no. 1, pp. 198–204, Jan 2007.

[6] M. M. D. Malak and E. M. Yeh, “Analysis of Coded Selective-Repeat
ARQ via Matrix Signal-Flow Graphs,” CoRR, vol. abs/1801.10500,
2018.

[7] M. Tömösközi, F. H. P. Fitzek, D. E. Lucani, M. V. Pedersen, and
P. Seeling, “On the Delay Characteristics for Point-to-Point Links using
Random Linear Network Coding with On-the-Fly Coding Capabilities,”
in 20th European Wireless Conf., May 2014, pp. 1–6.

[8] J. K. Sundararajan, D. Shah, M. Médard, S. Jakubczak, M. Mitzen-
macher, and J. Barros, “Network Coding Meets TCP: Theory and
Implementation,” Proceedings of the IEEE, vol. 99, no. 3, pp. 490–512,
March 2011.

[9] J. Bruneau-Queyreix, M. Lacaud, D. Negru, J. M. Batalla, and E. Bor-
coci, “MS-Stream: A multiple-source adaptive streaming solution en-
hancing consumer’s perceived quality,” in 14th IEEE CCNC, Jan 2017,
pp. 427–434.

[10] C. W. Sørensen, D. E. Lucani, and M. Médard, “On network coded
filesystem shim: Over-the-top multipath multi-source made easy,” in
IEEE ICC, May 2017, pp. 1–7.

[11] M. Sipos, F. H. P. Fitzek, D. E. Lucani, and M. V. Pedersen, “Distributed
cloud storage using network coding,” in IEEE 11th CCNC, Jan 2014,
pp. 127–132.

[12] M. A. M. Songze Li and A. S. Avestimehr, “A Unified Coding
Framework for Distributed Computing with StragglingServers,” CoRR,
vol. abs/1609.01690, 2016.

[13] S. J. Mason and H. J. Zimmermann, “Electronic circuits, signals, and
systems,” pp. xviii, 616 p., companion volume to Electronic circuit
theory, by H.J. Zimmermann and S.J. Mason.

[14] R. A. Howard, Dynamic probabilistic systems: Markov models. Courier
Corporation, 2012, vol. 1.

[15] S. Wunderlich, F. Gabriel, S. Pandi, and F. H. P. Fitzek, “We don’t need
no generation - a practical approach to sliding window RLNC,” in 2017
Wireless Days, March 2017, pp. 218–223.

[16] T. Ho, M. Médard, R. Koetter, D. R. Karger, M. Effros, J. Shi, and
B. Leong, “A Random Linear Network Coding Approach to Multicast,”
IEEE Transactions on Inf. Theory, vol. 52, no. 10, pp. 4413–4430, Oct
2006.

[17] A. Legout, G. Urvoy-Keller, and P. Michiardi, “Rarest First and Choke
Algorithms Are Enough,” in 6th ACM SIGCOMM Conf. on Internet
Measurement, ser. IMC ’06. New York, NY, USA: ACM, 2006, pp.
203–216.

[18] E. O. Elliott, “Estimates of error rates for codes on burst-noise channels,”
The Bell System Tech. Journal, vol. 42, no. 5, pp. 1977–1997, Sept 1963.

